Gradle User Guide

Version 3.0

Copyright © 2007-2016 Hans Dockter, Adam Murdoch

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents

|. ABOUT GRADLE

1. Introduction
2. Overview

1. WORKING WITH EXISTING BUILDS

3. Installing Gradle

4. Using the Gradle Command-Line

5. The Gradle Wrapper

6. The Gradle Daesmon

7. Dependency Management Basics

8. Introduction to multi-project builds

9. Continuous build

10. Using the Gradle Graphical User Interface
11. The Build Environment

12. Troubleshooting

13. Embedding Gradle using the Tooling API

1. WRITING GRADLE BUILD SCRIPTS

14. Build Script Basics

15. Build Init Plugin

16. Writing Build Scripts

17. More about Tasks

18. Working With Files

19. Using Ant from Gradle
20. The Build Lifecycle

21. Wrapper Plugin

22. Logging

23. Dependency Management
24. Multi-project Builds

25. Gradle Plugins

26. Standard Gradle plugins
27. The Project Report Plugin
28. The Build Dashboard Plugin
29. Comparing Builds

30. Publishing artifacts

31. The Maven Plugin

32. The Signing Plugin

33. lvy Publishing (new)

34. Maven Publishing (new)
35. The Distribution Plugin
36. The Announce Plugin

37. The Build Announcements Plugin

V. EXTENDING THE BUILD

38. Writing Custom Task Classes

39. Writing Custom Plugins

40. The Java Gradle Plugin Development Plugin
41. Organizing Build Logic

42. Initialization Scripts

43. The Gradle TestKit

V. BUILDING JVM PROJECTS

44, Java Quickstart

45, The Java Plugin

46. Web Application Quickstart
47. The War Plugin

48. The Ear Plugin

49. The Jetty Plugin

50. The Application Plugin
51. The Java Library Distribution Plugin
52. Groovy Quickstart

53. The Groovy Plugin

54. The Scala Plugin

55. The ANTLR Plugin

56. The Checkstyle Plugin
57. The CodeNarc Plugin
58. The FindBugs Plugin
59. The JDepend Plugin
60. The PMD Plugin

61. The JaCoCo Plugin

62. The OSGi Plugin

63. The Eclipse Plugins
64. The IDEA Plugin

VI. THE SOFTWARE MODEL - NEXT GENERATION GRADLE BUILDS

65. Rule based model configuration

66. Software model concepts

67. Implementing model rulesin aplugin
68. Building Java Libraries

69. Building Play applications

70. Building native software

71. Extending the software model

VIl. APPENDIX

A. Gradle Samples

B. Potentia Traps

C. The Feature Lifecycle
D. Gradle Command Line
E. Documentation licenses
Glossary

List of Examples

4.1. Executing multiple tasks

4.2. Excluding tasks

4.3. Abbreviated task name

4.4. Abbreviated camel case task name

4.5. Selecting the project using a build file
4.6. Selecting the project using project directory
4.7. Forcing tasksto run

4.8. Obtaining information about projects
4.9. Providing a description for a project
4.10. Obtaining information about tasks
4.11. Changing the content of the task report

4.12. Obtaining more information about tasks

4.13. Obtaining detailed help for tasks

4.14. Obtaining information about dependencies
4.15. Filtering dependency report by configuration
4.16. Getting the insight into a particular dependency
4.17. Information about properties

5.1. Running the Wrapper task

5.2. Wrapper task

5.3. Wrapper generated files

5.4. Generating a SHA-256 hash

5.5. Configuring SHA-256 checksum verification
7.1. Declaring dependencies

7.2. Definition of an external dependency

7.3. Shortcut definition of an external dependency
7.4. Usage of Maven central repository

7.5. Usage of JCenter repository

7.6. Usage of aremote Maven repository

7.7. Usage of aremote lvy directory

7.8. Usage of alocal lvy directory

7.9. Publishing to an Ivy repository

7.10. Publishing to a Maven repository

8.1. Listing the projectsin abuild

10.1. Launching the GUI

11.1. Setting properties with a gradle.propertiesfile
11.2. Configuring an HTTP proxy

11.3. Configuring an HTTPS proxy

14.1. Your first build script

14.2. Execution of abuild script

14.3. A task definition shortcut

14.4. Using Groovy in Gradl€'s tasks

14.5. Using Groovy in Gradle'stasks

14.6. Declaration of task that depends on other task
14.7. Lazy dependsOn - the other task does not exist (yet)
14.8. Dynamic creation of atask

14.9. Accessing atask via API - adding a dependency
14.10. Accessing atask via APl - adding behaviour
14.11. Accessing task as a property of the build script
14.12. Adding extra propertiesto atask

14.13. Using AntBuilder to execute ant.|oadfile target
14.14. Using methods to organize your build logic
14.15. Defining a default task

14.16. Different outcomes of build depending on chosen tasks
16.1. Accessing property of the Project object

16.2. Using local variables

16.3. Using extra properties

16.4. Configuring arbitrary objects

16.5. Configuring arbitrary objects using a script
16.6. Groovy JDK methods

16.7. Property accessors

16.8. Method call without parentheses

16.9. List and map literals

16.10. Closure as method parameter

16.11. Closure delegates

17.1. Defining tasks

17.2. Defining tasks - using strings for task names

17.3. Defining tasks with alternative syntax

17.4. Accessing tasks as properties

17.5. Accessing tasks viatasks collection

17.6. Accessing tasks by path

17.7. Creating a copy task

17.8. Configuring atask - various ways

17.9. Configuring atask - with closure

17.10. Defining atask with closure

17.11. Adding dependency on task from ancther project
17.12. Adding dependency using task object

17.13. Adding dependency using closure

17.14. Adding a'must run after' task ordering

17.15. Adding a'should run after' task ordering

17.16. Task ordering does not imply task execution
17.17. A 'should run after' task ordering isignored if it introduces an ordering cycle
17.18. Adding a description to atask

17.19. Overwriting atask

17.20. Skipping atask using a predicate

17.21. Skipping tasks with StopExecutionException
17.22. Enabling and disabling tasks

17.23. A generator task

17.24. Declaring the inputs and outputs of atask

17.25. Task rule

17.26. Dependency on rule based tasks

17.27. Adding atask finalizer

17.28. Task finalizer for afailing task

18.1. Locating files

18.2. Creating afile collection

18.3. Using afile collection

18.4. Implementing afile collection

18.5. Creating afile tree

18.6. Using afile tree

18.7. Using an archive as afile tree

18.8. Specifying a set of files

18.9. Copying files using the copy task

18.10. Specifying copy task source files and destination directory
18.11. Selecting the files to copy

18.12. Copying files using the copy() method without up-to-date check
18.13. Copying files using the copy() method with up-to-date check
18.14. Renaming files as they are copied

18.15. Filtering files as they are copied

18.16. Nested copy specs

18.17. Using the Sync task to copy dependencies

18.18. Creating a ZIP archive

18.19. Creation of ZIP archive

18.20. Configuration of archive task - custom archive name
18.21. Configuration of archive task - appendix & classifier
19.1. Using an Ant task

19.2. Passing nested text to an Ant task

19.3. Passing nested elements to an Ant task

19.4. Using an Ant type

19.5. Using a custom Ant task

19.6. Declaring the classpath for a custom Ant task

19.7. Using a custom Ant task and dependency management together
19.8. Importing an Ant build

19.9. Task that depends on Ant target

19.10. Adding behaviour to an Ant target

19.11. Ant target that depends on Gradle task

19.12. Renaming imported Ant targets

19.13. Setting an Ant property

19.14. Getting an Ant property

19.15. Setting an Ant reference

19.16. Getting an Ant reference

19.17. Fine tuning Ant logging

20.1. Single project build

20.2. Hierarchical layout

20.3. Flat layout

20.4. Modification of elements of the project tree

20.5. Adding of test task to each project which has certain property set
20.6. Notifications

20.7. Setting of certain property to all tasks

20.8. Logging of start and end of each task execution

22.1. Using stdout to write log messages

22.2. Writing your own log messages

22.3. Using SLF4Jto write log messages

22.4. Configuring standard output capture

22.5. Configuring standard output capture for atask

22.6. Customizing what Gradle logs

23.1. Definition of a configuration

23.2. Accessing a configuration

23.3. Configuration of a configuration

23.4. Module dependencies

23.5. Artifact only notation

23.6. Dependency with classifier

23.7. Iterating over a configuration

23.8. Client module dependencies - transitive dependencies
23.9. Project dependencies

23.10. File dependencies

23.11. Generated file dependencies

23.12. Gradle API dependencies

23.13. Gradle's Groovy dependencies

23.14. Excluding transitive dependencies

23.15. Optional attributes of dependencies

23.16. Collections and arrays of dependencies

23.17. Dependency configurations

23.18. Dependency configurations for project

23.19. Configuration.copy

23.20. Accessing declared dependencies

23.21. Configuration.files

23.22. Configuration.files with spec

23.23. Configuration.copy

23.24. Configuration.copy vs. Configuration.files

23.25. Adding central Maven repository

23.26. Adding Bintray's JCenter Maven repository

23.27. Using Bintrays's JCenter with HTTP

23.28. Adding the local Maven cache as arepository
23.29. Adding custom Maven repository

23.30. Adding additional Maven repositories for JAR files
23.31. Accessing password protected Maven repository
23.32. Flat repository resolver

23.33. lvy repository

23.34. Ivy repository with named layout

23.35. vy repository with pattern layout

23.36. vy repository with multiple custom patterns

23.37. Ivy repository with Maven compatible layout
23.38. vy repository

23.39. Declaring aMaven and vy repository

23.40. Providing credentialsto a Maven and lvy repository
23.41. Declaring a S3 backed Maven and Ivy repository
23.42. Configure repository to use only digest authentication
23.43. Configure repository to use preemptive authentication
23.44. Accessing arepository

23.45. Configuration of arepository

23.46. Definition of a custom repository

23.47. Forcing consistent version for agroup of libraries
23.48. Using a custom versioning scheme

23.49. Blacklisting a version with a replacement

23.50. Changing dependency group and/or name at the resolution

23.51. Substituting a module with a project

23.52. Substituting a project with amodule

23.53. Conditionally substituting a dependency

23.54. Specifying default dependencies on a configuration
23.55. Enabling dynamic resolve mode

23.56. 'Latest' version selector

23.57. Custom status scheme

23.58. Custom status scheme by module

23.59. lvy component metadata rule

23.60. Rule source component metadatarule

23.61. Component selection rule

23.62. Component selection rule with modul e target

23.63. Component selection rule with metadata

23.64. Component selection rule using a rule source object
23.65. Declaring modul e replacement

23.66. Dynamic version cache control

23.67. Changing modul e cache control

24.1. Multi-project tree - water & bluewhale projects

24.2. Build script of water (parent) project

24.3. Multi-project tree - water, bluewhale & krill projects
24.4. Water project build script

24.5. Defining common behavior of all projects and subprojects
24.6. Defining specific behaviour for particular project

24.7. Defining specific behaviour for project krill

24.8. Adding custom behaviour to some projects (filtered by project name)
24.9. Adding custom behaviour to some projects (filtered by project properties)
24.10. Running build from subproject

24.11. Evaluation and execution of projects

24.12. Evaluation and execution of projects

24.13. Running tasks by their absolute path

24.14. Dependencies and execution order

24.15. Dependencies and execution order

24.16. Dependencies and execution order

24.17. Declaring dependencies

24.18. Declaring dependencies

24.19. Cross project task dependencies

24.20. Configuration time dependencies

24.21. Configuration time dependencies - evaluationDependsOn
24.22. Configuration time dependencies

24.23. Dependencies - real life example - crossproject configuration
24.24. Project lib dependencies

24.25. Project lib dependencies

24.26. Fine grained control over dependencies

24.27. Build and Test Single Project

24.28. Partial Build and Test Single Project

24.29. Build and Test Depended On Projects

24.30. Build and Test Dependent Projects

25.1. Applying a script plugin

25.2. Applying a core plugin

25.3. Applying a community plugin

25.4. Applying plugins only on certain subprojects.

25.5. Using plugins from custom plugin repositories.

25.6. Complete Plugin Publishing Sample

25.7. Applying abinary plugin

25.8. Applying a binary plugin by type

25.9. Applying a plugin with the buildscript block

28.1. Using the Build Dashboard plugin

30.1. Defining an artifact using an archive task

30.2. Defining an artifact using afile

30.3. Customizing an artifact

30.4. Map syntax for defining an artifact using afile
30.5. Configuration of the upload task

31.1. Using the Maven plugin

31.2. Creating a stand alone pom.

31.3. Upload of file to remote Maven repository

31.4. Upload of file via SSH

31.5. Customization of pom

31.6. Builder style customization of pom

31.7. Modifying auto-generated content

31.8. Customization of Maven installer

31.9. Generation of multiple poms

31.10. Accessing a mapping configuration

32.1. Using the Signing plugin

32.2. Signing a configuration

32.3. Signing a configuration output

32.4. Signing atask

32.5. Signing atask output

32.6. Conditional signing

32.7. Signing a POM for deployment

33.1. Applying the “ivy-publish” plugin

33.2. Publishing a Java module to vy

33.3. Publishing additional artifact to vy

33.4. customizing the publication identity

33.5. Customizing the module descriptor file

33.6. Publishing multiple modules from a single project
33.7. Declaring repositories to publish to

33.8. Choosing a particular publication to publish
33.9. Publishing all publications viathe “publish” lifecycle task
33.10. Generating the Ivy module descriptor file
33.11. Publishing a Java module

33.12. Example generated ivy.xml

34.1. Applying the 'maven-publish’ plugin

34.2. Adding a MavenPublication for a Java component
34.3. Adding additional artifact to a MavenPublication
34.4. customizing the publication identity

34.5. Modifying the POM file

34.6. Publishing multiple modules from a single project
34.7. Declaring repositories to publish to

34.8. Publishing a project to a Maven repository

34.9. Publish a project to the Maven local repository
34.10. Generate a POM file without publishing

35.1. Using the distribution plugin

35.2. Adding extra distributions

35.3. Configuring the main distribution

35.4. publish main distribution

36.1. Using the announce plugin

36.2. Configure the announce plugin

36.3. Using the announce plugin

37.1. Using the build announcements plugin

37.2. Using the build announcements plugin from an init script
38.1. Defining a custom task

38.2. A hello world task

38.3. A customizable hello world task

38.4. A build for a custom task

38.5. A custom task

38.6. Using a custom task in another project

38.7. Testing a custom task

38.8. Defining an incremental task action

38.9. Running the incremental task for the first time

38.10. Running the incremental task with unchanged inputs
38.11. Running the incremental task with updated input files
38.12. Running the incremental task with an input file removed
38.13. Running the incremental task with an output file removed
38.14. Running the incremental task with an input property changed
39.1. A custom plugin

39.2. A custom plugin extension

39.3. A custom plugin with configuration closure

39.4. Evaluating file properties lazily

39.5. A build for a custom plugin

39.6. Wiring for a custom plugin

39.7. Using a custom plugin in another project

39.8. Applying a community plugin with the plugins DSL
39.9. Testing a custom plugin

39.10. Using the Java Gradle Plugin Development plugin
39.11. Managing domain objects

40.1. Using the Java Gradle Plugin Development plugin

40.2. Using the gradiePlugin {} block.

41.1. Using inherited properties and methods

41.2. Using injected properties and methods

41.3. Configuring the project using an external build script
41.4. Custom buildSrc build script

41.5. Adding subprojects to the root buildSrc project

41.6. Running another build from a build

41.7. Declaring external dependencies for the build script
41.8. A build script with external dependencies

41.9. Ant optional dependencies

42.1. Using init script to perform extra configuration before projects are evaluated
42.2. Declaring external dependencies for an init script

42.3. Aninit script with external dependencies

42.4. Using pluginsin init scripts

43.1. Declaring the TestKit dependency

43.2. Declaring the JUnit dependency

43.3. Using GradleRunner with JUnit

43.4. Using GradleRunner with Spock

43.5. Making the code under test classpath available to the tests
43.6. Injecting the code under test classes into test builds
43.7. Using the Java Gradle Development plugin for generating the plugin metadata
43.8. Automatically injecting the code under test classes into test builds
43.9. Reconfiguring the classpath generation conventions of the Java Gradle Development plugin
43.10. Specifying a Gradle version for test execution

44.1. Using the Java plugin

44.2. Building a Java project

44.3. Adding Maven repository

44 4. Adding dependencies

44.5. Customization of MANIFEST.MF

44.6. Adding atest system property

44.7. Publishing the JAR file

44.8. Eclipse plugin

44.9. Java example - complete build file

44.10. Multi-project build - hierarchical layout

44.11. Multi-project build - settings.gradle file

44.12. Multi-project build - common configuration

44.13. Multi-project build - dependencies between projects
44.14. Multi-project build - distribution file

45.1. Using the Java plugin

45.2. Custom Java source layout

45.3. Accessing a source set

45.4. Configuring the source directories of a source set
45.5. Defining a source set

45.6. Defining source set dependencies

45.7. Compiling a source set

45.8. Assembling a JAR for a source set

45.9. Generating the Javadoc for a source set

45.10. Running tests in a source set

45.11. Filtering testsin the build script

45.12. JUnit Categories

45.13. Grouping TestNG tests

45.14. Preserving order of TestNG tests

45.15. Grouping TestNG tests by instances

45.16. Creating a unit test report for subprojects

45.17. Customization of MANIFEST.MF

45.18. Creating a manifest object.

45.19. Separate MANIFEST.MF for a particular archive
45.20. Configure Java 6 build

46.1. War plugin

46.2. Running web application with Jetty plugin

47.1. Using the War plugin

47.2. Customization of war plugin

48.1. Using the Ear plugin

48.2. Customization of ear plugin

49.1. Using the Jetty plugin

50.1.
50.2.
50.3.
50.4.
50.5.
51.1.
51.2.
51.3.
52.1.
52.2.
52.3.
53.1.
53.2.
53.3.
53.4.
53.5.
53.6.
53.7.
54.1.
54.2.
54.3.
54.4.,
54.5.
54.6.
54.7.
54.8.
54.9.

Using the application plugin

Configure the application main class

Configure default VM settings

Include output from other tasks in the application distribution
Automatically creating files for distribution

Using the Javalibrary distribution plugin

Configure the distribution name

Includefilesin the distribution

Groovy plugin

Dependency on Groovy

Groovy example - complete build file

Using the Groovy plugin

Custom Groovy source layout

Configuration of Groovy dependency

Configuration of Groovy test dependency

Configuration of bundled Groovy dependency
Configuration of Groovy file dependency

Configure Java 6 build for Groovy

Using the Scalaplugin

Custom Scala source layout

Declaring a Scala dependency for production code
Declaring a Scala dependency for test code

Declaring aversion of the Zinc compiler to use

Forcing ascala-library dependency for all configurations
Forcing ascalalibrary dependency for the zinc configuration
Adjusting memory settings

Forcing all code to be compiled

54.10. Configure Java 6 build for Scala
54.11. Explicitly specify atarget IntelliJ IDEA version

55.1.
55.2.
55.3.
56.1.
56.2.
57.1.
58.1.
58.2.
59.1.
60.1.
61.1.
61.2.
61.3.
61.4.
61.5.
61.6.
62.1.
62.2.
63.1.

Using the ANTLR plugin

Declare ANTLR version

setting custom max heap size and extra arguments for ANTLR
Using the Checkstyle plugin

Customizing the HTML report

Using the CodeNarc plugin

Using the FindBugs plugin

Customizing the HTML report

Using the JDepend plugin

Using the PMD plugin

Applying the JaCoCo plugin

Configuring JaCoCo plugin settings

Configuring test task

Configuring test task

Using application plugin to generate code coverage data
Coverage reports generated by applicationCodeCoverageReport
Using the OSGi plugin

Configuration of OSGi MANIFEST.MF file

Using the Eclipse plugin

63.2. Using the Eclipse WTP plugin

63.3. Partial Overwrite for Classpath

63.4. Partial Overwrite for Project

63.5. Export Dependencies

63.6. Customizing the XML

64.1. Using the IDEA plugin

64.2. Partial Rewrite for Module

64.3. Partial Rewrite for Project

64.4. Export Dependencies

64.5. Customizing the XML

65.1. applying arule source plugin

65.2. amodel creation rule

65.3. amodel mutation rule

65.4. creating atask

65.5. amanaged type

65.6. a String property

65.7. aFile property

65.8. aLong property

65.9. a boolean property

65.10. an int property

65.11. amanaged property

65.12. an enumeration type property

65.13. amanaged set

65.14. strongly modelling sources sets

65.15. aDSL example applying arule to every element in a scope
65.16. DSL configuration rule

65.17. Configuration run when required

65.18. Configuration not run when not required

65.19. DSL creation rule

65.20. DSL creation rule without initialization

65.21. Initialization before configuration

65.22. Nested DSL creation rule

65.23. Nested DSL configuration rule

65.24. DSL configuration rule for each element in amap

65.25. Nested DSL property configuration

65.26. a DSL example showing type conversions

65.27. aDSL rule using inputs

65.28. model task output

68.1. Using the Java software plugins

68.2. Creating ajavalibrary

68.3. Configuring a source set

68.4. Creating a new source set

68.5. The components report

68.6. Declaring a dependency onto alibrary

68.7. Declaring a dependency onto a project with an explicit library
68.8. Declaring a dependency onto a project with an implicit library
68.9. Declaring a dependency onto alibrary published to a Maven repository
68.10. Declaring a module dependency using shorthand notation

68.11. Configuring repositories for dependency resolution
68.12. Specifying api packages

68.13. Specifying api dependencies

68.14. Main sources

68.15. Client component

68.16. Broken client component

68.17. Recompiling the client

68.18. Declaring target platforms

68.19. Declaring binary specific sources

68.20. Declaring target platforms

68.21. Using the JUnit plugin

68.22. Executing the test suite

68.23. Executing the test suite

68.24. Declaring a component under test

68.25. Declaring local Javainstallations

69.1. Using the Play plugin

69.2. The components report

69.3. Selecting a version of the Play Framework

69.4. Adding dependencies to a Play application

69.5. Adding extra source setsto a Play application

69.6. Configuring Scala compiler options

69.7. Configuring routes style

69.8. Configuring a custom asset pipeline

69.9. Configuring dependencies on Play subprojects
69.10. Add extrafilesto a Play application distribution
69.11. Applying both the Play and IDEA plugins

70.1. Defining alibrary component

70.2. Defining executable components

70.3. The components report

70.4. The'cpp’ plugin

70.5. C++ source set

70.6. The 'c' plugin

70.7. C source set

70.8. The 'assembler’ plugin

70.9. The 'objective-c' plugin

70.10. The 'objective-cpp’ plugin

70.11. Settings that apply to all binaries

70.12. Settings that apply to all shared libraries

70.13. Settings that apply to all binaries produced for the 'main’ executable component
70.14. Settings that apply only to shared libraries produced for the 'main’ library component
70.15. The 'windows-resources plugin

70.16. Configuring the location of Windows resource sources
70.17. Building aresource-only dll

70.18. Providing alibrary dependency to the source set
70.19. Providing alibrary dependency to the binary
70.20. Declaring project dependencies

70.21. Creating a precompiled header file

70.22. Including a precompiled header file in a source file

70.23. Configuring a precompiled header

70.24. Defining build types

70.25. Configuring debug binaries

70.26. Defining platforms

70.27. Defining flavors

70.28. Targeting a component at particular platforms
70.29. Building all possible variants

70.30. Defining tool chains

70.31. Reconfigure tool arguments

70.32. Defining target platforms

70.33. Registering CUnit tests

70.34. Running CUnit tests

70.35. Registering GoogleTest tests

71.1. an example of using a custom software model
71.2. Declare a custom component

71.3. Register a custom component

71.4. Declare a custom binary

71.5. Register a custom binary

71.6. Declare a custom source set

71.7. Register a custom source set

71.8. Generates documentation binaries

71.9. Generates tasks for text source sets

71.10. Register a custom source set

71.11. an example of using a custom software model
71.12. foo bar

71.13. public type and internal view declaration
71.14. type registration

71.15. public and internal data mutation

71.16. example build script and model report output
B.1. Variables scope: local and script wide

B.2. Distinct configuration and execution phase

Part |. About Gradle

1

| ntroduction

We would like to introduce Gradle to you, a build system that we think is a quantum leap for build
technology in the Java (VM) world. Gradle provides:

* A very flexible general purpose build tool like Ant.

® Switchable, build-by-convention frameworks ala Maven. But we never lock you in!

* Very powerful support for multi-project builds.

* Very powerful dependency management (based on Apache Ivy).

® Full support for your existing Maven or Ivy repository infrastructure.

® Support for transitive dependency management without the need for remote repositories or pom xim
andi vy. xm files.

® Ant tasks and builds asfirst class citizens.

® Groovy build scripts.

A rich domain model for describing your build.

In Chapter 2, Overview you will find a detailed overview of Gradle. Otherwise, the tutorials are waiting,
have fun:)

1.1. About this user guide

This user guide, like Gradle itself, is under very active development. Some parts of Gradle aren't
documented as completely as they need to be. Some of the content presented won't be entirely clear or will
assume that you know more about Gradle than you do. We need your help to improve this user guide. You
can find out more about contributing to the documentation at the Gradle web site.

Throughout the user guide, you will find some diagrams that represent dependency relationships between
Gradle tasks. These use something analogous to the UML dependency notation, which renders an arrow
from one task to the task that the first task depends on.

Page 17 of 561

http://www.gradle.org/contribute

Overview

2.1. Features

Hereisalist of some of Gradle's features.

Declarative builds and build-by-convention
At the heart of Gradle lies arich extensible Domain Specific Language (DSL) based on Groovy. Gradle
pushes declarative builds to the next level by providing declarative language elements that you can
assemble as you like. Those elements also provide build-by-convention support for Java, Groovy, OSGi,
Web and Scala projects. Even more, this declarative language is extensible. Add your own new language
elements or enhance the existing ones, thus providing concise, maintainable and comprehensible builds.

Language for dependency based programming
The declarative language lies on top of a general purpose task graph, which you can fully leverage in
your builds. It provides utmost flexibility to adapt Gradle to your unique needs.

Structureyour build
The suppleness and richness of Gradle finally allows you to apply common design principles to your
build. For example, it is very easy to compose your build from reusable pieces of build logic. Inline stuff
where unnecessary indirections would be inappropriate. Don't be forced to tear apart what belongs
together (e.g. in your project hierarchy). Avoid smells like shotgun changes or divergent change that turn
your build into a maintenance nightmare. At last you can create a well structured, easily maintained,
comprehensible build.

Deep API
From being a pleasure to be used embedded to its many hooks over the whole lifecycle of build
execution, Gradle alows you to monitor and customize its configuration and execution behavior to its
very core.

Gradle scales
Gradle scales very well. It significantly increases your productivity, from simple single project builds up
to huge enterprise multi-project builds. This is true for structuring the build. With the state-of-art
incremental build function, this is also true for tackling the performance pain many large enterprise
builds suffer from.

Multi-project builds
Gradl€e's support for multi-project build is outstanding. Project dependencies are first class citizens. We
alow you to model the project relationships in a multi-project build as they really are for your problem
domain. Gradle follows your layout not vice versa.

Page 18 of 561

Gradle provides partia builds. If you build a single subproject Gradle takes care of building all the
subprojects that subproject depends on. Y ou can also choose to rebuild the subprojects that depend on a
particular subproject. Together with incremental builds thisis a big time saver for larger builds.

Many ways to manage your dependencies
Different teams prefer different ways to manage their external dependencies. Gradle provides convenient
support for any strategy. From transitive dependency management with remote Maven and lvy
repositories to jars or directories on the local file system.

Gradleisthefirst build integration tool
Ant tasks are first class citizens. Even more interesting, Ant projects are first class citizens as well.
Gradle provides a deep import for any Ant project, turning Ant targets into native Gradle tasks at
runtime. You can depend on them from Gradle, you can enhance them from Gradle, you can even
declare dependencies on Gradle tasks in your build.xml. The same integration is provided for properties,
paths, etc ...

Gradle fully supports your existing Maven or Ivy repository infrastructure for publishing and retrieving
dependencies. Gradle also provides a converter for turning a Maven pom xmi into a Gradle script.
Runtime imports of Maven projects will come soon.

Ease of migration
Gradle can adapt to any structure you have. Therefore you can always develop your Gradle build in the
same branch where your production build lives and both can evolve in parallel. We usually recommend
to write tests that make sure that the produced artifacts are similar. That way migration is as less
disruptive and as reliable as possible. This is following the best-practices for refactoring by applying
baby steps.

Groovy

Gradl€e's build scripts are written in Groovy, not XML. But unlike other approaches thisis not for simply
exposing the raw scripting power of a dynamic language. That would just lead to a very difficult to
maintain build. The whole design of Gradle is oriented towards being used as a language, not as arigid
framework. And Groovy is our glue that allows you to tell your individual story with the abstractions
Gradle (or you) provide. Gradle provides some standard stories but they are not privileged in any form.
This is for us a major distinguishing feature compared to other declarative build systems. Our Groovy
support is not just sugar coating. The whole Gradle API is fully Groovy-ized. Adding Groovy resultsin
an enjoyable and productive experience.

The Gradle wrapper
The Gradle Wrapper allows you to execute Gradle builds on machines where Gradle is not installed.
Thisis useful for example for some continuous integration servers. It is also useful for an open source
project to keep the barrier low for building it. The wrapper is also very interesting for the enterprise. It is
a zero administration approach for the client machines. It also enforces the usage of a particular Gradle
version thus minimizing support issues.

Free and open source
Gradleis an open source project, and is licensed under the ASL.

Page 19 of 561

http://www.gradle.org/license

2.2. Why Groovy?

We think the advantages of an internal DSL (based on a dynamic language) over XML are tremendous when
used in build scripts. There are a couple of dynamic languages out there. Why Groovy? The answer liesin
the context Gradle is operating in. Although Gradle is a general purpose build tool at its core, its main focus
are Java projects. In such projects the team members will be very familiar with Java. We think a build
should be as transparent as possible to all team members.

In that case, you might argue why we don't just use Java as the language for build scripts. We think thisis a
valid question. It would have the highest transparency for your team and the lowest learning curve, but
because of the limitations of Java, such a build language would not be as nice, expressive and powerful asiit
could be. [1] Languages like Python, Groovy or Ruby do a much better job here. We have chosen Groovy as
it offers by far the greatest transparency for Java people. Its base syntax is the same as Java's as well as its
type system, its package structure and other things. Groovy provides much more on top of that, but with the
common foundation of Java.

For Java developers with Python or Ruby knowledge or the desire to |earn them, the above arguments don't
apply. The Gradle design is well-suited for creating another build script engine in JRuby or Jython. It just
doesn't have the highest priority for us at the moment. We happily support any community effort to create
additional build script engines.

[1] At http://www.defmacro.org/ramblings/lisp.html you find an interesting article comparing Ant, XML,
Javaand Lisp. It's funny that the 'if Java had that syntax’ syntax in this article is actually the Groovy syntax.

Page 20 of 561

http://www.defmacro.org/ramblings/lisp.html

Part I1. Working with
existing builds

3

Installing Gradle

3.1. Prerequisites

Gradle requires a Java JDK or JRE to be installed, version 7 or higher (to check, use j ava -ver si on).
Gradle ships with its own Groovy library, therefore Groovy does not need to be installed. Any existing
Groovy instalation isignored by Gradle.

Gradle uses whatever JDK it finds in your path. Alternatively, you can set the JAVA HOVE environment
variable to point to the installation directory of the desired JDK.

3.2. Download

Y ou can download one of the Gradle distributions from the Gradle web site.

3.3. Unpacking

The Gradle distribution comes packaged as a ZIP. The full distribution contains:

® The Gradle binaries.

® Theuser guide (HTML and PDF).

®* TheDSL reference guide.

®* The APl documentation (Javadoc).

® Extensive samples, including the examples referenced in the user guide, along with some complete and
more complex builds you can use as a starting point for your own build.

® The binary sources. This is for reference only. If you want to build Gradle you need to download the
source distribution or checkout the sources from the source repository. See the Gradle web site for
details.

3.4. Environment variables

For running Gradle, firstly add the environment variable GRADLE _HOME. This should point to the unpacked
files from the Gradle website. Next add GRADLE_HQOVE/ bi n to your PATH environment variable. Usualy,
thisis sufficient to run Gradle.

Page 22 of 561

http://www.gradle.org/downloads
http://www.gradle.org/development

3.5. Running and testing your installation

You run Gradle via the gradle command. To check if Gradle is properly installed just type gradle -v. The
output shows the Gradle version and also the local environment configuration (Groovy, VM version, OS,
etc.). The displayed Gradle version should match the distribution you have downloaded.

3.6. VM options

JVM options for running Gradle can be set via environment variables. You can use either GRADLE_OPTS
or JAVA_OPTS, or both. JAVA_OPTS is by convention an environment variable shared by many Java
applications. A typical use case would be to set the HTTP proxy in JAVA OPTS and the memory optionsin
GRADLE_OPTS. Those variables can also be set at the beginning of the gradle or gradlew script.

Note that it's not currently possible to set VM options for Gradle on the command line.

Page 23 of 561

A

Using the Gradle Command-Line

This chapter introduces the basics of the Gradle command-line. Y ou run a build using the gradle command,
which you have aready seen in action in previous chapters.

4.1. Executing multiple tasks

You can execute multiple tasks in a single build by listing each of the tasks on the command-line. For
example, the command gr adl e conpil e test will execute the conpi | e and t est tasks. Gradle
will execute the tasks in the order that they are listed on the command-line, and will also execute the
dependencies for each task. Each task is executed once only, regardless of how it came to be included in the
build: whether it was specified on the command-line, or as a dependency of another task, or both. Let's look
at an example.

Below four tasks are defined. Both di st andt est depend onthe conpi | e task. Running gr adl e di st te:
for this build script resultsin the conpi | e task being executed only once.

Figure4.1. Task dependencies

compile compileTest ek
test

Page 24 of 561

Example 4.1. Executing multiple tasks
buil d. gradl e

task conpile << {
println 'conpiling source'

}

task conpil eTest (dependsOn: conpile) << {
println 'conpiling unit tests'

}

task test(dependsOn: [conpile, conpileTest]) << {
println 'running unit tests'

}

task di st (dependsOn: [conpile, test]) << {
println 'building the distribution'

}

Output of gr adl e di st test

> gradle dist test

:conpile

conpi | i ng source
:conpi | eTest
conpiling unit tests
‘test

running unit tests

1 di st

bui |l ding the distribution
BUI LD SUCCESSFUL

Total tinme: 1 secs

Each task is executed only once, sogr adl e test test isexactlythesameasgradl e test.

4.2. Excluding tasks

Y ou can exclude a task from being executed using the - x command-line option and providing the name of
the task to exclude. Let's try this with the sample build file above.

Example 4.2. Excluding tasks
Output of gradl e di st -x test

> gradle dist -x test

:conpile
conpi I i ng source
- di st

buil ding the distribution
BUI LD SUCCESSFUL

Total tinme: 1 secs

Page 25 of 561

You can see from the output of this example, that the t est task is not executed, even though it is a
dependency of thedi st task. You will also noticethat thet est task's dependencies, such asconpi | eTest
are not executed either. Those dependencies of t est that are required by another task, such as conpi | e,
are till executed.

4.3. Continuing the build when a failure occurs

By default, Gradle will abort execution and fail the build as soon as any task fails. This alows the build to
complete sooner, but hides other failures that would have occurred. In order to discover as many failures as
possiblein asingle build execution, you can usethe - - cont i nue option.

When executed with - - cont i nue, Gradle will execute every task to be executed where al of the
dependencies for that task completed without failure, instead of stopping as soon as the first failure is
encountered. Each of the encountered failures will be reported at the end of the build.

If atask fails, any subsequent tasks that were depending on it will not be executed, asit is not safe to do so.
For example, tests will not run if there is a compilation failure in the code under test; because the test task
will depend on the compilation task (either directly or indirectly).

4.4. Task name abbreviation

When you specify tasks on the command-line, you don't have to provide the full name of the task. Y ou only
need to provide enough of the task name to uniquely identify the task. For example, in the sample build
above, you can execute task di st by running gr adl e d:

Example 4.3. Abbreviated task name

Output of gr adl e di

> gradl e di

:conpile

conpi ling source
:conpi | eTest
conpiling unit tests
‘test

running unit tests

1 di st

buil ding the distribution
BUI LD SUCCESSFUL

Total tinme: 1 secs

Y ou can also abbreviate each word in a camel case task name. For example, you can execute task conpi | eTest
by running gr adl e conpTest orevengradl e cT

Page 26 of 561

Example 4.4. Abbreviated camel casetask name
Output of gradl e cT

> gradle cT

:conpile
conpi ling source
:conpi | eTest

conpiling unit tests
BUI LD SUCCESSFUL

Total tinme: 1 secs

Y ou can also use these abbreviations with the - x command-line option.

4.5. Selecting which build to execute

When you run the gradle command, it looks for a build file in the current directory. You can use the - b
option to select another build file. If you use - b option then setti ngs. gradl e file is not used.
Example:

Example 4.5. Selecting the project using a build file

subdi r/ myproj ect.gradl e

task hello << {
println "using build file '$buildFile.name' in '$buildFile.parentFile.nane'

}

Output of gradl e -q -b subdir/nyproject.gradle hello

> gradle -q -b subdir/nyproject.gradle hello
using build file "nmyproject.gradle' in 'subdir'.

Alternatively, you can use the - p option to specify the project directory to use. For multi-project builds you
should use - p option instead of - b option.

Example 4.6. Selecting the project using project directory

Output of gradl e -gq -p subdir hello

> gradle -q -p subdir hello
using build file "build.gradle" in '"subdir'.

4.6. Forcing tasks to execute

Many tasks, particularly those provided by Gradle itself, support incremental builds. Such tasks can
determine whether they need to run or not based on whether their inputs or outputs have changed since the
last time they ran. You can easily identify incremental tasks when Gradle displays the text UP- TO- DATE
next to their name when executing a build.

Page 27 of 561

You may on occasion want to force Gradle to run all the tasks, ignoring any up-to-date checks. If that's the
case, smply usethe - - r er un- t asks option. Here's the output when running a task both without and with
--rerun-tasks:

Example4.7. Forcing taskstorun
Output of gr adl e dol t

> gradl e dolt
:dolt UP-TO DATE

Output of gradl e --rerun-tasks dolt

> gradle --rerun-tasks dolt
:dolt

Note that thiswill force all required tasks to execute, not just the ones you specify on the command line. It's
alittlelike running acl ean, but without the build's generated output being del eted.

4.7. Obtaining information about your build

Gradle provides several built-in tasks which show particular details of your build. This can be useful for
understanding the structure and dependencies of your build, and for debugging problems.

In addition to the built-in tasks shown below, you can also use the project report plugin to add tasks to your
project which will generate these reports.

4.7.1. Listing projects

Running gr adl e proj ects gives you alist of the sub-projects of the selected project, displayed in a
hierarchy. Here is an example:

Example 4.8. Obtaining infor mation about projects
Output of gr adl e -qg projects

> gradle -q projects

Root project 'projectReports
+--- Project ':api' - The shared APl for the application
\--- Project ':webapp' - The Wb application inmplenentation

To see a list of the tasks of a project, run gradl e <project-path>:tasks
For exanple, try running gradle :api:tasks

The report shows the description of each project, if specified. Y ou can provide a description for a project by
setting thedescr i pt i on property:

Page 28 of 561

Example 4.9. Providing a description for a project

bui | d. gradl e

description = ' The shared APl for the application’

4.7.2. Listing tasks

Running gr adl e t asks givesyou alist of the main tasks of the selected project. This report shows the
default tasks for the project, if any, and a description for each task. Below is an example of this report:

Example 4.10. Obtaining information about tasks
Output of gr adl e -qg tasks

> gradle -q tasks

Al'l tasks runnable fromroot project

Default tasks: dists

Bui |l d tasks

clean - Deletes the build directory (build)
dists - Builds the distribution

libs - Builds the JAR

Bui |l d Setup tasks

init - Initializes a new Gradl e build. [incubating]
wr apper - Generates Gradle wapper files. [incubating]

Hel p tasks

bui | dEnvi ronnent - Displays all buildscript dependenci es declared in root project
conponents - Displays the conponents produced by root project 'projectReports'. [inc
dependenci es - Displays all dependencies declared in root project 'projectReports'.
dependencyl nsight - Displays the insight into a specific dependency in root project
hel p - Displays a hel p nessage.

nodel - Displays the configuration nodel of root project 'projectReports'. [incubati
projects - Displays the sub-projects of root project 'projectReports'.

properties - Displays the properties of root project 'projectReports'.

tasks - Displays the tasks runnable fromroot project 'projectReports' (sone of the

To see all tasks and nore detail, run gradle tasks --all

To see nore detail about a task, run gradle help --task <task>

By default, this report shows only those tasks which have been assigned to a task group. Y ou can do this by
setting the gr oup property for the task. You can also set the descri pti on property, to provide a
description to be included in the report.

Page 29 of 561

Example 4.11. Changing the content of the task report
buil d. gradl e

dists {
description = 'Builds the distribution

group = 'build'

You can obtain more information in the task listing using the - - al | option. With this option, the task
report lists all tasks in the project, grouped by main task, and the dependencies for each task. Here is an
example:

Page 30 of 561

Example 4.12. Obtaining mor e infor mation about tasks
Output of gradl e -qg tasks --all

> gradle -q tasks --all

Al'l tasks runnable fromroot project

Default tasks: dists

Bui | d tasks
clean - Deletes the build directory (build)
api:clean - Deletes the build directory (build)
webapp: cl ean - Deletes the build directory (build)
dists - Builds the distribution [api:libs, webapp:!libs]
docs - Builds the docunentation
api:libs - Builds the JAR
api:conpile - Conpiles the source files
webapp: libs - Builds the JAR [api:|ibs]
webapp: conpile - Conpiles the source files

Buil d Setup tasks
init - Initializes a new Gradl e build. [incubating]
wrapper - Cenerates Gradl e wapper files. [incubating]

Hel p tasks

bui | dEnvi ronment - Displays all buildscript dependencies declared in root project 'p
api : bui | dEnvi ronnent - Displays all buildscript dependencies declared in project ':a
webapp: bui | dEnvi ronment - Displays all buildscript dependenci es declared in project
conponents - Displays the conponents produced by root project 'projectReports'. [inc
api : conponents - Displays the conponents produced by project ':api'. [incubating]
webapp: conmponents - Displays the conponents produced by project ':webapp'. [incubat
dependenci es - Displays all dependencies declared in root project 'projectReports'
api : dependenci es - Displays all dependencies declared in project ':api'.

webapp: dependenci es - Displays all dependencies declared in project ':webapp'.
dependencyl nsight - Displays the insight into a specific dependency in root project
api : dependencyl nsight - Displays the insight into a specific dependency in project
webapp: dependencyl nsight - Displays the insight into a specific dependency in projec
hel p - Displays a hel p nessage

api :help - Displays a hel p nessage

webapp: hel p - Di splays a hel p nmessage

nodel - Displays the configuration nodel of root project 'projectReports'. [incubat
api : nodel - Displays the configuration nodel of project ':api'. [incubating]

webapp: nodel - Displays the configuration nodel of project ':webapp'. [incubating]
projects - Displays the sub-projects of root project 'projectReports’

api :projects - Displays the sub-projects of project ':api'.

webapp: proj ects - Displays the sub-projects of project ':webapp'

properties - Displays the properties of root project 'projectReports'

api :properties - Displays the properties of project ':api’.

webapp: properties - Displays the properties of project ':webapp'

tasks - Displays the tasks runnable fromroot project 'projectReports' (sone of the
api :tasks - Displays the tasks runnable fromproject ':api'.

webapp: tasks - Displays the tasks runnable from project ':webapp'.

Page 31 of 561

4.7.3. Show task usage details

Running gradl e hel p --task someTask gives you detailed information about a specific task or
multiple tasks matching the given task name in your multiproject build. Below is an example of this detailed
information:

Example 4.13. Obtaining detailed help for tasks

Outputof gradl e -q help --task libs

> gradle -q help --task libs
Detailed task information for |ibs

Pat hs
capi:libs
:webapp: i bs

Type
Task (org.gradle. api. Task)

Description
Buil ds the JAR

G oup
bui | d

This information includes the full task path, the task type, possible commandline options and the description
of the given task.

4.7.4. Listing project dependencies

Running gr adl e dependenci es gives you a list of the dependencies of the selected project, broken
down by configuration. For each configuration, the direct and transitive dependencies of that configuration
are shown in atree. Below is an example of this report:

Page 32 of 561

Example 4.14. Obtaining infor mation about dependencies
Output of gr adl e - g dependenci es api : dependenci es webapp: dependenci es

> gradl e -q dependenci es api: dependenci es webapp: dependenci es

Project :api - The shared APl for the application

conpil e
\--- org.codehaus. groovy: groovy-all:2.4.7

t est Conpil e
\--- junit:junit:4.12
\--- org. hantrest: hancrest-core: 1.3

Proj ect :webapp - The Wb application inplenentation

conpile

+--- project :api

| \--- org.codehaus. groovy: groovy-all:2.4.7
\--- comons-io: commons-io: 1.2

t est Conpi l e

No dependenci es

Since a dependency report can get large, it can be useful to restrict the report to a particular configuration.
Thisis achieved with the optional - - conf i gur at i on parameter:
Example 4.15. Filtering dependency report by configuration

Output of gradl e -qg api : dependenci es --configuration testConpile
> gradl e -q api:dependencies --configuration testConpile

Project :api - The shared APl for the application

t est Compi l e
\--- junit:junit:4.12
\--- org. hantrest: hancrest-core: 1.3

4.7.5. Listing project buildscript dependencies

Running gr adl e bui | dEnvi r onnment visualises the buildscript dependencies of the selected project,
similarly to how gr adl e dependenci es visualises the dependencies of the software being built.

Page 33 of 561

4.7.6. Getting the insight into a particular dependency

Running gr adl e dependencyl nsi ght gives you an insight into a particular dependency (or
dependencies) that match specified input. Below is an example of this report:

Example 4.16. Getting theinsight into a particular dependency
Output of gr adl e -g webapp: dependencyl nsi ght --dependency groovy --configuratior

> gradl e -q webapp: dependencyl nsi ght --dependency groovy --configuration conpile
or g. codehaus. groovy: groovy-all:2.4.7
\--- project :api

\--- compile

This task is extremely useful for investigating the dependency resolution, finding out where certain
dependencies are coming from and why certain versions are selected. For more information please see the
Dependencyl nsi ght Report Task classin the APl documentation.

The built-in dependencylnsight task is a part of the 'Help' tasks group. The task needs to configured with the
dependency and the configuration. The report looks for the dependencies that match the specified
dependency spec in the specified configuration. If Javarelated plugin is applied, the dependencylnsight task
is pre-configured with ‘compile’ configuration because typicaly it's the compile dependencies we are
interested in. Y ou should specify the dependency you are interested in via the command line "--dependency’
option. If you don't like the defaults you may select the configuration via '--configuration' option. For more
information see the Dependencyl nsi ght Repor t Task classin the APl documentation.

4.7.7. Listing project properties

Running gr adl e properti es givesyou alist of the properties of the selected project. Thisis a snippet
from the output:

Example 4.17. Infor mation about properties
Output of gradl e -qg api : properties
> gradle -q api:properties

Project :api - The shared APl for the application

allprojects: [project ':api']

ant: org.gradle.api.internal.project. DefaultAntBuil der @2345

ant Bui | der Factory: org.gradle.api.internal.project. DefaultAntBuil derFactory@?2345
artifacts: org.gradle.api.internal.artifacts.dsl.DefaultArtifactHandl er_Decorated@?
asDynam cQbj ect: Dynami cQbject for project ':api'

baseC assLoader Scope: org.gradle.api.internal.initialization.DefaultC assLoader Scope
bui I dDi r: /hone/ user/ gradl e/ sanpl es/ usergui de/tutorial/projectReports/api/build

bui I dFi | e: /home/ user/ gradl e/ sanpl es/ usergui de/tutorial /proj ect Reports/api/build.gra

Page 34 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html

4.7.8. Profiling a build

The - - profi | e command line option will record some useful timing information while your build is
running and write a report to the bui | d/ report s/ profi | e directory. The report will be named using
the time when the build was run.

This report lists summary times and details for both the configuration phase and task execution. The times
for configuration and task execution are sorted with the most expensive operations first. The task execution
results also indicate if any tasks were skipped (and the reason) or if tasks that were not skipped did no work.

Builds which utilize a buildSrc directory will generate a second profile report for buildSrc in the bui | dSr ¢/ bui
directory.

Profiled with tasks: -xtest build

Summary Configuration Task
Total Build Time 2:01.164 | |: 2.804 | |:docs
Startup 0.313| | :docs 0.576 :docs:userguideSingleHu
Settings and BuildSrc 4078 | |:core 0.203 :docs:userguidePdf
Loading Projects 0074 | |:announce 0.084 :docs:checkstyle Api
Configuring Projects 3208 | [mi 0.036 :docs:userguideStyleShes
Total Task Execution 1:52.671 | |:openApi 0.035 :docs:groovydoc
‘maven 0.033 :docs:samples
:codeQuality 0.033 :docs:javadoc
‘wrapper 0.022 :docs:userguideFragment
:eclipse 0.021 :docs:distDocs
ridea 0.021 :docs:samplesDocs
:plugins 0.020 :docs:userguide Xhtml
Jlauncher 0.020 :docs:userguideHuml
:antr 0.017 :docs:userguideDocbook
:0sgi 0.014 :docs:remoteUserguideD
jetty 0.014 :docs:samplesDochook
:scala 0.012 :docs:docs
:docs:userguide
core
:core:compileTestGroovy
:core:codenarcTest
:core:checkstyleMain

4.8. Dry Run

Sometimes you are interested in which tasks are executed in which order for agiven set of tasks specified on
the command line, but you don't want the tasks to be executed. You can use the - moption for this. For
example, if yourun “gradl e -m cl ean conpil e”, you'll see al the tasks that would be executed as
part of the cl ean and conpi | e tasks. This is complementary to the t asks task, which shows you the
tasks which are available for execution.

Page 35 of 561

4.9. Summary

In this chapter, you have seen some of the things you can do with Gradle from the command-line. Y ou can
find out more about the gradle command in Appendix D, Gradle Command Line.

Page 36 of 561

5

The Gradle Wrapper

Most tools require installation on your computer before you can use them. If the installation is easy, you
may think that’s fine. But it can be an unnecessary burden on the users of the build. Equally importantly,
will the user install the right version of the tool for the build? What if they’re building an old version of the
software?

The Gradle Wrapper (henceforth referred to as the “Wrapper”) solves both these problems and is the
preferred way of starting a Gradle build.

5.1. Executing a build with the Wrapper

If a Gradle project has set up the Wrapper (and we recommend all projects do so), you can execute the build
using one of the following commands from the root of the project:

® . /gradl ew <t ask> (on Unix-like platforms such as Linux and Mac OS X)
® gradl ew <t ask> (on Windows using the gradlew.bat batch fil€)

Each Wrapper istied to a specific version of Gradle, so when you first run one of the commands above for a
given Gradle version, it will download the corresponding Gradle distribution and use it to execute the build.

Not only does this mean that you don’'t have to manually install
Gradle yourself, but you are also sure to use the version of

Gradle that the build is designed for. This makes your historical IDEs
builds more reliable. Just use the appropriate syntax from above When importing a Gradle
whenever you see a command line starting with gradl e . .. project via its wrapper, your
in the user guide, on Stack Overflow, in articles or wherever. IDE may ask to use the Gradle
‘all' distribution. This is
For completeness sake, and to ensure you don’t delete any perfectly fine and helps the IDE
important files, here are the files and directories in a Gradle provide code completion for the
project that make up the Wrapper: build files.

® gradl ew(Unix Shell script)

® gradl ew. bat (Windows batch file)

® gradl e/ w apper/ gradl e-w apper.jar (Wrapper JAR)

® gradl e/ w apper/ gradl e-w apper . properti es (Wrapper properties)

If you' re wondering where the Gradle distributions are stored, you'll find them in your user home directory
under SUSER_HOME/ . gr adl e/ wr apper/ di st s.

Page 37 of 561

5.2. Adding the Wrapper to a project

The Wrapper is something you should check into version control. By distributing the Wrapper with your
project, anyone can work with it without needing to install Gradle beforehand. Even better, users of the
build are guaranteed to use the version of Gradle that the build was designed to work with. Of course, thisis
also great for continuous integration servers (i.e. servers that regularly build your project) as it requires no
configuration on the server.

You install the Wrapper into your project by running the wr apper task. (This task is aways available,
even if you don't add it to your build). To specify a Gradle version use - - gr adl e- ver si on on the
command-line. Y ou can aso set the URL to download Gradle from directly via- - gr adl e- di st ri buti on-u
. If no version or distribution URL is specified, the Wrapper will be configured to use the gradle version the wr ap
task is executed with. So if you run the wr apper task with Gradle 2.4, then the Wrapper configuration will
default to version 2.4.

Example 5.1. Running the Wrapper task

Output of gr adl e wr apper --gradl e-version 2.0

> gradl e wapper --gradle-version 2.0
S wr apper

BU LD SUCCESSFUL

Total tine: 1 secs
The Wrapper can be further customized by adding and configuring a W apper task in your build script, and
then executing it.

Example5.2. Wrapper task

bui | d. gradl e

task wrapper(type: Wapper) {
gradl eVersion = '2.0'

}

After such an execution you find the following new or updated files in your project directory (in case the
default configuration of the Wrapper task is used).

Example 5.3. Wrapper generated files

Build layout

si npl e/
gradl ew
gr adl ew. bat

gr adl e/ wr apper/
gr adl e- wr apper. j ar
gr adl e-wr apper . properties

All of these files should be submitted to your version control system. This only needs to be done once. After

Page 38 of 561

http://en.wikipedia.org/wiki/Continuous_integration
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

these files have been added to the project, the project should then be built with the added gradlew
command. The gradlew command can be used exactly the same way as the gradle command.

If you want to switch to a new version of Gradle you don't need to rerun the wr apper task. It is good
enough to change the respective entry in the gr adl e- wr apper . properti es file, but if you want to
take advantage of new functionality in the Gradle wrapper, then you would need to regenerate the wrapper
files.

5.3. Configuration

If you run Gradle with gradlew, the Wrapper checks if a Gradle distribution for the Wrapper is available. If
S0, it delegates to the gradle command of this distribution with all the arguments passed originally to the
gradlew command. If it didn't find a Gradle distribution, it will download it first.

When you configure the W apper task, you can specify the Gradle version you wish to use. The gradlew
command will download the appropriate distribution from the Gradle repository. Alternatively, you can
specify the download URL of the Gradle distribution. The gradlew command will use this URL to
download the distribution. If you specified neither a Gradle version nor download URL, the gradlew
command will download whichever version of Gradle was used to generate the Wrapper files.

For the details on how to configure the Wrapper, seethe W apper classin the APl documentation.

If you don't want any download to happen when your project is built via gradlew, simply add the Gradle
distribution zip to your version control at the location specified by your Wrapper configuration. A relative
URL is supported - you can specify adistribution file relative to the location of gr adl e- wr apper . properti«
file.

If you build viathe Wrapper, any existing Gradle distribution installed on the machine isignored.

5.4. Verification of downloaded Gradle
distributions

The Gradle Wrapper alows for verification of the downloaded Gradle distribution via SHA-256 hash sum
comparison. This increases security against targeted attacks by preventing a man-in-the-middle attacker
from tampering with the downloaded Gradle distribution.

To enable this feature you'll want to first calculate the SHA-256 hash of a known Gradle distribution. Y ou
can generate a SHA-256 hash from Linux and OSX or Windows (via Cygwin) with the shasum command.

Example 5.4. Generating a SHA-256 hash

> shasum -a 256 gradle-2.4-all.zip

371ch9f bebbe9880d147f 59bab36d6leeel22854ef 8c9eelecf 12b82368bcf 10 gradl e- 2. 4-al |

Add the returned hash sum to the gr adl e- wr apper . properti es usingthedi st ri buti onSha256Sum
property.

Page 39 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.wrapper.Wrapper.html
https://www.cygwin.com/

Example 5.5. Configuring SHA-256 checksum verification

gr adl e-wr apper . properties

di stributi onSha256Sum=371ch9f bebbe9880d147f 59bab36d6leeel22854ef 8c9eelecf 12b8234

5.5. Unix file permissions

The Wrapper task adds appropriate file permissions to allow the execution of the gr adl ew *NIX
command. Subversion preserves this file permission. We are not sure how other version control systems deal
with this. What should always work isto execute “sh gr adl ew’.

Page 40 of 561

6

The Gradle Daemon

From Wikipedia...

A daemon is a computer program that runs as a background process, rather than being under the
direct control of an interactive user.

Gradle runs on the Java Virtual Machine (JVM) and uses several supporting libraries that require a
non-trivial initialization time. As aresult, it can sometimes seem a little slow to start. The solution to this
problem is the Gradle Daemon: a long-lived background process that executes your builds much more
quickly than would otherwise be the case. We accomplish this by avoiding the expensive bootstrapping
process as well as leveraging caching, by keeping data about your project in memory. Running Gradle
builds with the Daemon is no different than without. Simply configure whether you want to use it or not -
everything elseis handled transparently by Gradle.

6.1. Why the Gradle Daemon is important for
performance

The Daemon is a long-lived process, so not only are we able to avoid the cost of VM startup for every
build, but we are able to cache information about project structure, files, tasks, and more in memory.

The reasoning is simple: improve build speed by reusing computations from previous builds. However, the
benefits are dramatic: we typically measure build times reduced by 15-75% on subsequent builds. We
recommend profiling your build by using - - profi | e to get a sense of how much impact the Gradle
Daemon can have for you.

The Gradle Daemon is enabled by default starting with Gradle 3.0, so you don't have to do anything to
benefit fromit.

6.2. Running Daemon Status

To get alist of running Gradle Daemons and their statuses use the --status command.

Sample output:

Page 41 of 561

Pl D VERSI ON STATUS

28411 3.0 | DLE
34247 3.0 BUSY

Currently, a given Gradle version can only connect to daemons of the same version. This means the status
output will only show Daemons for the version of Gradle being invoked and not for any other versions.
Future versions of Gradle will lift this constraint and will show the running Daemons for all versions of
Gradle.

6.3. Disabling the Daemon

The Gradle Daemon is enabled by default, and we recommend always enabling it for developers' machines.
There are several ways to disable the Daemon, but the most common one isto add the line

org. gradl e. daenon=f al se

to the file «<USER_HOVE»/ . gr adl e/ gr adl e. properti es, where «USER_HOVE» is your home
directory. That's typically one of the following, depending on your platform:

® C:.\Users\<usernanme> (WindowsVista& 7+)
¢ [/ User s/ <user name> (Mac OS X)
* / home/ <user nanme> (Linux)

If that file doesn't exist, just create it using a text editor. You can find details of other ways to disable (and
enable) the Daemon in Section 6.5, “FAQ” further down. That section aso contains more detailed
information on how the Daemon works.

Once you have globally enabled the Daemon in this way, al your builds will take advantage of the speed
boost, regardless of the version of Gradle a particular build uses.

Continuous

6.4. Stopping an existing integration
Daemon

At the moment, we recommend

As mentioned, the Daemon is a background process. You that you disable the Daemon for
needn’t worry about a build up of Gradle processes on your Continuous Integration servers
machine, though. Every Daemon monitors its memory usage as correctness is usualy a
compared to total system memory and will stop itself if idle priority over speed in CI
when available system memory is low. If you want to explicitly environments. Using a fresh
stop running Daemon processes for any reason, just use the runtime for each build is more
command gr adl e - - st op. reliable since the runtime is
completely isolated from any
This will terminate all Daemon processes that were started with previous builds. Additionally,
the same version of Gradle used to execute the command. If you since the Daemon primarily acts

Page 42 of 561

have the Java Development Kit (JDK) installed, you can easily to reduce build startup times,
verify that a Daemon has stopped by running the jps command. thisisn't as critical in Cl asitis
You'll see any running Daemons listed with the name Gr adl eDaenon on adeveloper's machine.

6.5. FAQ

6.5.1. How do | disable the Gradle Daemon?

There are two recommended ways to disable the Daemon persistently for an environment:

* Via environment variables: add the flag - Dor g. gr adl e. daenon=f al se to the GRADLE_OPTS
environment variable
Viapropertiesfile: add or g. gr adl e. daenon=f al se tothe «<GRADLE_USER_HOVE»/ gr adl e. pr ope
file

Note, «GRADLE_USER _HOME» defaults to «USER_HOME»/ . gr adl e, where «USER_HOVE» is

the home directory of the current user. This location can be configured viathe - g and - - gr adl e- user - hor
command line switches, aswell as by the GRADLE_USER_HOVE environment variable and or g. gr adl e. us
JVM system property.

Both approaches have the same effect. Which one to use is up to personal preference. Most Gradle users
choose the second option and add the entry to the user gr adl e. pr operti es file.

On Windows, this command will disable the Daemon for the current user:

(if not exist "9JSERPROFI LE% . gradle" nkdir "%JSERPROFILE% . gradle") && (echo or

On UNIX-like operating systems, the following Bash shell command will disable the Daemon for the
current user:

nkdir -p ~/.gradl e & echo "org. gradl e. daenon=f al se" >> ~/.gradl e/ gradl e. propert

Once the Daemon is disabled for a build environment in this way, a Gradle Daemon will not be started
unless explicitly requested using the - - daernon option.

The - - daenon and - - no- daenmon command line options enable and disable usage of the Daemon for
individual build invocations when using the Gradle command line interface. These command line options
have the highest precedence when considering the build environment. Typically, it is more convenient to
enable the Daemon for an environment (e.g. a user account) so that all builds use the Daemon without
requiring to remember to supply the - - daenon option.

Page 43 of 561

6.5.2. Why is there more than one Daemon process on my machine?

There are severa reasons why Gradle will create a new Daemon, instead of using one that is aready
running. The basic rule is that Gradle will start a new Daemon if there are no existing idle or compatible
Daemons available. Gradle will kill any Daemon that has been idle for 3 hours or more, so you don't have to
worry about cleaning them up manually.

idle
Anidle Daemonis onethat is not currently executing a build or doing other useful work.

compatible
A compatible Daemon is one that can (or can be made to) meet the requirements of the requested build
environment. The Java runtime used to execute the build is an example aspect of the build environment.
Another exampleisthe set of VM system properties required by the build runtime.

Some aspects of the requested build environment may not be met by an Daemon. If the Daemon is running
with a Java 7 runtime, but the requested environment calls for Java 8, then the Daemon is not compatible
and another must be started. Moreover, certain properties of a Java runtime cannot be changed once the
JVM has started. For example, it is not possible to change the memory alocation (e.g. - Xnx1024m),
default text encoding, default locale, etc of arunning VM.

The “requested build environment” is typically constructed implicitly from aspects of the build client’s (e.g.
Gradle command line client, IDE etc.) environment and explicitly via command line switches and settings.
See Chapter 11, The Build Environment for details on how to specify and control the build environment.

The following VM system properties are effectively immutable. If the requested build environment requires
any of these properties, with a different value than a Daemon’s VM has for this property, the Daemon is not
compatible.

¢ file.encoding

® user.language

® user.country

® user.variant

® javaio.tmpdir

® javax.net.ssl.keyStore

® javax.net.ssl.keyStorePassword
® javax.net.sdl.keyStoreType

® javax.net.sdl.trustStore

® javax.net.ssl.trustStorePassword
® javax.net.sd.trustStoreType

® com.sun.management.jmxremote

The following JVM attributes, controlled by startup arguments, are also effectively immutable. The
corresponding attributes of the requested build environment and the Daemon’s environment must match
exactly in order for a Daemon to be compatible.

® The maximum heap size (i.e. the -Xmx VM argument)
® The minimum heap size (i.e. the -Xms JVM argument)

Page 44 of 561

® The boot classpath (i.e. the -Xbootclasspath argument)
® The"“assertion” status (i.e. the -ea argument)

The required Gradle version is another aspect of the requested build environment. Daemon processes are
coupled to a specific Gradle runtime. Working on multiple Gradle projects during a session that use different
Gradle versionsis a common reason for having more than one running Daemon process.

6.5.3. How much memory does the Daemon use and can | give it more?

If the requested build environment does not specify a maximum heap size, the Daemon will use up to 1GB
of heap. It will use your the IVM's default minimum heap size. 1GB is more than enough for most builds.
Larger builds with hundreds of subprojects, lots of configuration, and source code may require, or perform
better, with more memory.

To increase the amount of memory the Daemon can use, specify the appropriate flags as part of the
requested build environment. Please see Chapter 11, The Build Environment for details.

6.5.4. How can | stop a Daemon?

Daemon processes will automatically terminate themselves after 3 hours of inactivity or less. If you wish to

stop a Daemon process before this, you can either kill the process via your operating system or runthe gr adl e -
command. The - - st op switch causes Gradle to request that all running Daemon processes, of the same
Gradle version used to run the command, terminate themselves.

6.5.5. What can go wrong with Daemon?

Considerable engineering effort has gone into making the Daemon robust, transparent and unobtrusive
during day to day development. However, Daemon processes can occasionally be corrupted or exhausted. A
Gradle build executes arbitrary code from multiple sources. While Gradle itself is designed for and heavily
tested with the Daemon, user build scripts and third party plugins can destabilize the Daemon process
through defects such as memory leaks or global state corruption.

It is also possible to destabilize the Daemon (and build environment in general) by running builds that do
not release resources correctly. Thisis a particularly poignant problem when using Microsoft Windows as it
islessforgiving of programs that fail to close files after reading or writing.

Gradle actively monitors heap usage and attempts to detect when aleak is starting to exhaust the available
heap space in the daemon. When it detects a problem, the Gradle daemon will finish the currently running
build and proactively restart the daemon on the next build. This monitoring is enabled by default, but can be
disabled by setting the org. gradl e. daenon. perfor mance. enabl e-noni t ori ng system
property to false.

If it is suspected that the Daemon process has become unstable, it can simply be killed. Recall that the - - no- dae
switch can be specified for a build to prevent use of the Daemon. This can be useful to diagnose whether or
not the Daemon is actually the culprit of a problem.

Page 45 of 561

6.6. When should | not use the Gradle Daemon?

It is recommended that the Daemon is used in al developer environments. It is recommend to disable the
Daemon for Continuous Integration and build server environments.

The Daemon enables faster builds, which is particularly important when a human is sitting in front of the
build. For CI builds, stability and predictability is of utmost importance. Using a fresh runtime (i.e. process)
for each build is more reliable as the runtime is completely isolated from previous builds.

6.7. Tools & IDEs

The Gradle Tooling API (see Chapter 13, Embedding Gradle using the Tooling API), that is used by IDES
and other tools to integrate with Gradle, always use the Gradle Daemon to execute builds. If you are
executing Gradle builds from within you're IDE you are using the Gradle Daemon and do not need to enable
it for your environment.

However, unless you have explicitly enabled the Gradle Daemon for you environment your builds from the
command line will not use the Gradle Daemon.

6.8. How does the Gradle Daemon make builds
faster?

The Gradle Daemon is a long lived build process. In between builds it waits idly for the next build. This has
the obvious benefit of only requiring Gradle to be loaded into memory once for multiple builds, as opposed
to once for each build. Thisin itself isasignificant performance optimization, but that's not where it stops.

A significant part of the story for modern VM performance is runtime code optimization. For example,
HotSpot (the VM implementation provided by Oracle and used as the basis of OpenJDK) applies
optimization to code while it is running. The optimization is progressive and not instantaneous. That is, the
code is progressively optimized during execution which means that subsequent builds can be faster purely
due to this optimization process. Experiments with HotSpot have shown that it takes somewhere between 5
and 10 builds for optimization to stabilize. The difference in perceived build time between the first build and
the 10th for a Daemon can be quite dramatic.

The Daemon also allows more effective in memory caching across builds. For example, the classes needed
by the build (e.g. plugins, build scripts) can be held in memory between builds. Similarly, Gradle can
maintain in-memory caches of build data such as the hashes of task inputs and outputs, used for incremental
building.

Page 46 of 561

6.8.1. Potential future enhancements

Currently, the Daemon makes builds faster by effectively supporting in memory caching and by the VM
optimizer making the code faster. In future Gradle versions, the Daemon will become even smarter and
perform work preemptively. It could, for example, start downloading dependencies immediately after the

build script has been edited under the assumption that the build is about to be run and the newly changed or
added dependencies will be required.

There are many other ways in that the Gradle Daemon will enable even faster builds in future Gradle
versions.

Page 47 of 561

v

Dependency M anagement Basics

This chapter introduces some of the basics of dependency management in Gradle.

7.1. What is dependency management?

Very roughly, dependency management is made up of two pieces. Firstly, Gradle needs to know about the
things that your project needs to build or run, in order to find them. We call these incoming files the
dependencies of the project. Secondly, Gradle needs to build and upload the things that your project
produces. We call these outgoing files the publications of the project. Let's ook at these two piecesin more
detail:

Most projects are not completely self-contained. They need files built by other projects in order to be
compiled or tested and so on. For example, in order to use Hibernate in my project, | need to include some
Hibernate jars in the classpath when | compile my source. To run my tests, | might also need to include
some additional jarsin the test classpath, such as a particular JDBC driver or the Ehcache jars.

These incoming files form the dependencies of the project. Gradle alows you to tell it what the
dependencies of your project are, so that it can take care of finding these dependencies, and making them
available in your build. The dependencies might need to be downloaded from a remote Maven or lvy
repository, or located in a local directory, or may need to be built by another project in the same
multi-project build. We call this process dependency resolution.

Note that this feature provides a major advantage over Ant. With Ant, you only have the ability to specify
absolute or relative paths to specific jars to load. With Gradle, you simply declare the “names’ of your
dependencies, and other layers determine where to get those dependencies from. You can get similar
behavior from Ant by adding Apache lvy, but Gradle does it better.

Often, the dependencies of a project will themselves have dependencies. For example, Hibernate core
requires several other libraries to be present on the classpath with it runs. So, when Gradle runs the tests for
your project, it also needs to find these dependencies and make them available. We call these transitive

dependencies.

The main purpose of most projectsis to build some files that are to be used outside the project. For example,
if your project produces a Java library, you need to build a jar, and maybe a source jar and some
documentation, and publish them somewhere.

These outgoing files form the publications of the project. Gradle also takes care of this important work for
you. You declare the publications of your project, and Gradle take care of building them and publishing
them somewhere. Exactly what “publishing” means depends on what you want to do. You might want to

Page 48 of 561

copy thefilesto alocal directory, or upload them to aremote Maven or lvy repository. Or you might use the
filesin another project in the same multi-project build. We call this process publication.

7.2. Declaring your dependencies

Let'slook at some dependency declarations. Here's a basic build script:

Example 7.1. Declaring dependencies

bui | d. gradl e

apply plugin: 'java

repositories {
mavenCentral ()

}

dependenci es {
conpi l e group: 'org. hibernate', nane: 'hibernate-core', version: '3.6.7.Fing
testConpile group: 'junit', nane: 'junit', version: '4.+

What's going on here? This build script says a few things about the project. Firstly, it states that Hibernate
core 3.6.7.Fina isrequired to compile the project's production source. By implication, Hibernate core and its
dependencies are also required at runtime. The build script also states that any junit >= 4.0 is required to
compile the project’s tests. It also tells Gradle to look in the Maven central repository for any dependencies
that are required. The following sections go into the details.

7.3. Dependency configurations

In Gradle dependencies are grouped into configurations. A configuration is simply a named set of
dependencies. We will refer to them as dependency configurations. Y ou can use them to declare the external
dependencies of your project. As we will see later, they are also used to declare the publications of your
project.

The Java plugin defines a number of standard configurations. These configurations represent the classpaths
that the Java plugin uses. Some are listed below, and you can find more details in Table 45.5, “ Java plugin -
dependency configurations”.

compile
The dependencies required to compile the production source of the project.

runtime
The dependencies required by the production classes at runtime. By default, also includes the compile
time dependencies.

testCompile
The dependencies required to compile the test source of the project. By default, also includes the
compiled production classes and the compile time dependencies.

Page 49 of 561

testRuntime
The dependencies required to run the tests. By default, also includes the compile, runtime and test
compile dependencies.

Various plugins add further standard configurations. Y ou can also define your own custom configurations to
use in your build. Please see Section 23.3, “Dependency configurations” for the details of defining and
customizing dependency configurations.

7.4. External dependencies

There are various types of dependencies that you can declare. One such type is an external dependency.
This is a dependency on some files built outside the current build, and stored in a repository of some kind,
such as Maven central, or a corporate Maven or lvy repository, or adirectory in the local file system.

To define an external dependency, you add it to a dependency configuration:

Example 7.2. Definition of an external dependency

bui | d. gradl e

dependenci es {

conpil e group: 'org. hibernate', nane: 'hibernate-core', version: '3.6.7.Fing

}

An external dependency is identified using gr oup, nane and ver si on attributes. Depending on which
kind of repository you are using, gr oup and ver si on may be optional.

The shortcut form for declaring external dependencieslookslike“ gr oup: nane: versi on”.

Example 7.3. Shortcut definition of an external dependency
bui |l d. gradl e

dependenci es {
conpi |l e ' org. hi bernat e: hi bernat e-core: 3. 6. 7. Fi nal

}

To find out more about defining and working with dependencies, have a look at Section 23.4, “How to
declare your dependencies’.

7.5. Repositories

How does Gradle find the files for external dependencies? Gradle looks for them in a repository. A
repository isreally just a collection of files, organized by gr oup, nane and ver si on. Gradle understands
several different repository formats, such as Maven and lvy, and several different ways of accessing the
repository, such as using the local file system or HTTP.

By default, Gradle does not define any repositories. You need to define at least one before you can use
external dependencies. One option is use the Maven central repository:

Page 50 of 561

Example 7.4. Usage of Maven central repository

bui | d. gradl e

repositories {

mavenCent ral ()

}

Or Bintray's JCenter:

Example 7.5. Usage of JCenter repository
bui |l d. gradl e

repositories {
jcenter()

}

Or aany other remote Maven repository:

Example 7.6. Usage of aremote Maven repository
bui |l d. gradl e

repositories {
maven {
url "http://repo. myconpany. conl maven2"

}

Or aremote lvy repository:

Example 7.7. Usage of aremote vy directory
buil d. gradl e

repositories {
ivy {
url "http://repo. myconpany. coni repo"

}

Y ou can aso have repositories on the local file system. Thisworks for both Maven and Ivy repositories.

Example 7.8. Usage of a local Ivy directory
bui |l d. gradl e
repositories {

ivy {
/1l URL can refer to a |local directory

url "../local -repo"

Page 51 of 561

A project can have multiple repositories. Gradle will look for a dependency in each repository in the order
they are specified, stopping at the first repository that contains the requested module.

To find out more about defining and working with repositories, have alook at Section 23.6, “ Repositories’.

7.6. Publishing artifacts

Dependency configurations are also used to publish files.l? We call these files publication artifacts, or
usualy just artifacts.

The plugins do a pretty good job of defining the artifacts of a project, so you usually don't need to do
anything special to tell Gradle what needs to be published. However, you do need to tell Gradle where to
publish the artifacts. You do this by attaching repositories to the upl oadAr chi ves task. Here's an
example of publishing to aremote Ivy repository:

Example 7.9. Publishing to an Ivy repository

bui | d. gradl e

upl oadAr chi ves {
repositories {
vy {
credentials {
user nane "usernanme"
password " pw'

}

url "http://repo. nyconpany. cont'

Now, when you run gr adl e upl oadAr chi ves, Gradle will build and upload your Jar. Gradle will also
generateand upload ani vy. xm aswell.

You can also publish to Maven repositories. The syntax is slightly different.[3 Note that you also need to
apply the Maven plugin in order to publish to a Maven repository. when thisisin place, Gradle will generate
and upload apom xmi .

Example 7.10. Publishing to a Maven repository

bui | d. gradl e

apply plugin: 'maven'

upl oadAr chi ves {
repositories {

mavenDepl oyer {
repository(url: "file://local host/tnp/ nyRepo/")

To find out more about publication, have alook at Chapter 30, Publishing artifacts.

Page 52 of 561

7.7. Where to next?

For all the details of dependency resolution, see Chapter 23, Dependency Management, and for artifact
publication see Chapter 30, Publishing artifacts.

If you are interested in the DSL elements mentioned here, have a look at
Proj ect.configurations{},Project.repositories{} andProject.dependenci es{}.

Otherwise, continue on to some of the other tutorids.

[2] Wethink thisis confusing, and we are gradually teasing apart the two conceptsin the Gradle DSL.

[3] We are working to make the syntax consistent for resolving from and publishing to Maven repositories.

Page 53 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)

8

| ntroduction to multi-project builds

Only the smallest of projects has a single build file and source tree, unless it happens to be a massive,
monolithic application. It's often much easier to digest and understand a project that has been split into
smaller, inter-dependent modules. The word “inter-dependent” is important, though, and is why you
typically want to link the modules together through a single build.

Gradle supports this scenario through multi-project builds.

8.1. Structure of a multi-project build

Such builds comein all shapes and sizes, but they do have some common characteristics:

* Asettings. gradl efileintheroot or mast er directory of the project

®* Abuil d. gradl e fileintheroot or mast er directory

® Child directories that have their own *. gr adl e build files (some multi-project builds may omit child
project build scripts)

Thesettings. gradl e file tells Gradle how the project and subprojects are structured. Fortunately, you
don’'t have to read this file smply to learn what the project structureis as you can run the command gr adl e pr c
. Here's the output from using that command on the Java multiproject build in the Gradle samples:

Example 8.1. Listing the projectsin a build
Output of gradl e -q projects

> gradle -q projects

Root project 'nultiproject’

+--- Project ':api'

+--- Project ':services'

| +--- Project ':services:shared

| \--- Project ':services:webservice'
\--- Project ':shared

To see a list of the tasks of a project, run gradl e <project-path>:tasks
For exanple, try running gradle :api:tasks

This tells you that multiproject has three immediate child projects: api, services and shared. The services

Page 54 of 561

project then has its own children, shared and webservice. These map to the directory structure, so it's easy
to find them. For example, you can find webservice in <r oot >/ ser vi ces/ webser vi ce.

By default, Gradle uses the name of the directory it findsthe set ti ngs. gr adl e as the name of the root
project. This usually doesn't cause problems since al developers check out the same directory name when
working on a project. On Continuous Integration servers, like Jenkins, the directory name may be
auto-generated and not match the name in your VCS. For that reason, it's recommended that you always set
the root project name to something predictable, even in single project builds. You can configure the root
project name by setting r oot Pr oj ect . nane.

Each project will usually have its own build file, but that's not necessarily the case. In the above example,
the services project is just a container or grouping of other subprojects. There is no build file in the
corresponding directory. However, multiproject does have one for the root project.

The root bui | d. gr adl e is often used to share common configuration between the child projects, for
example by applying the same sets of plugins and dependencies to al the child projects. It can also be used
to configure individual subprojects when it is preferable to have al the configuration in one place. This
means you should always check the root build file when discovering how a particular subproject is being
configured.

Another thing to bear in mind is that the build files might not be called bui | d. gr adl e. Many projects

will name the build files after the subproject names, such as api . gr adl e and ser vi ces. gr adl e from

the previous example. Such an approach helpsalot in IDEs because it’s tough to work out which bui | d. gr adl
file out of twenty possibilities is the one you want to open. This little piece of magic ishandled by the set t i ngs
file, but as a build user you don’t need to know the details of how it's done. Just have a look through the
child project directoriesto find the fileswith the . gr adl e suffix.

Once you know what subprojects are available, the key question for a build user is how to execute the tasks
within the project.

8.2. Executing a multi-project build

From a user's perspective, multi-project builds are still collections of tasks you can run. The difference is
that you may want to control which project's tasks get executed. Y ou have two options here:

® Changeto the directory corresponding to the subproject you' re interested in and just execute gr adl e <t ask
asnhormal.

* Useagquadified task name from any directory, although thisis usually done from the root. For example: gr adl
will build the webservice subproject and any subprojects it depends on.

The first approach is similar to the single-project use case, but Gradle works slightly differently in the case
of a multi-project build. The command gr adl e t est will execute the t est task in any subprojects,
relative to the current working directory, that have that task. So if you run the command from the root
project directory, you'll runt est in api, shared, services:shared and services.webservice. If you run the

command from the services project directory, you'll only execute the task in services:.shared and
services:webservice.

For more control over what gets executed, use qualified names (the second approach mentioned). These are

Page 55 of 561

paths just like directory paths, but use ‘" instead of /" or ‘\'. If the path begins with a‘:’, then the path is
resolved relative to the root project. In other words, the leading ‘' represents the root project itself. All other
colons are path separators.

This approach works for any task, so if you want to know what tasks are in a particular subproject, just use
thet asks task, eg. gradl e : servi ces: webservi ce: t asks .

Regardless of which technique you use to execute tasks, Gradle will take care of building any subprojects
that the target depends on. You don’t have to worry about the inter-project dependencies yourself. If you're
interested in how thisis configured, you can read about writing multi-project builds later in the user guide.

There' s one last thing to note. When you’ re using the Gradle wrapper, the first approach doesn’t work well
because you have to specify the path to the wrapper script if you're not in the project root. For example, if
you're in the webservice subproject directory, you would havetorun. ./ ../ gradl ew bui | d.

That’s all you really need to know about multi-project builds as a build user. Y ou can now identify whether
a build is a multi-project one and you can discover its structure. And finally, you can execute tasks within
specific subprojects.

Page 56 of 561

9

Continuous build

Continuous build is an incubating feature. This means that it is incomplete and not yet at regular
Gradle production quality. This also means that this Gradle User Guide chapter is awork in progress.

Typicaly, you ask Gradle to perform a single build by way of specifying tasks that Gradle should execute.
Gradle will determine the the actual set of tasks that need to be executed to satisfy the request, execute them
al, and then stop doing work until the next request. A continuous build differs in that Gradle will keep
satisfying the initial build request (until instructed to stop) by executing the build when it is detected that the
result of the previous build is now out of date. For example, if your build compiles Java source files to Java
class files, a continuous build would automatically initiate a compile when the source files change.
Continuous build is useful for many scenarios.

9.1. How do | start and stop a continuous build?

A continuous build can be started by supplying either the - - cont i nuous or -t switchesto Gradle, along

with the list of tasks, switches and arguments that define the work to do. For example, gr adl e buil d --cont
. This will have the same effect as running gr adl e bui | d, but instead of Gradle exiting when done, it

will wait for changes to the build inputs. When a change occurs, gr adl e bui | d will be automatically
executed again and the process repeats.

If Gradle is attached to an interactive input source, such as aterminal, the continuous build can be exited by
pressing CTRL- D (On Microsoft Windows, it is required to also press ENTER or RETURN after CTRL- D).
If Gradle is not attached to an interactive input source (e.g. is running as part of a script), the build process
must be terminated (e.g. using the ki | I command or similar). If the build is being executed via the Tooling
AP, the build can be cancelled using the Tooling API's cancellation mechanism.

9.2. What will cause a subsequent build?

At thistime, only changes to task inputs are noticed. Gradle will
start watching for changes just before the task starts to execute.

No other changes will initiate a build. For example, changes to T file InpUtS
build scripts and build logic will not initiate build. Likewise, Task implementations declare
changes to files that are read during the configuration of the their file system inputs by

annotating their properties with
I nput Fi | es and other similar

Page 57 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/InputFiles.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/InputFiles.html

build, not the execution, will not initiate a build. In order to annotations. Please see
incorporate such changes, the continuous build must be restarted Example 17.24, “Declaring the
manually. inputs and outputs of atask” for

more information.
Consider a typical build using the Java plugin, using the

conventional filesystem layout. The following diagram
visualizes the task graph for gr adl e bui | d:

Figure 9.1. Java plugin task graph

compileJava
processResources

Classes

test

clean

The following key tasks of the graph use filesin the corresponding directories as inputs:

compileJava
src/ main/java
processResour ces
src/ mai n/ resour ces
compileTestJava
src/test/java
processT estResour ces
src/test/resources

Assuming that the initial build is successful (i.e. the bui | d task and its dependencies complete without
error), changes to filesin, or the addition/remove of files from, the locations listed above will initiate a new
build. If achange is made to aJava sourcefilein sr ¢/ mai n/ j ava, the build will fire and all tasks will be
scheduled. Gradle's incremental build support ensures that only the tasks that are actually affected by the
change are executed.

If the change to the main Java source causes compilation to fail, subsequent changesto the test sourcein src/ t e
will not initiate a new build. As the test source depends on the main source, there is no point building until

the main source has changed, potentially fixing the compilation error. After each build, only the inputs of

the tasks that actually executed will be monitored for changes.

Continuous build isin no way coupled to compilation. It works for all types of tasks. For example, the pr ocessF
task copies and processes the files from sr ¢/ mai n/ r esour ces for inclusion in the built JAR. Assuch, a
change to any filein this directory will also initiate a build.

Page 58 of 561

9.3. Limitations and quirks

There are several issuesto be aware with the current implementation of continuous build. These are likely to
be addressed in future Gradle rel eases.

9.3.1. Build cycles

Gradle starts watching for changes just before a task executes. If a task modifies its own inputs while
executing, Gradle will detect the change and trigger a new build. If every time the task executes, the inputs
are modified again, the build will be triggered again. This isn't unique to continuous build. A task that
modifiesits own inputs will never be considered up-to-date when run "normally" without continuous build.

If your build enters abuild cycle like this, you can track down the task by looking at the list of files reported
changed by Gradle. After identifying the file(s) that are changed during each build, you should look for a

task that has that file as an input. In some cases, it may be obvious (e.g., a Javafileis compiled with conpi | eJa

). In other cases, you can use - - i nf o logging to find the task that is out-of-date due to the identified files.

9.3.2. Restrictionswith Java 9

Due to class access restrictions related to Java 9, Gradle cannot set some operating system specific options,
which means that:

® OnMac OS X, Gradlewill pall for file changes every 10 seconds instead of every 2 seconds.
® On Windows, Gradle must use individual file watches (like on Linux/Mac OS), which may cause
continuous build to no longer work on very large projects.

9.3.3. Performance and stability

The JDK file watching facility relies on inefficient file system polling on Mac OS X (see: JDK-7133447).
This can significantly delay notification of changes on large projects with many source files.

Additionally, the watching mechanism may deadlock under heavy load on Mac OS X (see: JDK-8079620).
This will manifest as Gradle appearing not to notice file changes. If you suspect this is occurring, exit
continuous build and start again.

On Linux, OpendDK's implementation of the file watch service can sometimes miss file system events (see:
JDK-8145981).

9.3.4. Changes to symbolic links

® Creating or removing symbolic link to fileswill initiate a build.

* Modifying the target of asymbolic link will not cause arebuild.

® Creating or removing symbolic links to directories will not cause rebuilds.

® Creating new filesin the target directory of a symbolic link will not cause arebuild.
® Dédleting the target directory will not cause arebuild.

Page 59 of 561

https://bugs.openjdk.java.net/browse/JDK-7133447
https://bugs.openjdk.java.net/browse/JDK-8079620
https://bugs.openjdk.java.net/browse/JDK-8145981

9.3.5. Changes to build logic are not considered

The current implementation does not recalculate the build model on subsequent builds. This means that
changes to task configuration, or any other change to the build model, are effectively ignored.

Page 60 of 561

10

Using the Gradle Graphical User Interface

In addition to supporting a traditional command line interface, Gradle offers a graphical user interface. This
isastand alone user interface that can be launched with the --gui option.

Example 10.1. Launching the GUI

Note that this command blocks until the Gradle GUI is closed. Under *nix it is probably preferable to run
this as a background task (gradle --gui&)

If you run this from your Gradle project working directory, you should see atree of tasks.

Page 61 of 561

Figure10.1. GUI Task Tree

Gradle

Task Tree | Favaorites || Command Line || Seh..lp|

[Refresh] [Execute | [Filter] [+] Show Description

=-multiproject ~
[+-api 1
--ser‘-riu:es

=}-shared

~huild Builds and tests this project

----- uilds and tests this project and all projects that depend on it

-huildMeeded Builds and tests this project and all projects it depends on

~gean Deletes the build directory.

~-compile Compiles the main Java source,

~-compileTest Compiles the test Java source. [\}5

~dists Builds all Jar, War, Zip, and Tar archives

-edipse Generates an Eclipse .project and .dasspath file.

~edipseClean Deletes the Edipse .project and .classpath files.

—edipseCp Generates an Edipse . dasspath file,

-eripseProject Generates an Edipse .project file,

-edipseWtpModule Generates the Edipse Wip files,

Execute 'shared:buildDependents' X

Completed successfully at 3:17:05 PM

>

:3ervices :webservice:processREesocurces
:gervices :webservice:jar SEIEEED
api-uploedbDefaultInternal

gervices iwebservice:war

zervices :webservice:libks

services :webservice:dists
gervices:webservice:compileTest T
gervices :webservice:processTestResocurces
zervices :webservice:test

< | ¥

(%

It is preferable to run this command from your Gradle project directory so that the settings of the Ul will be
stored in your project directory. However, you can run it then change the working directory via the Setup tab
inthe Ul.

The Ul displays 4 tabs along the top and an output window a ong the bottom.

10.1. Task Tree

The Task Tree shows a hierarchical display of al projects and their tasks. Double clicking atask executesit.

There is aso afilter so that uncommon tasks can be hidden. Y ou can toggle the filter via the Filter button.
Editing the filter allows you to configure which tasks and projects are shown. Hidden tasks show up in red.
Note: newly created tasks will show up by default (versus being hidden by default).

The Task Tree context menu provides the following options:

Page 62 of 561

® Execute ignoring dependencies. This does not require dependent projects to be rebuilt (same as the -a
option).

® Add tasksto the favorites (see Favorites tab)

® Hidethe selected tasks. This adds them to the filter.

® Edit the build.gradle file. Note: this requires Java 1.6 or higher and requires that you have .gradle files
associated in your OS.

10.2. Favorites

The Favorites tab is a good place to store commonly-executed commands. These can be complex commands
(anything that's legal to Gradle) and you can provide them with a display name. This is useful for creating,
say, a custom build command that explicitly skips tests, documentation, and samples that you could call
“fast build”.

Y ou can reorder favorites to your liking and even export them to disk so they can imported by others. If you
edit them, you are given options to “Always Show Live Output”. This only appliesif you have “Only Show
Output When Errors Occur”. This override always forces the output to be shown.

10.3. Command Line

The Command Line tab is where you can execute a single Gradle command directly. Just enter whatever
you would normally enter after 'gradle’ on the command line. This also provides a place to try out
commands before adding them to favorites.

10.4. Setup

The Setup tab allows configuration of some general settings.

Page 63 of 561

Figure 10.2. GUI Setup

Gradle

| Task Tree || Favorites | Command Line| Setup |

Current Directory
|C:‘l.deuelnpment‘l,samples‘l,jauahultipmject | [Browse. ..

Log Level
| Debug b

Stack Trace Qutput
(¥} Exceptions Only
(") Standard Stack Trace
(" Full Stack Trace

] only Show Output When Errars Occur

[] Use Custom Gradle Executor

Execute 'shared:buildDependents' X

Completed successfully at 3:23:29 PM

gervices :webservice:test

>

gervices:webservicezbuild
:shared:buildDependents

BUILD SUCCESSFUL

Totel time: ©.453 secs

Ed

Completed Successfully
< >

¢ Current Directory
Defines the root directory of your Gradle project (typically where build.gradle is located).

® Stack Trace Output
This determines how much information to write out in stack traces when errors occur. Note: if you
specify a stack trace level on either the Command Line or Favorites tab, it will override this stack trace
level.

¢ Only Show Output When Errors Occur
Enabling this option hides any output when atask is executed unless the build fails.

® Use Custom Gradle Executor - Advanced feature
This provides you with an alternate way to launch Gradle commands. This is useful if your project
requires some extra setup that is done inside another batch file or shell script (such as specifying an init
script).

Page 64 of 561

11

The Build Environment

11.1. Configuring the build environment via
gradle.properties

Gradle provides several options that make it easy to configure the Java process that will be used to execute
your build. While it's possible to configure these in your local environment via GRADLE_OPTS or
JAVA_OPTS, certain settings like VM memory settings, Java home, daemon on/off can be more useful if

they can be versioned with the project in your VCS so that the entire team can work with a consistent
environment. Setting up a consistent environment for your build is as simple as placing these settings into a gr adl
file. The configuration is applied in following order (if an option is configured in multiple locations the last
onewins):

* fromgradl e. properti es inproject build dir.
® fromgradl e. propertiesingradl e user hone.
* from system properties, e.g. when - Dsone. pr operty isset on the command line.

When setting these properties you should keep in mind that Gradle requires a Java JDK or JRE of version 7
or higher to run.

The following properties can be used to configure the Gradle build environment:

org. gradl e. daenon
When set to t r ue the Gradle daemon is used to run the build. For local developer builds this is our
favorite property. The developer environment is optimized for speed and feedback so we nearly always
run Gradle jobs with the daemon. We don't run ClI builds with the daemon (i.e. along running process)
asthe Cl environment is optimized for consistency and reliability.

org.gradl e.java. hone
Specifies the Java home for the Gradle build process. The value can be set to either ajdk orjre
location, however, depending on what your build does, j dk is safer. A reasonable default is used if the
setting is unspecified.

org. gradl e.jvmargs
Specifies the jvmargs used for the daemon process. The setting is particularly useful for tweaking
memory settings. At the moment the default settings are pretty generous with regards to memory.

org. gradl e. confi gur eondenand
Enables new incubating mode that makes Gradle selective when configuring projects. Only relevant
projects are configured which results in faster builds for large multi-projects. See Section 24.1.1.1,

Page 65 of 561

“Configuration on demand”.

org. gradl e. paral |l el
When configured, Gradle will run in incubating parallel mode.

org. gradl e. wor kers. max
When configured, Gradle will use a maximum of the given number of workers. See - - nax- wor ker s
for details.

org. gradl e. debug
When set to true, Gradle will run the build with remote debugging enabled, listening on port 5005. Note
that thisisthe equivalent of adding - agent | i b: j dwp=t ransport =dt _socket, server =y, suspen
to the VM command line and will suspend the virtual machine until a debugger is attached.

org. gradl e. daenon. performance. enabl e-nmonitori ng
When set to false, Gradle will not monitor the memory usage of running daemons. See ?7??2.

11.1.1. Forked Java processes

Many settings (like the Java version and maximum heap size) can only be specified when launching a new
JVM for the build process. This means that Gradle must launch a separate VM process to execute the build
after parsing the various gr adl e. properti es files. When running with the daemon, a VM with the
correct parameters is started once and reused for each daemon build execution. When Gradle is executed
without the daemon, then anew JVM must be launched for every build execution, unless the VM launched
by the Gradle start script happens to have the same parameters.

This launching of an extra JVM on every build execution is quite expensive, which is why if you are setting
either or g. gradl e. j ava. hone or or g. gr adl e. j virar gs we highly recommend that you use the
Gradle Daemon. See Chapter 6, The Gradle Daemon for more details.

11.2. Gradle properties and system properties

Gradle offers a variety of ways to add properties to your build. With the - D command line option you can
pass a system property to the VM which runs Gradle. The - D option of the gradle command has the same
effect asthe - D option of the java command.

Y ou can also add properties to your project objects using propertiesfiles. You can placeagr adl e. properti e
file in the Gradle user home directory (defined by the “GRADLE_USER HOVE” environment variable,
which if not set defaultsto USER_HOME/ . gr adl e) or in your project directory. For multi-project builds

you can placegr adl e. properti es filesin any subproject directory. The propertiessetinagr adl e. pr ope!
file can be accessed via the project object. The properties file in the user's home directory has precedence

over property filesin the project directories.

Y ou can also add properties directly to your project object viathe - P command line option.

Gradle can also set project properties when it sees specially-named system properties or environment
variables. This feature is very useful when you don't have admin rights to a continuous integration server
and you need to set property values that should not be easily visible, typically for security reasons. In that

Page 66 of 561

situation, you can't use the - P option, and you can't change the system-level configuration files. The correct
strategy is to change the configuration of your continuous integration build job, adding an environment
variable setting that matches an expected pattern. Thiswon't be visible to normal users on the system. (4]

If the environment variable name looks like ORG_GRADLE PRQJIECT pr op=soneval ue, then Gradle
will set a pr op property on your project object, with the value of soneval ue. Gradle also supports this
for system properties, but with a different naming pattern, which lookslike or g. gr adl e. pr oj ect. prop

You can also set system propertiesin the gr adl e. properti es file. If aproperty namein such afile has
the prefix “syst enProp. ”, like “syst enPr op. pr opNane”, then the property and its value will be set
as a system property, without the prefix. In a multi project build, “syst enPr op. ” properties set in any
project except the root will be ignored. That is, only the root project's gr adl e. properti es filewill be
checked for propertiesthat begin with the “syst enPr op. ” prefix.

Example 11.1. Setting propertieswith a gradle.propertiesfile

gradl e. properties

gr adl eProperti esProp=gradl ePropertiesVal ue
sysProp=shoul dBeOver Wi tt enBySysProp

envPr oj ect Prop=shoul dBeOver Wi tt enByEnvProp
syst enPr op. syst enFsyst enVal ue

bui |l d. gradl e

task printProps << {
printl n commandLi nePr oj ect Prop
println gradl ePropertiesProp

println systenProjectProp
println envProject Prop
println System properties['systen]

Output of gr adl e -qg - PcommandLi nePr oj ect Prop=commandLi nePr oj ect PropVal ue -Dorg. ¢

> gradl e -q - PcommandLi nePr oj ect Prop=conmandLi nePr oj ect PropVal ue - Dor g. gr adl e. proj ec
commandLi nePr oj ect PropVal ue

gr adl ePropertiesVal ue

syst enPropertyVal ue

envPropertyVal ue

syst enVal ue

11.2.1. Checking for project properties

Y ou can access a project property in your build script simply by using its name as you would use a variable.

If this property does not exist, an exception will be thrown and the build will fail. If your build script relies
on optional properties the user might set, perhapsin agr adl e. properti es file, you need to check for
existence before you access them. Y ou can do this by using the method hasPr opert y(' propertyName')
whichreturnst r ue or f al se.

Page 67 of 561

11.3. Accessing the web via a proxy

Configuring an HTTP or HTTPS proxy (for downloading dependencies, for example) is done via standard
JVM system properties. These properties can be set directly in the build script; for example, setting the
HTTP proxy host would be done with Syst em set Property(' http. proxyHost', 'ww. sonehost.
. Alternatively, the properties can be specified in a gradle.properties file, either in the build's root directory

or in the Gradle home directory.

Example 11.2. Configuringan HTTP proxy

gradl e. properties

syst enProp. htt p. pr oxyHost =www. sonehost . org
syst enProp. htt p. pr oxyPort =8080

syst enProp. http. proxyUser =userid
syst enProp. htt p. pr oxyPasswor d=passwor d
syst enPr op. ht t p. nonPr oxyHost s=*. nonpr oxyr epos. conj | ocal host

There are separate settings for HTTPS.
Example 11.3. Configuring an HTTPS proxy

gradl e. properties

syst enPr op. htt ps. pr oxyHost =www. sonehost . org
syst enProp. htt ps. pr oxyPort =8080

syst enProp. htt ps. proxyUser =useri d
syst enPr op. htt ps. pr oxyPasswor d=passwor d
syst enPr op. htt p. nonPr oxyHost s=*. nonpr oxyr epos. conj | ocal host

We could not find a good overview for al possible proxy settings. One place to look are the constantsin a
file from the Ant project. Here's a link to the Subversion view. The other is a Networking Properties page
from the JDK docs. If anyone knows of a better overview, please let us know viathe mailing list.

11.3.1. NTLM Authentication

If your proxy requires NTLM authentication, you may need to provide the authentication domain as well as
the username and password. There are 2 ways that you can provide the domain for authenticating to a
NTLM proxy:

® Setthehtt p. proxyUser system property to avaluelike donai n/ user nane.
® Provide the authentication domain viathe ht t p. aut h. nt | m donai n system property.

[4] Jenkins, Teamcity, or Bamboo are some Cl servers which offer this functionality.

Page 68 of 561

http://svn.apache.org/viewvc/ant/core/trunk/src/main/org/apache/tools/ant/util/ProxySetup.java?view=markup&pathrev=556977
http://download.oracle.com/javase/6/docs/technotes/guides/net/properties.html

12

Troubleshooting

This chapter is currently awork in progress.

When using Gradle (or any software package), you can run into problems. Y ou may not understand how to
use a particular feature, or you may encounter a defect. Or, you may have a general question about Gradle.

This chapter gives some advice for troubleshooting problems and explains how to get help with your
problems.

12.1. Working through problems

If you are encountering problems, one of the first things to try is using the very latest release of Gradle. New
versions of Gradle are released frequently with bug fixes and new features. The problem you are having may
have been fixed in anew release.

If you are using the Gradle Daemon, try temporarily disabling the daemon (you can pass the command line
switch - - no- daenon). More information about troubleshooting the daemon process is located in
Chapter 6, The Gradle Daemon.

12.2. Getting help

The place to go for help with Gradle is http://forums.gradle.org. The Gradle Forums is the place where you
can report problems and ask questions of the Gradle developers and other community members.

If something's not working for you, posting a question or problem report to the forums is the fastest way to
get help. It's also the place to post improvement suggestions or new ideas. The development team frequently
posts news items and announces releases via the forum, making it a great way to stay up to date with the
latest Gradle developments.

Page 69 of 561

http://forums.gradle.org

13

Embedding Gradle using the Tooling API

13.1. Introduction to the Tooling API

Gradle provides a programmatic API called the Tooling API, which you can use for embedding Gradle into
your own software. This API allows you to execute and monitor builds and to query Gradle about the details
of abuild. The main audience for this APl isIDE, Cl server, other Ul authors; however, the APl is open for
anyone who needs to embed Gradle in their application.

* Gradle TestKit usesthe Tooling API for functional testing of your Gradle plugins.
® Eclipse Buildship usesthe Tooling API for importing your Gradle project and running tasks.
® IntelliJIDEA usesthe Tooling API for importing your Gradle project and running tasks.

13.2. Tooling APl Features

A fundamental characteristic of the Tooling API isthat it operatesin aversion independent way. This means
that you can use the same API to work with different target versions of Gradle, including versions that are
both newer and older than the version of the Tooling API that you are using. The Tooling APl is Gradle
wrapper aware and, by default, uses the same target Gradle version as that used by the wrapper-powered
project.

Some features that the Tooling API provides:

® Query the details of abuild, including the project hierarchy and the project dependencies, external
dependencies (including source and Javadoc jars), source directories and tasks of each project.

® Execute abuild and listen to stdout and stderr logging and progress messages (e.g. the messages shown
in the 'status bar' when you run on the command line).

® Execute a specific test class or test method.

® Receiveinteresting events as a build executes, such as project configuration, task execution or test
execution.

® Cancel abuild that is running.

® Combine multiple separate Gradle builds into a single composite build.

® The Tooling API can download and install the appropriate Gradle version, similar to the wrapper.

* Theimplementation islightweight, with only a small number of dependencies. It is also a well-behaved
library, and makes no assumptions about your classloader structure or logging configuration. This makes
the API easy to embed in your application.

Page 70 of 561

http://projects.eclipse.org/projects/tools.buildship
https://www.jetbrains.com/idea/

13.3. Tooling API and the Gradle Build Daemon

The Tooling APl always uses the Gradle daemon. This means that subsequent calls to the Tooling API, be it
model building requests or task executing requests will be executed in the same long-living process.
Chapter 6, The Gradle Daemon contains more details about the daemon, specifically information on
situations when new daemons are forked.

13.4. Quickstart

Asthe Tooling API is an interface for devel opers, the Javadoc is the main documentation for it. We provide
several samples that live in sanpl es/ t ool i ngApi in your Gradle distribution. These samples specify
all of the required dependencies for the Tooling APl with examples for querying information from Gradle
builds and executing tasks from the Tooling API.

The main entry point to the Tooling API isthe Gr adl eConnect or . You can navigate from there to find

code samples and explore the available Tooling APl models. There are two ways of using the G adl eConnect ¢

to connect to a Gradle build.

® Youcanuse Gradl eConnect or. connect () tocreateaPr oj ect Connecti on. A Proj ect Connec:

connects to a single Gradle project. Using the connection you can execute tasks, tests and retrieve
models relative to this project. Thisisthe original API provided by the Tooling API. Use this APl when
you wish to use a stable non-incubating API.

® Youcanuse G adl eConnect or. newG adl eConnecti on() tocreatea
Gr adl eConnect i onBui | der. G adl eConnecti onBui | der can be used to connect to any
number of Gradle builds at one time. Executing tasks and retrieving models are performed in the context
of the composite. Instead of retrieving a single model for a single Gradle project, the Tooling API can
provide all modelsfor all projects with asingle method call. Note that this API is currently incubating
and may change at any time.

13.5. Gradle and Java version compatibility

The current version of the Tooling API supports running builds using Gradle versions 1.2 and later.

You should note that not all features of the Tooling APl are available for al versions of Gradle. For
example, build cancellation is only available when a build uses Gradle 2.1 and later. Refer to the
documentation for each class and method for more details.

The current Gradle version can be used from Tooling API versions 2.0 or |ater.

The Tooling API requires Java 7 or later. The Gradle version used by builds may have additional Java
version requirements.

Page 71 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/tooling/GradleConnector.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/tooling/GradleConnector.html#connect()
http://www.gradle.org/docs/3.0/javadoc/org/gradle/tooling/ProjectConnection.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/tooling/GradleConnector.html#newGradleConnection()
http://www.gradle.org/docs/3.0/javadoc/org/gradle/tooling/connection/GradleConnectionBuilder.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/tooling/connection/GradleConnectionBuilder.html

Part II1. Writing Gradle
build scripts

14

Build Script Basics

14.1. Projects and tasks

Everything in Gradle sits on top of two basic concepts. projects and tasks.

Every Gradle build is made up of one or more projects. What a project represents depends on what it is that
you are doing with Gradle. For example, a project might represent a library JAR or a web application. It
might represent a distribution ZIP assembled from the JARs produced by other projects. A project does not
necessarily represent a thing to be built. It might represent a thing to be done, such as deploying your
application to staging or production environments. Don't worry if this seems a little vague for now. Gradle's
build-by-convention support adds a more concrete definition for what a project is.

Each project is made up of one or more tasks. A task represents some atomic piece of work which a build
performs. This might be compiling some classes, creating a JAR, generating Javadoc, or publishing some
archivesto arepository.

For now, we will look at defining some simple tasks in a build with one project. Later chapters will look at
working with multiple projects and more about working with projects and tasks.

14.2. Hello world

You run a Gradle build using the gradle command. The gradle command looks for afile called bui | d. gr adl e
in the current directory. 151 We call thisbui | d. gr adl e filea build script, although strictly speaking it is
abuild configuration script, aswe will see later. The build script defines a project and its tasks.

To try this out, create the following build script named bui | d. gr adl e.

Example 14.1. Your first build script
buil d. gradl e

task hello {
doLast {

println 'Hello world!

}

In a command-line shell, move to the containing directory and execute the build script with gradl e -q hel | o

Page 73 of 561

Example 14.2. Execution of a build script

Output of gradl e -q hello What does - q do?
> gradle -q hello Most of the examples in this
Hel I o wor| d! user guide are run with the - q

command-line option. This
suppresses Gradle's log
messages, so that only the
output of the tasks is shown.
This keeps the example output
in this user guide alittle clearer.
You don't need to use this
option if you don't want to. See
Chapter 22, Logging for more
details about the command-line
options which affect Gradle's
output.

What's going on here? This build script defines a single task,

caled hel | 0, and adds an actionto it. Whenyourun gr adl e hel | o
, Gradle executes the hel | o task, which in turn executes the
action you've provided. The action is simply a closure
containing some Groovy code to execute.

If you think this looks similar to Ant's targets, you would be
right. Gradle tasks are the equivalent to Ant targets, but as you

will see, they are much more powerful. We have used a different
terminology than Ant as we think the word task is more
expressive than the word target. Unfortunately this introduces a
terminology clash with Ant, as Ant calls its commands, such asj avac
or copy, tasks. So when we talk about tasks, we always mean
Gradle tasks, which are the equivalent to Ant's targets. If we talk about Ant tasks (Ant commands), we
explicitly say Ant task.

14.3. A shortcut task definition

There is a shorthand way to define atask like our hel | o task above, which is more concise.

Example 14.3. A task definition shortcut

bui | d. gradl e

task hello << {

printin "Hello world!

}

Again, this defines a task called hel | o with a single closure to execute. We will use this task definition
style throughout the user guide.

14.4. Build scripts are code

Gradl€e's build scripts give you the full power of Groovy. As an appetizer, have alook at this:

Page 74 of 561

Example 14.4. Using Groovy in Gradle'stasks
buil d. gradl e

task upper << {
String sonmeString = 'nVY_nAnE

println "Original: " + someString
println "Upper case: " + someString.toUpper Case()

Output of gradl e -q upper
> gradle -q upper

Oiginal: mY_nArE
Upper case: MY_NAME

or

Example 14.5. Using Groovy in Gradle' stasks
bui |l d. gradl e

task count << {
4.times { print "$it

}

Output of gr adl e -qg count

> gradle -qg count
0123

14.5. Task dependencies

Asyou probably have guessed, you can declare tasks that depend on other tasks.

Example 14.6. Declar ation of task that dependson other task

bui | d. gradl e

task hello << {
println 'Hello world!

}
task i ntro(dependsOn: hello) << {

println "I'm G adl e"

}

Outputof gradle -q intro

> gradle -q intro
Hel 1 o worl d!
I'"'m G adle

To add a dependency, the corresponding task does not need to exist.

Page 75 of 561

Example 14.7. Lazy dependsOn - the other task does not exist (yet)
buil d. gradl e

task taskX(dependsOn: 'taskY') << {
println 'taskX

}
task taskY << {

println 'taskY

}

Output of gradl e -qg taskX

> gradle -q taskX
taskyY
taskX

The dependency of t askX to t askY is declared before t askY is defined. This is very important for
multi-project builds. Task dependencies are discussed in more detail in Section 17.4, “ Adding dependencies
to atask”.

Please notice that you can't use shortcut notation (see Section 14.8, “ Shortcut notations’) when referring to a
task that is not yet defined.

14.6. Dynamic tasks

The power of Groovy can be used for more than defining what a task does. For example, you can also use it
to dynamically create tasks.

Example 14.8. Dynamic creation of a task

bui | d. gradl e

4.times { counter ->
task "task$counter" << {

println "I'mtask nunber $counter"

}

Output of gradl e -qg taskl

> gradle -q taskl
I'"mtask nunber 1

14.7. Manipulating existing tasks

Once tasks are created they can be accessed viaan API. For instance, you could use this to dynamically add
dependenciesto atask, at runtime. Ant doesn't allow anything like this.

Page 76 of 561

Example 14.9. Accessing atask via API - adding a dependency

bui | d. gradl e

4.tinmes { counter ->
task "task$counter" << {
println "I'mtask nunber $counter"

}

}
t ask0. dependsOn task2, task3

Output of gradl e -q taskO

> gradle -q taskO
I"mtask nunber 2
I'"mtask nunber 3
I'"mtask nunber 0O

Or you can add behavior to an existing task.

Example 14.10. Accessing a task via API - adding behaviour

bui | d. gradl e

task hello << {

println 'Hello Earth'
}
hel | 0. doFirst {

println 'Hello Venus'
}
hel | 0. doLast {

println 'Hello Mars'
}
hell o << {

println 'Hello Jupiter’

}

Output of gradl e -q hello

> gradle -q hello
Hel | o Venus
Hello Earth
Hel l o Mars

Hel l o Jupiter

The calls doFi r st and doLast can be executed multiple times. They add an action to the beginning or
the end of the task's actions list. When the task executes, the actions in the action list are executed in order.

The << operator issimply an aliasfor doLast .

14.8. Shortcut notations

As you might have noticed in the previous examples, there is a convenient notation for accessing an existing

task. Each task is available as a property of the build script:

Page 77 of 561

Example 14.11. Accessing task as a property of the build script

bui | d. gradl e

task hello << {
println 'Hello world!"

}
hel | 0. doLast {
println "G eetings fromthe $hell o. nane task."

}

Output of gradl e -q hello

> gradle -q hello
Hel 1 o worl d!
Greetings fromthe hello task.

This enables very readable code, especially when using the tasks provided by the plugins, like the conpi | e
task.

14.9. Extratask properties

Y ou can add your own properties to atask. To add a property named my Pr operty, set ext . nyProperty
to an initial value. From that point on, the property can be read and set like a predefined task property.
Example 14.12. Adding extra propertiesto a task

bui | d. gradl e

task nyTask {
ext. nmyProperty = "nyVal ue"

}

task printTaskProperties << {
println myTask. myProperty

}

Output of gr adl e -qg print TaskProperties

> gradle -q printTaskProperties
nyVal ue

Extra properties aren't limited to tasks. Y ou can read more about them in Section 16.4.2, “ Extra properties’.

14.10. Using Ant Tasks

Ant tasks are first-class citizens in Gradle. Gradle provides excellent integration for Ant tasks by simply
relying on Groovy. Groovy is shipped with the fantastic Ant Bui | der . Using Ant tasks from Gradle is as
convenient and more powerful than using Ant tasks from abui | d. xm file. From the example below, you
can learn how to execute Ant tasks and how to access Ant properties:

Page 78 of 561

Example 14.13. Using AntBuilder to execute ant.loadfile tar get

bui | d. gradl e

task loadfile << {
def files = file('../antLoadfileResources').listFiles().sort()
files.each { File file ->
if (file.isFile()) {
ant.loadfile(srcFile: file, property: file.nane)

printin " *** $file.name ***"
println "${ant.properties[file.name]}"

Output of gradl e -qg | oadfile

> gradle -q loadfile

*** agile.mani festo.txt ***

I ndividuals and interactions over processes and tools

Wor ki ng software over conprehensive docunentation

Cust onmer col |l aboration over contract negotiation

Respondi ng to change over follow ng a plan

*** gradl e. mani festo. txt ***

Make the inpossible possible, nmake the possible easy and nake the easy el egant.
(inspired by Moshe Fel denkrai s)

There is lots more you can do with Ant in your build scripts. You can find out more in Chapter 19, Using
Ant from Gradle.

14.11. Using methods

Gradle scales in how you can organize your build logic. The first level of organizing your build logic for the
example above, is extracting a method.

Page 79 of 561

Example 14.14. Using methods to or ganize your build logic

bui | d. gradl e

task checksum << {
fileList('../antlLoadfileResources').each {File file ->
ant . checksum(file: file, property: "cs $file.nane")
println "$file. name Checksum ${ant.properties["cs_$file.name"]}"

}

task loadfile << {
fileList('../antlLoadfileResources').each {File file ->
ant.loadfile(srcFile: file, property: file.nane)
println "I'mfond of $file.name"

}

File[] fileList(String dir) {
file(dir).listFiles({file -> file.isFile() } as FileFilter).sort()
}

Output of gradl e -qg | oadfile
> gradle -q loadfile

I'"'mfond of agile.manifesto.txt
I"'mfond of gradle. manifesto.txt

Later you will see that such methods can be shared among subprojects in multi-project builds. If your build
logic becomes more complex, Gradle offers you other very convenient ways to organize it. We have devoted
awhole chapter to this. See Chapter 41, Organizing Build Logic.

14.12. Default tasks

Gradle allows you to define one or more default tasks that are executed if no other tasks are specified.

Page 80 of 561

Example 14.15. Defining a default task
buil d. gradl e

def aul t Tasks 'clean', 'run'

task clean << {
println 'Default C eaning!’

}

task run << {
println 'Default Running!’

}

task other << {
println "I'mnot a default task!"

}

Output of gradl e -q

> gradle -q
Def ault C eani ng!
Def aul t Runni ng!

Thisis equivalent to running gr adl e cl ean run. Inamulti-project build every subproject can have its
own specific default tasks. If a subproject does not specify default tasks, the default tasks of the parent
project are used (if defined).

14.13. Configure by DAG

As we later describe in full detail (see Chapter 20, The Build Lifecycle), Gradle has a configuration phase
and an execution phase. After the configuration phase, Gradle knows all tasks that should be executed.
Gradle offers you a hook to make use of this information. A use-case for this would be to check if the
release task is among the tasks to be executed. Depending on this, you can assign different values to some
variables.

In the following example, execution of the di st ri buti on and r el ease tasks resultsin different value
of thever si on variable.

Page 81 of 561

Example 14.16. Different outcomes of build depending on chosen tasks
buil d. gradl e

task distribution << {
println "We build the zip with versi on=3versi on"

}

task rel ease(dependsOn: 'distribution') << {
println 'We rel ease now

}

gradl e. t askGr aph. whenReady {taskG aph ->
i f (taskG aph. hasTask(rel ease)) {
version = '1.0
} else {
ver si on ' 1. 0- SNAPSHOT"

}

Output of gradl e -qg di stribution

> gradle -q distribution
We build the zip with version=1. 0- SNAPSHOT

Output of gradl e -qg rel ease

> gradle -q rel ease
We build the zip with version=1.0
W rel ease now

The important thing is that whenReady affects the release task before the release task is executed. This
works even when the release task is not the primary task (i.e., the task passed to the gradle command).

14.14. Where to next?

In this chapter, we have had afirst ook at tasks. But thisis not the end of the story for tasks. If you want to

jump into more of the details, have alook at Chapter 17, More about Tasks.

Otherwise, continue on to the tutorials in Chapter 44, Java Quickstart and Chapter 7, Dependency

Management Basics.

[5] There are command line switches to change this behavior. See Appendix D, Gradle Command Line)

Page 82 of 561

15

Build I'nit Plugin

The Build Init plugin is currently incubating. Please be aware that the DSL and other configuration
may change in later Gradle versions.

The Gradle Build Init plugin can be used to bootstrap the process of creating a new Gradle build. It supports
creating brand new projects of different types as well as converting existing builds (e.g. An Apache Maven
build) to be Gradle builds.

Gradle plugins typically need to be applied to a project before they can be used (see Section 25.3, “Using
plugins’). The Build Init plugin is an automatically applied plugin, which means you do not need to apply it
explicitly. To use the plugin, simply execute the task named i ni t where you would like to create the
Gradle build. Thereis no need to create a“stub” bui | d. gr adl e filein order to apply the plugin.

It also leverages the wr apper task from the Wrapper plugin (see Chapter 21, Wrapper Plugin), which
means that the Gradle Wrapper will also be installed into the project.

15.1. Tasks

The plugin adds the following tasks to the project:

Table 15.1. Build Init plugin - tasks

Task name Dependson Type Description
init wr apper InitBuild GeneratesaGradle project.
wr apper - W apper Generates Gradle wrapper files.

15.2. What to set up

The i ni t supports different build setup types. The type is specified by supplying a - - t ype argument
value. For example, to create a Javalibrary project simply execute: gradl e init --type java-library

If a--type parameter is not supplied, Gradle will attempt to infer the type from the environment. For
example, it will infer atype value of “ponft if it findsapom xm to convert to a Gradle build.

Page 83 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.buildinit.tasks.InitBuild.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

If the type could not be inferred, the type “basi ¢” will be used.

All build setup types include the setup of the Gradle Wrapper.

15.3. Build init types

Asthis plugin is currently incubating, only afew build init types are currently supported. More types
will be added in future Gradle releases.

15.3.1. “pont (Maven conversion)

The“poni’ type can be used to convert an Apache Maven build to a Gradle build. This works by converting
the POM to one or more Gradle files. It is only able to be used if thereis avalid “pom xml ” file in the
directory that the i ni t task isinvoked in or, if invoked viathe "- p" commandline option, in the specified
project directory. This“poni type will be automatically inferred if such afile exists.

The Maven conversion implementation was inspired by the maven2gradle tool that was originally developed
by Gradle community members.

The conversion process has the following features:

® Useseffective POM and effective settings (support for POM inheritance, dependency management,
properties)

® Supports both single module and multimodul e projects

® Supports custom module names (that differ from directory names)

® Generates general metadata - id, description and version

* Applies maven, java and war plugins (as needed)

® Supports packaging war projects asjarsif needed

® Generates dependencies (both external and inter-modul€)

® Generates download repositories (inc. local Maven repository)

® Adjusts Java compiler settings

® Supports packaging of sources and tests

® Supports TestNG runner

® Generates global exclusions from Maven enforcer plugin settings

15.3.2. % ava-library”

The“j ava-1i brary” buildinit typeisnot inferable. It must be explicitly specified.
It has the following features:

® Usesthe“j ava” plugin

® Usesthe“j cent er ” dependency repository

® UsesJUnit for testing

* Hasdirectoriesin the conventional locations for source code

¢ Contains asample class and unit test, if there are no existing source or test files

Page 84 of 561

https://github.com/jbaruch/maven2gradle
http://junit.org

Alternative test framework can be specified by supplying a - - t est - f r anmewor k argument value. To use
adifferent test framework, execute one of the following commands:

® gradle init --type java-library --test-framework spock: UsesSpock for testing
instead of JUnit

® gradle init --type java-library --test-framework testng: Uses TestNG for
testing instead of JUnit

153.3.“scal a-li brary”

The“scal a- | i brary” buildinit typeis not inferable. It must be explicitly specified.
It has the following features:

® Usesthe“scal a” plugin

® Usesthe"j cent er ” dependency repository

® UsesScala2.10

® Uses ScalaTest for testing

* Hasdirectoriesin the conventional locations for source code

® Contains a sample scala class and an associated ScalaTest test suite, if there are no existing source or test
files

® Usesthe Zinc Scala compiler by default

15.3.4.“groovy-library”

The“groovy-1i brary” buildinit typeis not inferable. It must be explicitly specified.
It has the following features:

® Usesthe“groovy” plugin

® Usesthe“j cent er” dependency repository

® UsesGroovy 2.x

® Uses Spock testing framework for testing

® Hasdirectoriesin the conventional locations for source code

® Contains a sample Groovy class and an associated Spock specification, if there are no existing source or
test files

15.3.5. “basic”

The“basi c” build init typeisuseful for creating afresh new Gradle project. It creates asample bui | d. gr adl ¢
file, with comments and links to help get started.

Thistype is used when no type was explicitly specified, and no type could be inferred.

Page 85 of 561

http://code.google.com/p/spock/
http://testng.org/doc/index.html
http://www.scalatest.org
http://spockframework.org

16

Writing Build Scripts
This chapter looks at some of the details of writing abuild script.

16.1. The Gradle build language

Gradle provides a domain specific language, or DSL, for describing builds. This build language is based on
Groovy, with some additions to make it easier to describe a build.

A build script can contain any Groovy language element. (6] Gradle assumes that each build script is
encoded using UTF-8.

16.2. The Project API

In the tutorial in Chapter 44, Java Quickstart we used, for example, the appl y() method. Where does this
method come from? We said earlier that the build script defines a project in Gradle. For each project in the
build, Gradle creates an object of type Pr oj ect and associates this Pr oj ect object with the build script.
Asthe build script executes, it configuresthis Pr oj ect object:

®* Any method you call in your build script which is not
defined in the build script, is delegated to the Pr oj ect

Getting help writing

object. : :
) . L - build scripts
® Any property you access in your build script, which is not
defined in the build script, is delegated to the Pr oj ect Don't forget that your build
object. script is simply Groovy code
that drives the Gradle API. And
Let's try this out and try to access the nane property of the the Pr oj ect interface is your
Proj ect object. starting point for accessing

everything in the Gradle API.
So, if you're wondering what
'tags' are available in your build
script, you can start with the
documentation for the
Pr oj ect interface.

Page 86 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html

Example 16.1. Accessing property of the Project object
buil d. gradl e

println name

println project.nane

Output of gr adl e -g check

> gradle -q check
pr oj ect Api
pr oj ect Api

Both pri nt | n statements print out the same property. The first uses auto-delegation to the Pr oj ect
object, for properties not defined in the build script. The other statement uses the pr oj ect property
available to any build script, which returns the associated Pr oj ect object. Only if you define a property or
amethod which has the same name as a member of the Pr oj ect object, would you need to use the pr oj ect

property.

16.2.1. Standard project properties

The Pr oj ect object provides some standard properties, which are available in your build script. The
following table lists afew of the commonly used ones.

Table 16.1. Project Properties

Name Type Default Value

proj ect Pr oj ect ThePr oj ect instance

name String The name of the project directory.

pat h String The absolute path of the project.
description String A description for the project.
projectDir File The directory containing the build script.
bui | dDi r File projectDir/build

group hj ect unspecified

version bj ect unspecified

ant Ant Bui | der ~ An Ant Bui | der instance

16.3. The Script API

When Gradle executes a script, it compiles the script into a class which implements Scr i pt . This means
that all of the properties and methods declared by the Scr i pt interface are available in your script.

Page 87 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/AntBuilder.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Script.html

16.4. Declaring variables

There are two kinds of variables that can be declared in abuild script: local variables and extra properties.

16.4.1. Local variables

Local variables are declared with the def keyword. They are only visible in the scope where they have been
declared. Local variables are a feature of the underlying Groovy language.

Example 16.2. Using local variables
bui |l d. gradl e

def dest = "dest"

task copy(type: Copy) {

from "source"
into dest

16.4.2. Extra properties

All enhanced objects in Gradle's domain model can hold extra user-defined properties. This includes, but is
not limited to, projects, tasks, and source sets. Extra properties can be added, read and set via the owning
object'sext property. Alternatively, an ext block can be used to add multiple properties at once.

Page 88 of 561

Example 16.3. Using extra properties

bui | d. gradl e

apply plugin: "java"

ext {
springVersion = "3.1. 0. RELEASE"
emai | Notification = "buil d@mster.org"

}

sourceSets.all { ext.purpose = null }

sourceSets {
mai n {
pur pose = "production”
}
test {
pur pose
}
plugin {
pur pose "production"
}
}

task printProperties << {
println springVersion
println email Notification
sourceSets. matching { it.purpose == "production” }.each { println it.nanme }

Output of gradl e -q printProperties

> gradle -q printProperties
3. 1. 0. RELEASE

bui | d@master.org

mai n

pl ugin

In this example, an ext block adds two extra properties to the pr oj ect object. Additionally, a property
named pur pose is added to each source set by setting ext . pur pose to nul | (nul | isapermissible
value). Once the properties have been added, they can be read and set like predefined properties.

By requiring special syntax for adding a property, Gradle can fail fast when an attempt is made to set a
(predefined or extra) property but the property is misspelled or does not exist. Extra properties can be
accessed from anywhere their owning object can be accessed, giving them a wider scope than local
variables. Extra properties on a project are visible from its subprojects.

For further details on extra properties and their API, see the Ext r aPr operti esExt ensi on classin the
API documentation.

16.5. Configuring arbitrary objects

Y ou can configure arbitrary objects in the following very readable way.

Page 89 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html

Example 16.4. Configuring arbitrary objects
buil d. gradl e

task configure << {
def pos = configure(new java.text.FieldPosition(10)) {
begi nl ndex = 1
endl ndex = 5

}

println pos. begi nl ndex
println pos. endl ndex

Output of gradl e -g configure
> gradle -q configure

1
5

16.6. Configuring arbitrary objects using an
external script

Y ou can aso configure arbitrary objects using an external script.

Example 16.5. Configuring arbitrary objects using a script

bui | d. gradl e

task configure << {
def pos = new java.text.Fi el dPosition(10)

/1 Apply the script

apply from 'other.gradle', to: pos
println pos. begi nl ndex
println pos.endl ndex

ot her.gradl e

/| Set properties.

begi nl ndex = 1
endl ndex = 5

Output of gradl e -g configure
> gradle -q configure

1
5

Page 90 of 561

16.7. Some Groovy basics

The Groovy language provides plenty of features for creating DSLs, and the Gradle build language takes
advantage of these. Understanding how the build language works will help you when you write your build
script, and in particular, when you start to write custom plugins and tasks.

16.7.1. Groovy JDK

Groovy adds lots of useful methods to the standard Java classes. For example, | t er abl e gets an each
method, which iterates over the elements of the | t er abl e:

Example 16.6. Groovy JDK methods

bui |l d. gradl e

/'l lterable gets an each() nethod

configurations.runtine.each { File f -> println f }

Have alook at http://groovy-lang.org/gdk.html for more details.

16.7.2. Property accessors

Groovy automatically converts a property reference into a call to the appropriate getter or setter method.

Example 16.7. Property accessors
bui |l d. gradl e

/1 Using a getter nethod
println project.buildDr
println getProject().getBuildDir()

/1 Using a setter nethod
project.buildDir = 'target'
getProject().setBuildDir('target’)

16.7.3. Optional parentheses on method calls

Parentheses are optional for method calls.

Example 16.8. Method call without parentheses
bui |l d. gradl e

test.systenProperty 'sone.prop', 'value'

test.systenProperty(' sone. prop', 'value')

16.7.4. List and map literals

Groovy provides some shortcuts for defining Li st and Map instances. Both kinds of literals are
straightforward, but map literals have some interesting twists.

Page 91 of 561

http://docs.groovy-lang.org/latest/html/documentation/index.html
http://groovy-lang.org/gdk.html

For instance, the “appl y” method (where you typicaly apply plugins) actually takes a map parameter.
However, when you have alinelike “appl y pl ugi n:'java'”, you aren't actually using a map literal,
you're actually using “named parameters’, which have amost exactly the same syntax as a map literal
(without the wrapping brackets). That named parameter list gets converted to a map when the method is
called, but it doesn't start out as a map.

Example 16.9. List and map literals

bui | d. gradl e

/1 List literal
test.includes = ['org/gradle/api/**", '"org/gradle/internal/**"']

Li st<String> list = new ArrayList<String>()
list.add(' org/gradle/api/**")

list.add(' org/gradle/internal/**")
test.includes = |ist

/1 Map literal
Map<String, String> map = [keyl:'val uel', key2: 'value2']

/'l Groovy will coerce named argunents
/[l into a single map argunment

apply plugin: 'java'

16.7.5. Closures as the last parameter in a method

The Gradle DSL uses closures in many places. Y ou can find out more about closures here. When the last
parameter of amethod is a closure, you can place the closure after the method call:

Example 16.10. Closure as method parameter

bui | d. gradl e

repositories {
println "in a closure"

}

repositories() { println "in a closure" }
repositories({ println "in a closure" })

16.7.6. Closure delegate

Each closure has adel egat e object, which Groovy uses to look up variable and method references which
are not local variables or parameters of the closure. Gradle uses thisfor configuration closures, where the del eg:
object is set to the object to be configured.

Page 92 of 561

http://docs.groovy-lang.org/latest/html/documentation/index.html#_closures

Example 16.11. Closure delegates

bui | d. gradl e

dependenci es {
assert del egate == proj ect. dependenci es
testCompile('junit:junit:4.12")

del egate.testConpile('junit:junit:4.12")

16.8. Default imports

To make build scripts more concise, Gradle automatically adds a set of import statements to the Gradle
scripts. This means that instead of usingt hr ow new or g. gr adl e. api . t asks. St opExecut i onExcept
you canjust typet hr ow new St opExecuti onExcepti on() instead.

Listed below are the imports added to each script:

Figure 16.1. gradle-imports

. *

.artifacts.*
.artifacts.cache. *
.artifacts. component . *
.artifacts.dsl.*
.artifacts.ivy.*
.artifacts. maven. *
.artifacts.query.*
.artifacts.repositories.*
.artifacts.result.*

. component . *
.credentials.*
.distribution.*
.distribution.plugins.*
.dsl . *

. execution.*

file *
.initialization.*
.initialization.dsl.*
.invocation.*

.java. archi ves. *

.l oggi ng. *

.1 oggi ng. configuration. *
. pl ugi ns. *

. pl ugi ns. announce. *
.plugins.antlr.*

. pl ugi ns. bui | dconpari son. gradl e. *
.plugins.jetty.*

. pl ugi ns. osgi . *
.plugins.quality.*

. pl ugi ns. scal a. *

. publish.*

. publish.ivy.*

. publish.ivy.plugins.*
. publish.ivy.tasks.*

Page 93 of 561

gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.
gradl e.

api . pub
api . pub
api . pub
api . pub
api . repo
api . repo
api . repo
api . repo
api . repo
api .reso

i sh. maven. *

i sh. maven. pl ugi ns. *
i sh. maven. t asks. *

i sh. pl ugi ns. *
rting.*

rting. conponents.*
rting. dependenci es. *
rting. nodel . *
rting.plugins.*
urces. *

api . specs. *

api . tasks. *

api . tasks. ant . *

api . tasks. application

api . t asks. bundl i ng. *

api . tasks. conpil e. *

api . t asks. di agnosti cs.

api . tasks. i ncrenent al

api . t asks. j avadoc. *

api . tasks. scal a. *

api . tasks.testing.*

api .tasks.testing.junit.*
api .tasks.testing.testng.*
api .tasks. util.*

api . t asks. wr apper . *

aut hent
aut hent

cation.*
cation. http.*

bui | di nit.plugins.*
buil dinit.tasks.*

ext erna
i de. vi su
i de. visu
i de. vi su
ivy.*

jvm *

j vm appl
j vm appl

. javadoc. *

al studio. *

al st udi o. pl ugi ns. *
al st udi o. t asks. *

ication.scripts.*
i cation.tasks.*

jvmplatform*

jvm pl ug

ins.*

jvm tasks. *
jvmtasks. api.*

jvm t est
jvm t ool

| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.

| anguage
| anguage
| anguage
| anguage

) *

chain. *
assenbl er . *
assenbl er. pl ugi ns. *
assenbl er. t asks. *
base. *

base. artifact.*
base. pl ugi ns. *
base. sources. *
c.*

c. plugins. *
c.tasks.*

cof feescript.*
cpp. *
cpp. pl ugi ns. *
cpp. t asks. *
.java.*
.java.artifact.*
.java. plugins.*
.java. t asks. *

Page 94 of 561

| anguage. j avascri pt. *

| anguage. j vm *

| anguage. j vm pl ugi ns. *

| anguage. jvm t asks. *

| anguage. nati vepl atform *

| anguage. nati vepl at f orm t asks. *
| anguage. obj ecti vec. *

| anguage. obj ecti vec. pl ugi ns. *

| anguage. obj ect i vec. t asks. *

| anguage. obj ect i vecpp. *

| anguage. obj ecti vecpp. pl ugi ns. *
| anguage. obj ecti vecpp. t asks. *

| anguage.rc. *

| anguage. rc. pl ugi ns. *

| anguage. rc. t asks. *

| anguage. rout es. *

| anguage. scal a. *

| anguage. scal a. pl ugi ns. *

| anguage. scal a. t asks. *

| anguage. scal a. t ool chai n. *

| anguage. twirl . *

maven. *

nodel . *

nativepl atform *

nati vepl atform pl atform *

nati vepl at f orm pl ugi ns. *

nati vepl atformtasks. *
nativeplatformtest.*
nativeplatformtest.cunit.*
nativeplatformtest.cunit. plugins.*
nati veplatformtest.cunit.tasks.*
nati vepl atformtest. googl etest . *
nati vepl atform t est. googl et est. pl ugi ns. *
nativepl atformtest. plugins.*
nati vepl atformtest.tasks.*
nati vepl atf orm t ool chai n. *

nati vepl at f or m t ool chai n. pl ugi ns. *
pl at f or m base. *

pl at f or m base. bi nary. *

pl at f or m base. conponent . *

pl at f or m base. pl ugi ns. *

play. *

pl ay. distribution.*

play. platform*

pl ay. pl ugi ns. *

pl ay. pl ugi ns. i de. *

pl ay. t asks. *

pl ay. t ool chai n. *

pl ugi n. devel . *

pl ugi n. devel . pl ugi ns. *

pl ugi n. devel . t asks. *

pl ugi n. repository.*

pl ugi n. use. *

pl ugi ns. ear. *

pl ugi ns. ear. descri ptor. *

pl ugi ns. i de. api . *

pl ugi ns. i de. ecl i pse. *

pl ugi ns. i de. i dea. *

pl ugi ns. j avascri pt. base. *

pl ugi ns. j avascri pt. cof feescri pt. *
pl ugi ns. j avascript.envjs.*

Page 95 of 561

pl ug
pl ug
pl ug
pl ug
pl ug
pl ug
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi

testi
testi
testi
testi

ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.
ns.
process.

ng
ng
ng
ng

javascri pt. envj s. browser. *
javascript.envjs. http.*
javascript.envjs. http.sinple.*
javascript.jshint.*
javascri pt.rhino.*
javascri pt. rhi no. wor ker . *
signi ng. *

si gni ng. signatory. *

si gni ng. si gnat ory. pgp. *

si gni ng. type. *

si gni ng. type. pgp. *

*

. base. *

. base. pl ugi ns. *

. j acoco. pl ugi ns. *
.jacoco. t asks. *

Page 96 of 561

i mport org.gradle.testkit.runner.*

import org.gradle.util.*

[6] Any language element except for statement labels.

Page 97 of 561

17

More about Tasks

In the introductory tutorial (Chapter 14, Build Script Basics) you learned how to create simple tasks. You
also learned how to add additional behavior to these tasks later on, and you learned how to create
dependencies between tasks. This was all about simple tasks, but Gradle takes the concept of tasks further.
Gradle supports enhanced tasks, which are tasks that have their own properties and methods. Thisis really
different from what you are used to with Ant targets. Such enhanced tasks are either provided by you or
built into Gradle.

17.1. Defining tasks

We have already seen how to define tasks using a keyword style in Chapter 14, Build cript Basics. There
are afew variations on this style, which you may need to use in certain situations. For example, the keyword
style does not work in expressions.

Example 17.1. Defining tasks

buil d. gradl e

task(hell o) << {
println "hello"

}

task(copy, type: Copy) {
from(file(srchDir'))
i nto(buil dDir)

You can aso use strings for the task names:

Example 17.2. Defining tasks - using strings for task names
bui |l d. gradl e

task('hello') <<

{
}

println "hello"

task(' copy', type: Copy) {
from(file(' srcDir'))
i nt o(bui | dDir)

Page 98 of 561

Thereis an aternative syntax for defining tasks, which you may prefer to use:

Example 17.3. Defining tasks with alter native syntax
buil d. gradl e

tasks.create(name: 'hello') << {
println "hello"

}

tasks. create(nanme: 'copy', type: Copy) {
from(file(srchDir'))
i nto(buil dDir)

Here we add tasks to the t asks collection. Have alook at TaskCont ai ner for more variations of thecr eat e
method.

17.2. Locating tasks

Y ou often need to locate the tasks that you have defined in the build file, for example, to configure them or
use them for dependencies. There are a number of ways of doing this. Firstly, each task is available as a
property of the project, using the task name as the property name:

Example 17.4. Accessing tasks as properties

bui | d. gradl e

task hello

println hello.nane
println project. hello.nane

Tasks are also available through the t asks collection.

Example 17.5. Accessing tasks via tasks collection
bui |l d. gradl e

task hello

println tasks. hell o. name
println tasks['hello'].name

Y ou can access tasks from any project using the task's path using the t asks. get ByPat h() method. You
can call the get ByPat h() method with atask name, or arelative path, or an absolute path.

Page 99 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/TaskContainer.html

Example 17.6. Accessing tasks by path
buil d. gradl e

project(':projectA) {
task hello

}

task hello

println tasks.getByPath(' hello'). path

println tasks.getByPath(':hello').path

println tasks. getByPath(' projectA hello").path
println tasks.getByPath(':projectA hello').path

Output of gradl e -q hello

> gradle -q hello
chello

chello

:projectA hello
:projectA hello

Have alook at TaskCont ai ner for more options for locating tasks.

17.3. Configuring tasks

As an example, let's look at the Copy task provided by Gradle. To create a Copy task for your build, you
can declare in your build script:
Example 17.7. Creating a copy task

bui | d. gradl e

task nyCopy(type: Copy)

This creates a copy task with no default behavior. The task can be configured using its API (see Copy). The
following examples show several different ways to achieve the same configuration.

Just to be clear, realize that the name of this task is “nyCopy”, but it is of type “Copy”. You can have
multiple tasks of the same type, but with different names. You'll find this gives you a lot of power to
implement cross-cutting concerns across all tasks of a particular type.

Example 17.8. Configuring a task - various ways

bui | d. gradl e

Copy nyCopy = task(nyCopy, type: Copy)
nyCopy. from ' resour ces’

nmyCopy.into 'target'
nyCopy.include(" **/*. txt', "**/*. xm"', "**/* properties")

Thisis similar to the way we would configure objects in Java. Y ou have to repeat the context (my Copy) in

Page 100 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Copy.html

the configuration statement every time. Thisis aredundancy and not very nice to read.

There is another way of configuring atask. It also preserves the context and it is arguably the most readable.
It isusually our favorite.

Example 17.9. Configuring a task - with closure

bui | d. gradl e

task nmyCopy(type: Copy)

nyCopy {
from' resources'
into 'target’
include('**/*. txt', '**/*.xml"', '"**/* properties')

Thisworks for any task. Line 3 of the example isjust a shortcut for thet asks. get ByNane() method. It
is important to note that if you pass a closure to the get ByNane() method, this closure is applied to
configure the task, not when the task executes.

Y ou can also use a configuration closure when you define atask.

Example 17.10. Defining a task with closure

bui |l d. gradl e

task copy(type: Copy) {
from'resources'

into 'target’

include(' **/*. txt"', "**/*.xmd"', "**/* properties')

174, Adding dependenciesto {217
a

A task has both configuration

There are several ways you can define the dependencies of a and actions. When using the <<,
task. In Section 14.5, “Task dependencies’ you were introduced you are simply using a shortcut
to defining dependencies using task names. Task names can to define an action. Code
refer to tasks in the same project as the task, or to tasks in other defined in the configuration
projects. To refer to a task in another project, you prefix the section of your task will get
name of the task with the path of the project it belongs to. The executed during the
following is an example which adds a dependency from pr oj ect A: t ag@iXiguration phase of the build
toproj ect B: t askY: regardless of what task was

targeted. See Chapter 20, The
Build Lifecycle for more details
about the build lifecycle.

Page 101 of 561

Example 17.11. Adding dependency on task from another project
buil d. gradl e

project (' projectA) {
task taskX(dependsOn: ':projectB:taskY') << {
println 'taskX

}

}

project (' projectB) {
task taskY << {
println 'taskY

}

Output of gradl e -qg taskX

> gradle -q taskX
taskY
taskX

Instead of using atask name, you can define a dependency using a Task object, as shown in this example:

Example 17.12. Adding dependency using task object
bui |l d. gradl e

task taskX << {
println 'taskX

}

task taskY << {
println 'taskY

}

t askX. dependsOn t askY

Output of gradl e -qg taskX

> gradle -qg taskX
taskY
taskX

For more advanced uses, you can define a task dependency using a closure. When evaluated, the closure is
passed the task whose dependencies are being calculated. The closure should return a single Task or
collection of Task objects, which are then treated as dependencies of the task. The following example adds
adependency fromt askX to all the tasks in the project whose name startswith | i b:

Page 102 of 561

Example 17.13. Adding dependency using closure
buil d. gradl e

task taskX << {
println 'taskX

}

t askX. dependsOn {
tasks.findAll { task -> task.nane.startsWth('lib") }

}

task libl << {
println "Iibl
}

task lib2 << {
println 'I|ib2
}

task notALi b << {
println 'not ALi b’

}

Output of gradl e -qg taskX

> gradle -q taskX
libl
i b2
taskX

For more information about task dependencies, seethe Task API.

17.5. Ordering tasks

Task ordering is an incubating feature. Please be aware that this feature may change in later Gradle
versions.

In some cases it is useful to control the order in which 2 tasks will execute, without introducing an explicit
dependency between those tasks. The primary difference between atask ordering and atask dependency is
that an ordering rule does not influence which tasks will be executed, only the order in which they will be
executed.

Task ordering can be useful in a number of scenarios:

* Enforce sequential ordering of tasks: e.g. 'build' never runs before 'clean'.

® Run build validations early in the build: e.g. validate | have the correct credentials before starting the
work for arelease build.

* Get feedback faster by running quick verification tasks before long verification tasks: e.g. unit tests
should run before integration tests.

* A task that aggregates the results of all tasks of a particular type: e.g. test report task combines the

Page 103 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html

outputs of all executed test tasks.
There are two ordering rules available: “ must run after” and “ should run after”.

When you use the “must run after” ordering rule you specify that t askB must always run after t askA,
whenever both t askA and t askB will be run. This is expressed ast askB. nust RunAf t er (t askA) .
The “should run after” ordering rule is similar but less strict as it will be ignored in two situations. Firstly if
using that rule introduces an ordering cycle. Secondly when using parallel execution and all dependencies of
a task have been satisfied apart from the “should run after” task, then this task will be run regardless of
whether its “should run after” dependencies have been run or not. Y ou should use “should run after” where
the ordering is helpful but not strictly required.

With these rules present it is still possible to execute t ask A without t askB and vice-versa.

Example 17.14. Adding a 'must run after' task ordering
bui |l d. gradl e

task taskX << {
println 'taskX

}
task taskY << {

println 'tasky

}
taskY. must RunAfter taskX

Output of gradl e -g taskY taskX

> gradle -q taskY taskX
taskX
taskyY

Example 17.15. Adding a 'should run after' task ordering
buil d. gradl e

task taskX << {
println 'taskX

}
task taskY << {

println 'taskY

}
t askY. shoul dRunAfter taskX

Output of gr adl e -g taskY taskX

> gradle -q taskY taskX
taskX
taskY

In the examples above, it is still possible to execute t ask'Y without causing t ask X to run:

Page 104 of 561

Example 17.16. Task ordering does not imply task execution
Output of gradl e -qg taskY

> gradle -q taskY
taskyY

To specify a “must run after” or “should run after” ordering between 2 tasks, you use the
Task. must RunAfter(java.l ang. Object[]) and

Task. shoul dRunAfter(java.l ang. Qbj ect[]) methods. These methods accept atask instance, a
task name or any other input accepted by Task. dependsOn(j ava. | ang. Gbj ect[]).

Note that “B. must RunAfter (A)” or “B. shoul dRunAfter (A)” does not imply any execution
dependency between the tasks:

® [tispossibleto execute tasks A and B independently. The ordering rule only has an effect when both

tasks are scheduled for execution.
®* Whenrunwith - - cont i nue, it ispossible for B to execute in the event that A fails.

As mentioned before, the “ should run after” ordering rule will beignored if it introduces an ordering cycle:

Example 17.17. A 'should run after' task orderingisignored if it introduces an ordering cycle
bui | d. gradl e

task taskX << {
println 'taskX

}
task taskY << {

println 'taskY

}
task taskzZ << {

println 'taskZz
}
t askX. dependsOn taskY
t askY. dependsOn t askZ
t askZ. shoul dRunAfter taskX

Output of gr adl e -qg taskX
> gradle -qg taskX
taskz

t askY
t askX

17.6. Adding a description to atask

Y ou can add a description to your task. This description is displayed when executing gr adl e t asks.

Page 105 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/Task.html#shouldRunAfter(java.lang.Object[])
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/Task.html#shouldRunAfter(java.lang.Object[])
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Example 17.18. Adding a description to a task

bui | d. gradl e

task copy(type: Copy) {
description ' Copies the resource directory to the target directory.'

from'resources'

into 'target’
include('**/*.txt', '**/*.xml"', '"**/* properties')

17.7. Replacing tasks

Sometimes you want to replace atask. For example, if you want to exchange atask added by the Java plugin
with a custom task of a different type. Y ou can achieve this with:

Example 17.19. Overwriting a task
bui | d. gradl e

task copy(type: Copy)

task copy(overwite: true) << {
println('l amthe new one.")

}

Output of gradl e -q copy

> gradle -q copy
| amthe new one.

This will replace a task of type Copy with the task you've defined, because it uses the same name. When
you define the new task, you have to set the over wri t e property to true. Otherwise Gradle throws an
exception, saying that atask with that name already exists.

17.8. Skipping tasks

Gradle offers multiple ways to skip the execution of atask.

17.8.1. Using a predicate

You can use the onl yI f () method to attach a predicate to atask. The task's actions are only executed if
the predicate evaluates to true. Y ou implement the predicate as a closure. The closure is passed the task as a
parameter, and should return true if the task should execute and false if the task should be skipped. The
predicate is evaluated just before the task is due to be executed.

Page 106 of 561

Example 17.20. Skipping a task using a predicate
buil d. gradl e

task hello << {
println 'hello world

}

hel l o.onlylf { !project.hasProperty('skipHello") }

Output of gr adl e hel | o - Pski pHel | o

> gradle hello -PskipHello
> hell o SKI PPED

BU LD SUCCESSFUL

Total tinme: 1 secs

17.8.2. Using StopExecutionException

If the logic for skipping a task can't be expressed with a predicate, you can use the
St opExecut i onExcepti on. If this exception is thrown by an action, the further execution of this
action as well as the execution of any following action of this task is skipped. The build continues with
executing the next task.

Example 17.21. Skipping tasks with StopExecutionException

bui | d. gradl e

task conpile << {
println 'W are doing the conpile.'

}

conpi | e. doFi rst {
/'l Here you would put arbitrary conditions in real life.

/] But this is used in an integration test so we want defined behavi or.
if (true) { throw new St opExecuti onException() }

}

task nmyTask(dependsOn: 'conpile') << {
println 'I am not affected'

}

Output of gradl e -g myTask

> gradle -q nyTask
| am not affected

Thisfeature is helpful if you work with tasks provided by Gradle. It allows you to add conditional execution
of the built-in actions of such a task. [7]

Page 107 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/StopExecutionException.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/StopExecutionException.html

17.8.3. Enabling and disabling tasks

Every task has an enabl ed flag which defaultsto t r ue. Setting it to f al se prevents the execution of any
of the task's actions.

Example 17.22. Enabling and disabling tasks

bui |l d. gradl e

task di sabl eMe << {
println 'This should not be printed if the task is disabl ed.

}

di sabl eMe. enabl ed = fal se

Output of gr adl e di sabl eMe

> gradl e di sabl eMe
. di sabl eMe SKI PPED

BU LD SUCCESSFUL

Total tinme: 1 secs

17.9. Skipping tasks that are up-to-date

If you are using one of the tasks that come with Gradle, such as a task added by the Java plugin, you might
have noticed that Gradle will skip tasks that are up-to-date. This behaviour is also available for your tasks,
not just for built-in tasks.

17.9.1. Declaring atask's inputs and outputs

Let's have alook at an example. Here our task generates several output files from a source XML file. Let's
run it acouple of times.

Page 108 of 561

Example 17.23. A generator task

bui | d. gradl e

task transform {
ext.srcFile file(' mountains.xn ")
ext.destDir new Fil e(buildDir, 'generated")
doLast {
println "Transform ng source file."
destDi r. nkdi rs()
def mountains = new Xnml Parser (). parse(srcFile)

nount ai ns. nount ai n. each { mountain ->
def nane = nountai n. nane[0] . t ext ()
def hei ght = nountain. hei ght[0].text()
def destFile = new File(destDir, "${nanme}.txt")
destFile.text = "$nane -> ${height}\n"

Output of gr adl e transform

> gradle transform
:transform
Transform ng source file.

Output of gr adl e transform

> gradle transform
:transform
Transform ng source file.

Notice that Gradle executes this task a second time, and does not skip the task even though nothing has
changed. Our example task was defined using an action closure. Gradle has no idea what the closure does
and cannot automatically figure out whether the task is up-to-date or not. To use Gradle's up-to-date
checking, you need to declare the inputs and outputs of the task.

Each task has an i nput s and out put s property, which you use to declare the inputs and outputs of the
task. Below, we have changed our example to declare that it takes the source XML file as an input and
produces output to a destination directory. Let's run it a couple of times.

Page 109 of 561

Example 17.24. Declaring the inputs and outputs of a task
buil d. gradl e

task transform {
ext.srcFile = file(' nountains.xm")
ext.destDir = new File(buildDir, 'generated")
inputs.file srcFile
outputs.dir destDir
doLast {
println "Transform ng source file."
destDi r. nkdi rs()

def nountains = new Xm Parser (). parse(srcFile)
nount ai ns. nount ai n. each { nountain ->
def nanme = nount ai n. nanme[0] . t ext ()
def height = nountain. height[0].text()
def destFile = new File(destDir, "${nanme}.txt")
destFile.text = "$nane -> ${height}\n"

Output of gradl e transform

> gradle transform
:transform
Transform ng source file.

Output of gradl e transform

> gradle transform
:transform UP- TO DATE

Now, Gradle knows which files to check to determine whether the task is up-to-date or not.

The task's i nput s property is of type Taskl nputs. The task's out put s property is of type
TaskQut put s.

A task with no defined outputs will never be considered up-to-date. For scenarios where the outputs of a
task are not files, or for more complex scenarios, the
TaskQut put s. upToDat eWhen(groovy. | ang. Cl osure) method allows you to calculate
programmatically if the tasks outputs should be considered up to date.

A task with only outputs defined will be considered up-to-date if those outputs are unchanged since the
previous build.

17.9.2. How doesit work?

Before atask is executed for the first time, Gradle takes a snapshot of the inputs. This snapshot contains the
paths of input files and a hash of the contents of each file. Gradle then executes the task. If the task
completes successfully, Gradle takes a snapshot of the outputs. This snapshot contains the set of output files
and a hash of the contents of each file. Gradle persists both snapshots for the next time the task is executed.

Each time after that, before the task is executed, Gradle takes a new snapshot of the inputs and outputs. If
the new snapshots are the same as the previous snapshots, Gradle assumes that the outputs are up to date and

Page 110 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/TaskInputs.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/TaskOutputs.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/TaskOutputs.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen(groovy.lang.Closure)
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen(groovy.lang.Closure)

skips the task. If they are not the same, Gradle executes the task. Gradle persists both snapshots for the next
time the task is executed.

Gradle also considers the code of the task as part of the inputs to the task. When a task, its actions, or its
dependencies change between executions, Gradle considers the task as out-of-date.

Note that if atask has an output directory specified, any files added to that directory since the last time it
was executed are ignored and will NOT cause the task to be out of date. Thisis so unrelated tasks may share
an output directory without interfering with each other. If this is not the behaviour you want for some
reason, consider using TaskQut put s. upToDat eWhen(gr oovy. | ang. Cl osur e)

17.10. Task rules

Sometimes you want to have a task whose behavior depends on a large or infinite number value range of
parameters. A very nice and expressive way to provide such tasks are task rules:

Example 17.25. Task rule

bui | d. gradl e

tasks. addRul e("Pattern: ping<ID>") { String taskName ->
if (taskNane.startsWth("ping")) {
task(taskNanme) << {
println "Pinging: " + (taskNanme - 'ping')

Output of gr adl e -qg pi ngServer1l

> gradle -q pingServerl
Pi ngi ng: Serverl

The String parameter is used as a description for the rule, which is shown with gr adl e t asks.

Rules are not only used when calling tasks from the command line. Y ou can aso create dependsOn relations
on rule based tasks:

Page 111 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen(groovy.lang.Closure)

Example 17.26. Dependency on rule based tasks
buil d. gradl e

tasks. addRul e("Pattern: ping<ID>") { String taskNanme ->
i f (taskNane.startsWth("ping")) {
task(taskName) << {
println “Pinging: " + (taskName - 'ping')

task groupPing {
dependsOn pi ngServerl, pingServer2

}

Output of gr adl e -qg groupPi ng
> gradle -q groupPing

Pi ngi ng: Serverl
Pi ngi ng: Server2

If yourun“gradl e -qg tasks” youwon' find atask named “pi ngSer ver 1” or “pi ngSer ver 2",
but this script is executing logic based on the request to run those tasks.

17.11. Finalizer tasks

Finalizers tasks are an incubating feature (see Section C.1.2, “Incubating”).

Finalizer tasks are automatically added to the task graph when the finalized task is scheduled to run.

Example 17.27. Adding a task finalizer
buil d. gradl e

task taskX << {
println 'taskX

}
task taskY << {

println 'tasky

}

taskX. finalizedBy taskY

Output of gradl e -q taskX

> gradle -q taskX
taskX
taskY

Finalizer tasks will be executed even if the finalized task fails.

Page 112 of 561

Example 17.28. Task finalizer for afailing task

bui | d. gradl e

task taskX << {
println 'taskX
t hr ow new Runti meException()

}
task taskY << {

println 'tasky
}

taskX. finalizedBy taskY

Output of gradl e -q taskX

> gradle -q taskX
taskX
taskY

On the other hand, finalizer tasks are not executed if the finalized task didn't do any work, for example if it
is considered up to date or if a dependent task fails.

Finalizer tasks are useful in situations where the build creates a resource that has to be cleaned up regardless
of the build failing or succeeding. An example of such aresource is aweb container that is started before an
integration test task and which should be always shut down, even if some of the tests fail.

To specify a finalizer task you use the Task. fi nal i zedBy(j ava. | ang. Cbj ect[]) method. This
method accepts a task instance, a task name, or any other input accepted by
Task. dependsOn(j ava. |l ang. Ovject[]).

17.12. Summary

If you are coming from Ant, an enhanced Gradle task like Copy seems like a cross between an Ant target
and an Ant task. Although Ant's tasks and targets are really different entities, Gradle combines these notions
into a single entity. Simple Gradle tasks are like Ant's targets, but enhanced Gradle tasks also include
aspects of Ant tasks. All of Gradle's tasks share a common APl and you can create dependencies between
them. These tasks are much easier to configure than an Ant task. They make full use of the type system, and
are more expressive and easier to maintain.

[7] You might be wondering why there is neither an import for the St opExecut i onExcept i on nor do
we access it via its fully qualified name. The reason is, that Gradle adds a set of default imports to your
script (see Section 16.8, “Default imports”).

Page 113 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html#org.gradle.api.Task:finalizedBy(java.lang.Object[])
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

18

Working With Files

Most builds work with files. Gradle adds some concepts and APIsto help you achieve this.

18.1. Locating files

You can locate afile relative to the project directory using the Proj ect . fi |l e(j ava. | ang. Obj ect)
method.

Example 18.1. L ocating files

bui | d. gradl e

/1 Using a relative path
File configFile = file('src/config.xm")

/1 Using an absol ute path

configFile = file(configFile.absol utePath)

/'l Using a File object with a relative path
configFile = file(new File('src/config.xm"))

You can pass any object to the fi | e() method, and it will attempt to convert the value to an absolute
Fi | e object. Usually, you would passit aSt ri ng or Fi | e instance. If this path is an absolute path, it is
used to construct a Fi | e instance. Otherwise, a Fi | e instance is constructed by prepending the project
directory path to the supplied path. Thef i | e() method also understands URLSs, suchasfi |l e: / sone/ pat h.»

Using this method is a useful way to convert some user provided value into an absolute Fi | e. It is
preferableto using new Fi | e(sonePat h) ,asfi | e() awaysevauatesthe supplied path relative to the
project directory, which is fixed, rather than the current working directory, which can change depending on
how the user runs Gradle.

18.2. File collections

A file collection issimply a set of files. It isrepresented by the Fi | eCol | ect i on interface. Many objects
in the Gradle APl implement this interface. For example, dependency configurationsimplement Fi | eCol | ect i

One way to obtain a FileCollection instance is to use the

Page 114 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

Project.files(java.lang. Object[]) method. You can pass this method any number of objects,
which are then converted into aset of Fi | e objects. Thefi | es() method accepts any type of object asits
parameters. These are evaluated relative to the project directory, as per the fi | e() method, described in
Section 18.1, “Locating files’. You can also pass collections, iterables, maps and arraysto the fi | es()
method. These are flattened and the contents converted to Fi | e instances.

Example 18.2. Creating afile collection

bui |l d. gradl e

FileCol l ection collection = files('src/filel.txt",

new File('src/file2.txt"),
["src/file3.txt', "src/filed.txt'])

A file collection isiterable, and can be converted to a number of other types using the as operator. Y ou can
also add 2 file collections together using the + operator, or subtract one file collection from another using
the - operator. Here are some examples of what you can do with afile collection.

Example 18.3. Using a file collection
bui |l d. gradl e

/[l lterate over the files in the collection
collection.each {File file ->
printin file.nanme

}

/'l Convert the collection to various types
Set set = collection.files

Set set2 = collection as Set

List list = collection as List

String path = col |l ection. asPath

File file = collection.singleFile

File file2 = collection as File

/1 Add and subtract collections
def union = collection + files('src/file3.txt")
def different = collection - files('src/file3.txt")

You can also pass the fi |l es() method a closure or a Cal | abl e instance. This is caled when the
contents of the collection are queried, and its return value is converted to a set of Fi | e instances. The return
value can be an object of any of the types supported by the fi | es() method. This is a simple way to
‘implement' the Fi | eCol | ect i on interface.

Page 115 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

Example 18.4. Implementing a file collection
buil d. gradl e

task list << {
File srcDir

/'l Create a file collection using a closure
collection = files { srcDir.listFiles() }

srcDir = file('src')
println "Contents of $srcDir.nane"
collection.collect { relativePath(it) }.sort().each { println it }

srcDir = file('src2')
println "Contents of $srcDir.nane"
collection.collect { relativePath(it) }.sort().each { println it }

Output of gradl e -qg Ii st

> gradle -q list
Contents of src
src/dirl
src/filel.txt
Contents of src2
src2/dirl
src2/dir2

Some other types of thingsyou can passtofil es():

Fil eCol | ecti on
These are flattened and the contents included in the file collection.

Task
The output files of the task are included in the file collection.

TaskQut put s
The output files of the TaskOutputs are included in the file collection.

It is important to note that the content of afile collection is evaluated lazily, when it is needed. This means
you can, for example, create a Fi | eCol | ect i on that represents files which will be created in the future
by, say, some task.

18.3. File trees

A filetree isacollection of files arranged in a hierarchy. For example, afile tree might represent a directory
tree or the contents of a ZIP file. It is represented by the Fi | eTr ee interface. The Fi | eTr ee interface

extends Fi | eCol | ecti on, so you can treat a file tree exactly the same way as you would a file
collection. Several objectsin Gradle implement the Fi | eTr ee interface, such as source sets.

One way to obtain a Fi | eTr ee instance is to use the Proj ect.fil eTree(java. util. Map)
method. Thiscreatesa Fi | eTr ee defined with a base directory, and optionally some Ant-style include and

Page 116 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.util.Map)

exclude patterns.

Example 18.5. Creating afiletree
bui |l d. gradl e

/|l Create a file tree with a base directory
FileTree tree = fileTree(dir: 'src/nmain')

/1 Add include and exclude patterns to the tree
tree.include '**/* java'
tree. exclude '**/ Abstract *'

/'l Create a tree using path
tree = fileTree('src').include(' **/*.java")

/'l Create a tree using closure
tree = fileTree('src') {
include '**/* java'

eate a tree using a map

= fileTree(dir: 'src', include: "**/* java')
fileTree(dir: "src', includes: ['**/*. java', "**/*.xm"'])
fileTree(dir: '"src', include: '**/* java', exclude: '**/*test*/**")

You use afile tree in the same way you use afile collection. Y ou can also visit the contents of the tree, and
select a sub-tree using Ant-style patterns:

Example 18.6. Using a filetree
buil d. gradl e

/[l lterate over the contents of a tree
tree.each {File file ->
println file

}

/Il Filter a tree
FileTree filtered = tree. matchi ng {
i nclude 'org/gradle/api/**'

}

/] Add trees together
FileTree sum= tree + fileTree(dir: 'src/test')

/'l Visit the elements of the tree
tree.visit {elenent ->
println "$el enent.rel ati vePath => $el enent.file"

}

Page 117 of 561

18.4. Using the contents of an archive asafile
tree

You can use the contents of an archive, such as a ZIP or TAR file, as afile tree. You do this using the
Project.zipTree(java.lang. Object) and Project.tarTree(java.lang. Object)
methods. These methods return a Fi | eTr ee instance which you can use like any other file tree or file
collection. For example, you can use it to expand the archive by copying the contents, or to merge some
archivesinto another.

Example 18.7. Using an archive asafiletree
bui |l d. gradl e

/Il Create a ZIP file tree using path
FileTree zip = zi pTree(' soneFile.zip")

/'l Create a TAR file tree using path
FileTree tar = tarTree(' soneFile.tar")

//tar tree attenpts to guess the conpression based on the file extension
/I however if you nmust specify the conpression explicitly you can
Fil eTree soneTar = tarTree(resources.gzi p(' soneTar.ext'))

18.5. Specifying a set of input files

Many objects in Gradle have properties which accept a set of input files. For example, the JavaConpi | e
task has a sour ce property, which defines the source files to compile. You can set the value of this
property using any of the types supported by the files() method, which was shown above. This means you
can set the property using, for example, a Fi | e, Stri ng, collection, Fi | eCol | ecti on or even a
closure. Here are some examples:

Usually, there is a method with the same name as the property, which appends to the set of files. Again, this
method accepts any of the types supported by the files() method.

Page 118 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Example 18.8. Specifying a set of files
bui | d. gradl e
task conpil e(type: JavaConpil e)

/Il Use a File object to specify the source directory
conpil e {
source = file('src/main/java')

}

/]l Use a String path to specify the source directory

conpile {
source = 'src/nmain/java'

}

/]l Use a collection to specify nultiple source directories

conpile {
source = ['src/main/java', '../shared/java']

}

/Il Use a FileCollection (or FileTree in this case) to specify the source files
conpile {
sour ce fileTree(dir: '"src/main/java').matching { include 'org/gradle/api/

}

/'l Using a closure to specify the source files.
conpil e {
source = {
/'l Use the contents of each zip file in the src dir
file('src').listFiles().findAll {it.name.endsWth('.zip')}.collect { zi(

bui |l d. gradl e
conpile {
/'l Add sonme source directories use String paths

source 'src/main/java', 'src/main/groovy'

/1 Add a source directory using a File object

source file('../shared/java')

/] Add some source directories using a closure
source { file('src/test/").listFiles() }

18.6. Copying files

You can use the Copy task to copy files. The copy task is very flexible, and alows you to, for example,
filter the contents of the files as they are copied, and map to the file names.

To use the Copy task, you must provide a set of source files to copy, and a destination directory to copy the
files to. You may also specify how to transform the files as they are copied. You do al this using a copy
spec. A copy spec is represented by the Copy Spec interface. The Copy task implements this interface.

Page 119 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/CopySpec.html

Y ou specify the source files using the CopySpec. fron{j ava. | ang. Obj ect[]) method. To specify
the destination directory, use the Copy Spec. i nt o(j ava. | ang. Qbj ect) method.

Example 18.9. Copying files using the copy task
bui |l d. gradl e

task copyTask(type: Copy) {
from' src/ mai n/ webapp'

into 'buil d/ expl odedWar'

Thefrom() method accepts any of the arguments that the files() method does. When an argument resolves
to a directory, everything under that directory (but not the directory itself) is recursively copied into the
destination directory. When an argument resolves to afile, that file is copied into the destination directory.
When an argument resolves to a non-existing file, that argument is ignored. If the argument is a task, the
output files (i.e. the files the task creates) of the task are copied and the task is automatically added as a
dependency of the Copy task. Thei nt o() accepts any of the arguments that the file() method does. Here
is another example:

Example 18.10. Specifying copy task sour ce files and destination directory
bui |l d. gradl e

t ask anot her CopyTask(type: Copy) {
/| Copy everything under src/main/webapp
from' src/nai n/ webapp'
/1 Copy a single file
from ' src/stagi ng/index. htm'
/'l Copy the output of a task
from copyTask
/| Copy the output of a task using Task outputs explicitly.
from copyTaskW t hPat t er ns. out put s
/1l Copy the contents of a Zip file
from zi pTree(' src/ mai n/ assets. zip')
/| Determne the destination directory |ater
into { getDestDir() }

Y ou can select the files to copy using Ant-style include or exclude patterns, or using a closure:

Example 18.11. Selecting the files to copy
bui | d. gradl e

task copyTaskWthPatterns(type: Copy) {
from' src/nai n/ webapp'
into 'buil d/ expl odedWar'
include "**/* htm"'

include '**/*. |sp'
exclude { details -> details.file.nane.endsWth('.htnml') &&
details.file.text.contains(' staging') }

You can also use the Pr oj ect . copy(org. gradl e. api . Acti on) method to copy files. It works the

Page 120 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/CopySpec.html#from(java.lang.Object[])
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/CopySpec.html#into(java.lang.Object)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

same way as the task with some major limitations though. First, the copy() is not incremental (see
Section 17.9, “ Skipping tasks that are up-to-date”).

Example 18.12. Copying files using the copy() method without up-to-date check

bui | d. gradl e

task copyMet hod << {
copy {
from' src/ mai n/ webapp
into 'build/expl odedWar"’

include '"**/* htm"
include "**/*. |sp'

Secondly, the copy() method can not honor task dependencies when atask is used as a copy source (i.e. as
an argument to f r om()) because it's a method and not a task. As such, if you are using the copy()

method as part of a task action, you must explicitly declare all inputs and outputs in order to get the correct
behavior.

Example 18.13. Copying files using the copy() method with up-to-date check
bui |l d. gradl e

task copyMet hodW t hExpl i ci t Dependenci es{
/]l up-to-date check for inputs, plus add copyTask as dependency
inputs.file copyTask
outputs.dir 'sonme-dir" // up-to-date check for outputs
doLast {

copy {

/' Copy the output of copyTask
from copyTask
into 'some-dir'

It is preferable to use the Copy task wherever possible, as it supports incremental building and task
dependency inference without any extra effort on your part. The copy() method can be used to copy files
as part of atask's implementation. That is, the copy method is intended to be used by custom tasks (see
Chapter 38, Writing Custom Task Classes) that need to copy files as part of their function. In such a
scenario, the custom task should sufficiently declare the inputs/outputs relevant to the copy action.

Page 121 of 561

18.6.1. Renaming files

Example 18.14. Renaming files asthey are copied
bui |l d. gradl e

task rename(type: Copy) {
from ' src/ main/ webapp'
into 'buil d/ expl odedWar'
/'l Use a closure to map the file nane
rename { String fil eName ->

fil eNanme.repl ace(' -staging-', '")
}
/'l Use a regul ar expression to map the file nane
rename ' (.+)-staging-(.+)", '$1$2'
renane(/ (.+)-staging-(.+)/, '$1$2")

18.6.2. Filtering files

Example 18.15. Filtering files as they are copied
bui |l d. gradl e

i nport org.apache.tools.ant.filters.FixCrLfFilter
i nport org.apache.tools.ant.filters. Repl aceTokens

task filter(type: Copy) {
from ' src/ main/ webapp'
into 'buil d/ expl odedWar'
/'l Substitute property tokens in files
expand(copyright: '2009', version: '2.3.1")
expand(proj ect. properties)
/'l Use sone of the filters provided by Ant
filter(FixCrLfFilter)

filter(Repl aceTokens, tokens: [copyright: '2009', version: '2.3.1'])
/'l Use a closure to filter each |ine
filter { String line ->

"[$line]"

}

/1l Use a closure to renove |ines
filter { String line ->
line.startsWth('-") ? null : line

}

filteringCharset ="

When you use the Repl aceTokens class with the “filter” operation, the result is a template engine that
replaces tokens of the form “ @tokenName@” (the Apache Ant-style token) with a set of given values. The
“expand” operation does the same thing except it treats the source files as Groovy templates in which tokens
take the form “ ${ tokenName} . Be aware that you may need to escape parts of your source files when using
this option, for exampleif it containsliteral “$” or “<%" strings.

It's a good practice to specify the charset when reading and writing the file, using thef i | t eri ngChar set

Page 122 of 561

http://docs.groovy-lang.org/latest/html/api/groovy/text/SimpleTemplateEngine.html

property. If not specified, the VM default charset is used, which might not match with the actual charset of
the files to filter, and might be different from one machine to another.

18.6.3. Using the Copy Spec class

Copy specs form a hierarchy. A copy spec inherits its destination path, include patterns, exclude patterns,
copy actions, name mappings and filters.

Example 18.16. Nested copy specs
bui |l d. gradl e

t ask nestedSpecs(type: Copy) {
into 'buil d/ expl odedWar'
excl ude ' **/*st agi ng*'
from('src/dist') {

include '**/* html'

}
into('libs") {
from configurations. runtine

}

18.7. Using the Sync task

The Sync task extends the Copy task. When it executes, it copies the source files into the destination
directory, and then removes any files from the destination directory which it did not copy. This can be useful
for doing things such as installing your application, creating an exploded copy of your archives, or
maintaining a copy of the project's dependencies.

Here is an example which maintains a copy of the project's runtime dependencies in the bui | d/ I i bs
directory.

Example 18.17. Using the Sync task to copy dependencies

bui | d. gradl e

task |ibs(type: Sync) {
from configurations. runtine

into "$buildDir/libs"

18.8. Creating archives

A project can have as many JAR archives as you want. You can also add WAR, ZIP and TAR archives to
your project. Archives are created using the various archive tasks: Zi p, Tar, Jar, War , and Ear . They all
work the same way, so let'slook at how you create a ZIPfile.

Page 123 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ear.Ear.html

Example 18.18. Creating a ZI P archive

bui | d. gradl e

apply plugin: 'java'

task zip(type: Zip) {
from'src/dist'

into('libs") {
from configurations. runtine

}

The archive tasks al work exactly the same way as the Copy
task, and implement the same Copy Spec interface. Aswith the

Why are you using

Copy task, you specify the input files using the fron() the Java p| ugi n?

method, and can optionally specify where they end up in the

archive using the i nt o() method. You can filter the contents The Java plugin adds a number
of file, rename files, and al the other things you can do with a of default values for the archive
copy Spec. tasks. You can use the archive
tasks without using the Java
18.8.1. Archive nami ng plugin, if you like. You will
need to provide values for some

The format of pr oj ect Name- ver si on. type is used for additional properties.

generated archive file names. For example:

Example 18.19. Creation of ZIP archive
bui |l d. gradl e
apply plugin: 'java'

version = 1.0

task nyZip(type: Zip) {
from' sonedir'’

}

println nmyZip. archi veNane
println rel ativePath(nyZi p. destinationDir)
println relativePat h(nmyZi p. archi vePat h)

Output of gradl e -qgq nyZip

> gradle -q nyZip

zi pProject-1.0.zip

bui | d/ di stributions

bui | d/ di stributions/zipProject-1.0.zip

Thisadds a Zi p archive task with the name nyZi p which produces ZIP file zi pPr oj ect - 1. 0. zi p. It
is important to distinguish between the name of the archive task and the name of the archive generated by
the archive task. The default name for archives can be changed with the ar chi vesBaseNane project
property. The name of the archive can also be changed at any time later on.

Page 124 of 561

There are anumber of properties which you can set on an archive task. These are listed below in Table 18.1,
“Archive tasks - naming properties’. Y ou can, for example, change the name of the archive:

Example 18.20. Configuration of archivetask - custom archive name

bui |l d. gradl e

apply plugin: 'java'
version = 1.0

task nmyZip(type: Zip) {
from' sonedir'
baseNane = ' cust onNane'

}

println myZip. archi veNane

Outputof gradl e -q nyZip

> gradle -q nmyZip
cust omName- 1. 0. zi p

Y ou can further customize the archive names:

Example 18.21. Configuration of archivetask - appendix & classifier

bui | d. gradl e

apply plugin: 'java'
ar chi vesBaseName = 'gradl e
version = 1.0

task nmyZip(type: Zip) {
appendi x = 'w apper"’
classifier = "src'
from'sonedir'

}

println myZip. archi veNane

Outputof gradl e -q nyZip

> gradle -q nmyZip
gradl e-wr apper-1.0-src. zip

Page 125 of 561

Table 18.1. Archivetasks- naming properties

Property name Type Default value Description
ar chi veNane String baseName-appendi x-ver si on-cl assi fi er Tégbasesi on
If any of these propertiesis empty thetrailing - is file name of
not added to the name. the
generated
archive
archi vePat h File destinationDir/ ar chi veNane The
absolute
path of the
generated
archive.
destinationDir File Depends on the archive type. JARsand WARsgo The

intoproject.buildbDir/libraries.ZIPs directoryto

and TARsgointo proj ect. bui | dDi r/ di st ri bgeretatathe
archiveinto

baseNane String project. name The base
name
portion of
the archive
file name.

appendi x String null The
appendix
portion of
the archive
file name.

version String project.version Theversion
portion of
the archive
file name.

classifier String null The
classifier
portion of
the archive
file name,

ext ensi on String Dependson thearchivetype, and for TAR files, The
the compression typeaswell: zi p,j ar,war ,t ar extension of
,tgzortbz2. the archive
file name.

Page 126 of 561

18.8.2. Sharing content between multiple archives

You can use the Pr oj ect . copySpec(org. gradl e. api . Acti on) method to share content between
archives,

Often you will want to publish an archive, so that it is usable from another project. This processis described
in Chapter 30, Publishing artifacts

Page 127 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)

19

Using Ant from Gradle

Gradle provides excellent integration with Ant. You can useindividual Ant tasks or entire Ant builds in your
Gradle builds. In fact, you will find that it's far easier and more powerful using Ant tasks in a Gradle build
script, than it is to use Ant's XML format. You could even use Gradle simply as a powerful Ant task
scripting tool.

Ant can be divided into two layers. Thefirst layer isthe Ant language. It provides the syntax for the bui | d. xm
file, the handling of the targets, special constructs like macrodefs, and so on. In other words, everything
except the Ant tasks and types. Gradle understands this language, and allows you to import your Ant bui | d. xni
directly into a Gradle project. Y ou can then use the targets of your Ant build asif they were Gradle tasks.

The second layer of Ant is its wealth of Ant tasks and types, like j avac, copy or j ar . For this layer
Gradle provides integration ssimply by relying on Groovy, and the fantastic Ant Bui | der .

Finally, since build scripts are Groovy scripts, you can always execute an Ant build as an external process.
Your build script may contain statements like:” ant ¢l ean conpi | e". execut e() . (8]

You can use Gradle's Ant integration as a path for migrating your build from Ant to Gradle. For example,
you could start by importing your existing Ant build. Then you could move your dependency declarations
from the Ant script to your build file. Finally, you could move your tasks across to your build file, or replace
them with some of Gradle's plugins. This process can be done in parts over time, and you can have a
working Gradle build during the entire process.

19.1. Using Ant tasks and types in your build

In your build script, a property called ant is provided by Gradle. Thisis areference to an Ant Bui | der
instance. This Ant Bui | der isused to access Ant tasks, types and properties from your build script. There
isavery simple mapping from Ant'sbui | d. xm format to Groovy, which is explained below.

Y ou execute an Ant task by calling a method on the Ant Bui | der instance. Y ou use the task name as the
method name. For example, you execute the Ant echo task by calling the ant . echo() method. The
attributes of the Ant task are passed as Map parameters to the method. Below is an example of the echo
task. Notice that we can also mix Groovy code and the Ant task markup. This can be extremely powerful.

Page 128 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/AntBuilder.html

Example 19.1. Using an Ant task
buil d. gradl e

task hello << {
String greeting = 'hello from Ant'

ant . echo(nessage: greeting)

Output of gradl e hel | o
> gradle hello
‘hello
[ant:echo] hello from Ant

BU LD SUCCESSFUL

Total tinme: 1 secs

Y ou pass nested text to an Ant task by passing it as a parameter of the task method call. In this example, we
pass the message for the echo task as nested text:

Example 19.2. Passing nested text to an Ant task

bui | d. gradl e

task hello << {
ant . echo(' hello from Ant")

}

Output of gradl e hel | o

> gradle hello
‘hello
[ant:echo] hello from Ant

BU LD SUCCESSFUL

Total tinme: 1 secs

You pass nested elements to an Ant task inside a closure. Nested elements are defined in the same way as
tasks, by calling a method with the same name as the element we want to define.

Example 19.3. Passing nested elementsto an Ant task

bui |l d. gradl e

task zip << {
ant. zi p(destfile: "archive.zip') {
fileset(dir: "src') {
i ncl ude(nane: ' **.xm ")

excl ude(nanme: '**.java')

Page 129 of 561

Y ou can access Ant types in the same way that you access tasks, using the name of the type as the method
name. The method call returns the Ant data type, which you can then use directly in your build script. In the
following example, we create an Ant pat h object, then iterate over the contents of it.

Example 19.4. Using an Ant type

bui |l d. gradl e

task list << {
def path = ant.path {
fileset(dir: "libs', includes: '"*.jar")

}
path.list().each {
println it

}

More information about Ant Bui | der can befound in'Groovy in Action' 8.4 or at the Groovy Wiki

19.1.1. Using custom Ant tasks in your build

To make custom tasks available in your build, you can usethet askdef (usually easier) or t ypedef Ant
task, just as you would in abui | d. xnl file. You can then refer to the custom Ant task as you would a
built-in Ant task.

Example 19.5. Using a custom Ant task
bui |l d. gradl e

task check << {

ant . t askdef (resource: 'checkstyl etask. properties') {

cl asspath {
fileset(dir: "libs', includes: "*.jar")

}

}

ant . checkstyl e(config: 'checkstyle. . xm ") {
fileset(dir: "src')

}

Y ou can use Gradl€e's dependency management to assemble the classpath to use for the custom tasks. To do
this, you need to define a custom configuration for the classpath, then add some dependencies to the
configuration. Thisis described in more detail in Section 23.4, “How to declare your dependencies’.

Example 19.6. Declaring the classpath for a custom Ant task

bui |l d. gradl e

configurations {
pmd
}

dependenci es {
pmd group: 'pnd', nane: 'pnd', version: '4.2.5

}

Page 130 of 561

http://groovy.codehaus.org/Using+Ant+from+Groovy

To use the classpath configuration, use the asPat h property of the custom configuration.

Example 19.7. Using a custom Ant task and dependency management together

bui | d. gradl e

task check << {
ant . t askdef (nane: ' pnd',
cl assname: ' net.sourceforge. pnd. ant . PMDTask' ,
cl asspat h: configurations. pnd. asPat h)
ant . pnd(shortFil enanes: 'true',
failonruleviolation: '"true',

rulesetfiles: file(' pnd-rules.xm').toURI().toString()) {
formatter(type: 'text', toConsole: 'true')
fileset(dir: "src')

19.2. Importing an Ant build

You can use the ant . i nport Bui | d() method to import an Ant build into your Gradle project. When
you import an Ant build, each Ant target is treated as a Gradle task. This means you can manipulate and
execute the Ant targetsin exactly the same way as Gradle tasks.

Example 19.8. Importing an Ant build

bui | d. gradl e

ant.inportBuild 'build xnm"®

buil d. xn

<pr oj ect >
<target nanme="hello0">
<echo>Hel | o, from Ant </ echo>

</target >
</ pr oj ect >

Output of gradl e hel | o
> gradle hello
‘hello
[ant:echo] Hello, from Ant
BU LD SUCCESSFUL

Total tinme: 1 secs

Y ou can add a task which depends on an Ant target:

Page 131 of 561

Example 19.9. Task that dependson Ant target
buil d. gradl e

ant.inportBuild 'build xn"'

task intro(dependsOn: hello) << {
println 'Hello, from G adl e

}

Output of gradl e intro

> gradle intro

thello

[ant: echo] Hello, from Ant
intro

Hello, from G adle

BU LD SUCCESSFUL

Total tinme: 1 secs

Or, you can add behaviour to an Ant target:

Example 19.10. Adding behaviour to an Ant target
buil d. gradl e

ant.inportBuild 'build xn"’

hell o << {
println "Hello, from G adl e

}

Output of gr adl e hel | o
> gradle hello
chello
[ant:echo] Hello, from Ant
Hello, from G adle
BUI LD SUCCESSFUL

Total tinme: 1 secs

It isalso possible for an Ant target to depend on a Gradle task:

Page 132 of 561

Example 19.11. Ant target that depends on Gradletask

buil d. gradl e

ant.inportBuild 'build xn"'

task intro << {
println 'Hello, from G adl e

}

bui I d. xmi

<pr oj ect >
<target name="hel | 0" depends="intro">

<echo>Hel | o, from Ant </ echo>
</target >
</ pr oj ect >

Output of gradl e hel | o

> gradle hello

intro

Hell o, from G adl e

chello

[ant:echo] Hello, from Ant

BUI LD SUCCESSFUL

Total tinme: 1 secs

Sometimes it may be necessary to “rename” the task generated for an Ant target to avoid a naming collision
with existing Gradle tasks. To do this, use the Ant Bui | der . i nport Bui | d(j ava. | ang. Obj ect,
org.gradl e. api . Transf or mer) method.

Page 133 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/AntBuilder.html#importBuild(java.lang.Object, org.gradle.api.Transformer)
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/AntBuilder.html#importBuild(java.lang.Object, org.gradle.api.Transformer)

Example 19.12. Renaming imported Ant targets

bui | d. gradl e

ant.inportBuild(' build. xm"') { antTarget Nane ->

"a-' + ant Tar get Nane

}

bui | d. xni

<pr oj ect >
<target name="hell o0">
<echo>Hel | o, from Ant </ echo>

</target>
</ pr oj ect >

Output of gr adl e a-hell o
> gradle a-hello
;a-hello
[ant:echo] Hello, from Ant
BUI LD SUCCESSFUL

Total tinme: 1 secs

Note that while the second argument to this method should be a Tr ansf or mer , when programming in
Groovy we can simply use a closure instead of an anonymous inner class (or similar) due to Groovy's
support for automatically coercing closures to single-abstract-method types.

19.3. Ant properties and references

There are several ways to set an Ant property, so that the property can be used by Ant tasks. You can set the
property directly on the Ant Bui | der instance. The Ant properties are also available as a Map which you
can change. You can also usethe Ant pr oper t y task. Below are some examples of how to do this.

Example 19.13. Setting an Ant property

bui | d. gradl e

.buildDir = buildDir
.properties.buildDir = buildbDr

.properties['buildDir'] = buildDr
.property(nanme: 'buildDir', |ocation: buildDr)

buil d. xn

<echo>bui | dDi r = ${bui |l dDi r} </ echo>

Many Ant tasks set properties when they execute. There are several ways to get the value of these
properties. You can get the property directly from the Ant Bui | der instance. The Ant properties are also
available as aMap. Below are some examples.

Page 134 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/Transformer.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html

Example 19.14. Getting an Ant property
bui | d. xml

<property nane="ant Prop" value="a property defined in an Ant build"/>

bui | d. gradl e

println ant.antProp
println ant. properties. ant Prop
println ant.properties['antProp’

There are several waysto set an Ant reference:

Example 19.15. Setting an Ant reference
bui |l d. gradl e

ant.path(id: 'classpath', location: "libs")

ant . references. cl asspath = ant.path(location: 'libs")
ant . references[' classpath'] = ant.path(location: "libs")

bui |l d. xni

<path refid="cl asspath"/>

There are several waysto get an Ant reference:

Example 19.16. Getting an Ant reference
bui | d. xnl

<pat h id="antPath" |ocation="I1ibs"/>

bui | d. gradl e

println ant.references. ant Path

println ant.references[' antPath']

19.4. Ant logging

Gradle maps Ant message priorities to Gradle log levels so that messages logged from Ant appear in the
Gradle output. By default, these are mapped as follows:

Page 135 of 561

Table 19.1. Ant message priority mapping

Ant Message Priority GradleLog L evel

VERBOSE DEBUG
DEBUG DEBUG
INFO I NFO
WARN WARN
ERROR ERRCR

19.4.1. Fine tuning Ant logging

The default mapping of Ant message priority to Gradle log level can sometimes be problematic. For
example, there is no message priority that maps directly to the LI FECYCLE log level, which is the default
for Gradle. Many Ant tasks log messages at the INFO priority, which means to expose those messages from
Gradle, a build would have to be run with the log level set to | NFO, potentially logging much more output
than is desired.

Conversely, if an Ant task logs messages at too high of alevel, to suppress those messages would require the
build to be run at a higher log level, such as QUI ET. However, this could result in other, desirable output
being suppressed.

To help with this, Gradle allows the user to fine tune the Ant logging and control the mapping of message
priority to Gradle log level. Thisis done by setting the priority that should map to the default Gradle LI FECYCLE
log level using the Ant Bui | der . set Li f ecycl eLogLevel (java. |l ang. Stri ng) method. When
thisvalueis set, any Ant message logged at the configured priority or above will belogged at least at LI FECYCLE
. Any Ant message logged below this priority will be logged at most at | NFO.

For example, the following changes the mapping such that Ant INFO priority messages are exposed at the LI FEC
log level.

Page 136 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/AntBuilder.html#setLifecycleLogLevel(java.lang.String)

Example 19.17. Fine tuning Ant logging

bui | d. gradl e

ant.lifecycl eLogLevel = "I NFO'

task hello {
doLast {
ant.echo(level: "info", message: "hello frominfo priority!")

}

Output of gr adl e hel | o

> gradle hello

thello

[ant:echo] hello frominfo priority!

BU LD SUCCESSFUL

Total tinme: 1 secs

On the other hand, if thel i f ecycl eLoglLevel was set to ERROR, Ant messages logged at the WARN
priority would no longer be logged at the WARN log level. They would now be logged at the | NFOlevel and
would be suppressed by default.

19.5. API

The Ant integration is provided by Ant Bui | der .

[8] In Groovy you can execute Strings. To learn more about executing external processes with Groovy have
alook in'Groovy in Action' 9.3.2 or at the Groovy wiki

Page 137 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/AntBuilder.html

20

TheBuild Lifecycle

We said earlier that the core of Gradle is alanguage for dependency based programming. In Gradle terms
this means that you can define tasks and dependencies between tasks. Gradle guarantees that these tasks are
executed in the order of their dependencies, and that each task is executed only once. These tasks form a
Directed Acyclic Graph. There are build tools that build up such a dependency graph as they execute their
tasks. Gradle builds the complete dependency graph before any task is executed. This lies at the heart of
Gradle and makes many things possible which would not be possible otherwise.

Y our build scripts configure this dependency graph. Therefore they are strictly speaking build configuration
scripts.

20.1. Build phases

A Gradle build has three distinct phases.

Initialization
Gradle supports single and multi-project builds. During the initialization phase, Gradle determines which
projects are going to take part in the build, and createsa Pr oj ect instance for each of these projects.

Configuration
During this phase the project objects are configured. The build scripts of all projects which are part of
the build are executed. Gradle 1.4 introduced an incubating opt-in feature called configuration on
demand. In this mode, Gradle configures only relevant projects (see Section 24.1.1.1, “Configuration on
demand”).

Execution
Gradle determines the subset of the tasks, created and configured during the configuration phase, to be
executed. The subset is determined by the task name arguments passed to the gradle command and the
current directory. Gradle then executes each of the selected tasks.

20.2. Settingsfile

Beside the build script files, Gradle defines a settings file. The settings file is determined by Gradle via a
naming convention. The default name for thisfileisset ti ngs. gr adl e. Later in this chapter we explain
how Gradle |ooks for a settingsfile.

The settings file is executed during the initialization phase. A multiproject build must haveaset ti ngs. gr adl «
file in the root project of the multiproject hierarchy. It is required because the settings file defines which

Page 138 of 561

http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html

projects are taking part in the multi-project build (see Chapter 24, Multi-project Builds). For a single-project
build, a settings file is optional. Besides defining the included projects, you might need it to add libraries to
your build script classpath (see Chapter 41, Organizing Build Logic). Let's first do some introspection with a
single project build:

Example 20.1. Single project build

settings.gradle

println 'This is executed during the initialization phase.

bui |l d. gradl e

println 'This is executed during the configuration phase.'

task configured {
println 'This is al so executed during the configuration phase.

}

task test << {
println 'This is executed during the execution phase.'

}

task testBoth {
doFi rst {
println 'This is executed first during the execution phase.'
}
doLast {
println 'This is executed |ast during the execution phase.

}

println 'This is executed during the configuration phase as well.

Output of gr adl e test testBoth

> gradle test testBoth

This is executed during the initialization phase.

This is executed during the configuration phase.

This is also executed during the configuration phase
This is executed during the configuration phase as well.
‘test

This is executed during the execution phase.

:testBoth

This is executed first during the execution phase.

This is executed |ast during the execution phase.

BU LD SUCCESSFUL

Total tinme: 1 secs

For a build script, the property access and method calls are delegated to a project object. Similarly property
access and method calls within the settings file is delegated to a settings object. Look at the Set ti ngs
classin the APl documentation for more information.

Page 139 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.initialization.Settings.html

20.3. Multi-project builds

A multi-project build is a build where you build more than one project during a single execution of Gradle.
Y ou have to declare the projects taking part in the multiproject build in the settings file. There is much more
to say about multi-project buildsin the chapter dedicated to this topic (see Chapter 24, Multi-project Builds).

20.3.1. Project locations

Multi-project builds are always represented by atree with a single root. Each element in the tree represents a
project. A project has a path which denotes the position of the project in the multi-project build tree. In most
cases the project path is consistent with the physical location of the project in the file system. However, this
behavior is configurable. The project tree is created in the setti ngs. gradl e file. By default it is
assumed that the location of the settings file is also the location of the root project. But you can redefine the
location of the root project in the settings file.

20.3.2. Building the tree

In the settings file you can use a set of methods to build the project tree. Hierarchical and flat physical
layouts get special support.

20.3.2.1. Hierarchical layouts

Example 20.2. Hierar chical layout

settings.gradle

include 'projectl', 'project2:child , 'project3:childl'

The i ncl ude method takes project paths as arguments. The project path is assumed to be equal to the
relative physical file system path. For example, a path 'services:api' is mapped by default to a folder
'services/api’ (relative from the project root). Y ou only need to specify the leaves of the tree. This means that
the inclusion of the path 'services:hotels:api' will result in creating 3 projects: 'services, 'services:hotels' and
'services:hotels.api'.

20.3.2.2. Flat layouts

Example 20.3. Flat layout
settings.gradle

i ncl udeFl at 'project3', 'projectsd

The i ncl udeFl at method takes directory names as an argument. These directories need to exist as
siblings of the root project directory. The location of these directories are considered as child projects of the
root project in the multi-project tree.

Page 140 of 561

20.3.3. Modifying elements of the project tree

The multi-project tree created in the settings file is made up of so called project descriptors. You can
modify these descriptors in the settings file at any time. To access a descriptor you can do:

Using this descriptor you can change the name, project directory and build file of a project.

Example 20.4. M odification of elements of the project tree

settings.gradle

println rootProject.nanme

println project(':projectA). nane

settings.gradle

root Proj ect.name = 'nain'

project (' :projectA).projectDir = new File(settingsDir, '../ny-project-a')
project (' :projectA). buildFileName = 'projectA gradle'

Look at the Pr oj ect Descri pt or classinthe APl documentation for more information.

20.4. Initiadization

How does Gradle know whether to do a single or multiproject build? If you trigger a multiproject build from
adirectory with a settings file, things are easy. But Gradle also allows you to execute the build from within

any subproject taking part in the build. (91 1 you execute Gradle from within a project withno set t i ngs. gr adl
file, Gradle looksfor aset ti ngs. gr adl e filein the following way:

® |tlooksin adirectory called mast er which hasthe same nesting level as the current dir.

® |f not found yet, it searches parent directories.

¢ |f not found yet, the build is executed as a single project build.

® |[fasettings. gradl e fileisfound, Gradle checks if the current project is part of the multiproject
hierarchy defined in the found set t i ngs. gr adl e file. If not, the build is executed as a single project
build. Otherwise a multiproject build is executed.

What is the purpose of this behavior? Gradle needs to determine whether the project you are in is a
subproject of a multiproject build or not. Of course, if it is a subproject, only the subproject and its
dependent projects are built, but Gradle needs to create the build configuration for the whole multiproject
build (see Chapter 24, Multi-project Builds). Y ou can use the - u command line option to tell Gradle not to
look in the parent hierarchy for aset ti ngs. gr adl e file. The current project is then aways built as a
single project build. If the current project contains a setti ngs. gradl e file, the - u option has no
meaning. Such abuild is always executed as:

® asingle project build, if theset t i ngs. gr adl e file does not define a multiproject hierarchy
* amultiproject build, if theset t i ngs. gr adl e file does define a multiproject hierarchy.

The automatic search for aset ti ngs. gradl e file only works for multi-project builds with a physical
hierarchical or flat layout. For a flat layout you must additionally follow the naming convention described

Page 141 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/initialization/ProjectDescriptor.html

above (“mast er”). Gradle supports arbitrary physical layouts for a multiproject build, but for such
arbitrary layouts you need to execute the build from the directory where the settings file is located. For
information on how to run partial builds from the root see Section 24.4, “Running tasks by their absolute
path”.

Gradle creates a Project object for every project taking part in the build. For a multi-project build these are
the projects specified in the Settings object (plus the root project). Each project object has by default a name
equal to the name of its top level directory, and every project except the root project has a parent project.
Any project may have child projects.

20.5. Configuration and execution of asingle
project build

For asingle project build, the workflow of the after initialization phases are pretty ssmple. The build script
is executed against the project object that was created during the initialization phase. Then Gradle looks for
tasks with names equal to those passed as command line arguments. If these task names exist, they are
executed as a separate build in the order you have passed them. The configuration and execution for
multi-project buildsis discussed in Chapter 24, Multi-project Builds.

20.6. Responding to the lifecycle in the build
script
Your build script can receive notifications as the build progresses through its lifecycle. These notifications
generally take two forms: You can either implement a particular listener interface, or you can provide a

closure to execute when the notification is fired. The examples below use closures. For details on how to use
the listener interfaces, refer to the APl documentation.

20.6.1. Project evaluation

You can receive a notification immediately before and after a project is evaluated. This can be used to do
things like performing additional configuration once al the definitions in a build script have been applied, or
for some custom logging or profiling.

Below is an example which adds at est task to each project which has a hasTest s property value of
true.

Page 142 of 561

Example 20.5. Adding of test task to each project which has certain property set
buil d. gradl e

al | projects {
afterEvaluate { project ->
if (project.hasTests) {
println "Adding test task to $project”
project.task('test') << {

println "Running tests for $project"

proj ect A gradl e

hasTests = true

Output of gradl e -qg test

> gradle -q test
Addi ng test task to project ':projectA
Running tests for project ':projectA

This example uses method Pr oj ect . af t er Eval uat e() to add a closure which is executed after the
project is evaluated.

It is also possible to receive notifications when any project is evaluated. This example performs some
custom logging of project evaluation. Notice that the af t er Pr oj ect notification is received regardless of
whether the project evaluates successfully or fails with an exception.

Example 20.6. Notifications

bui | d. gradl e

gradl e. afterProj ect {project, projectState ->
if (projectState.failure) {
println "Eval uati on of $project FAlILED'

} else {
println "Eval uati on of $project succeeded"

}

Output of gradl e -qg test
> gradle -q test
Eval uation of root project 'buildProjectEval uateEvents' succeeded

Eval uation of project ':projectA succeeded
Eval uation of project ':projectB FAILED

You can aso add aPr oj ect Eval uati onLi st ener tothe G adl e to receive these events.

Page 143 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.invocation.Gradle.html

20.6.2. Task creation

You can receive a notification immediately after a task is added to a project. This can be used to set some
default values or add behaviour before the task is made available in the build file.

The following example setsthe sr cDi r property of each task asit is created.

Example 20.7. Setting of certain property to all tasks

bui | d. gradl e

t asks. whenTaskAdded { task ->
task.ext.srcDir = 'src/main/java

}

task a

println "source dir is $a.srcDr"

Outputof gradle -q a

> gradle -q a
source dir is src/main/java

Youcan asoadd an Act i on toaTaskCont ai ner to receive these events.

20.6.3. Task execution graph ready

Y ou can receive a notification immediately after the task execution graph has been populated. We have seen
this already in Section 14.13, “ Configure by DAG”.

You can also add a TaskExecut i onG aphLi st ener tothe TaskExecut i onG aph to receive these
events.

20.6.4. Task execution

Y ou can receive a notification immediately before and after any task is executed.

The following example logs the start and end of each task execution. Notice that the af t er Task
notification is received regardless of whether the task completes successfully or fails with an exception.

Page 144 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/Action.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

Example 20.8. Logging of start and end of each task execution
buil d. gradl e

task ok

task broken(dependsOn: ok) << {
t hrow new Runti neException(' broken")

}

gradl e. t askG aph. bef oreTask { Task task ->
println "executing $task ..."

}

gradl e.taskG aph. after Task { Task task, TaskState state ->
if (state.failure) {
println "FAI LED'

}

el se {
println "done"

}

Output of gr adl e -qg broken

> gradle -q broken
executing task ':ok'
done

executing task ':broken'
FAI LED

You canasouseaTaskExecuti onlLi st ener tothe TaskExecut i onG aph to receive these events.

[9] Gradle supports partial multiproject builds (see Chapter 24, Multi-project Builds).

Page 145 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

21

Wrapper Plugin

The wrapper plugin is currently incubating. Please be aware that the DSL and other configuration may
changein later Gradle versions.

The Gradle wrapper plugin alows the generation of Gradle wrapper files by adding a W apper task, that
generates al files needed to run the build using the Gradle Wrapper. Details about the Gradle Wrapper can
be found in Chapter 5, The Gradle Wrapper.

21.1. Usage

Without modifying the bui | d. gr adl e file, the wrapper plugin can be auto-applied to the root project of
the current build by running “gr adl e wr apper ” from the command line. This applies the plugin if no
task named wr apper isaready defined in the build.

21.2. Tasks

The wrapper plugin adds the following tasks to the project:

Table21.1. Wrapper plugin - tasks

Task name Dependson Type Description

wr apper - W apper Generates Gradle wrapper files.

Page 146 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.wrapper.Wrapper.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

22
L ogging

Thelog isthe main 'Ul' of abuild tool. If it is too verbose, real warnings and problems are easily hidden by
this. On the other hand you need relevant information for figuring out if things have gone wrong. Gradle
defines 6 log levels, as shown in Table 22.1, “Log levels’. There are two Gradle-specific log levels, in
addition to the ones you might normally see. Those levels are QUIET and LIFECYCLE. The latter is the
default, and is used to report build progress.

Table22.1. Log levels

Level Used for
ERROR Error messages
QUIET Important information messages

WARNING Warning messages
LIFECYCLE Progressinformation messages
INFO Information messages
DEBUG Debug messages

22.1. Choosing alog level

Y ou can use the command line switches shown in Table 22.2, “Log level command-line options’ to choose
different log levels. In Table 22.3, “ Stacktrace command-line options” you find the command line switches
which affect stacktrace logging.

Table 22.2. Log level command-line options

Option OutputsLog Levels

no logging options LIFECY CLE and higher
-qor--quiet QUIET and higher

-i or--info INFO and higher

-dor--debug DEBUG and higher (that is, all log messages)

Page 147 of 561

Table 22.3. Stacktrace command-line options
Option Meaning

No stacktrace options No stacktraces are printed to the console in case of abuild error (e.g. a
compile error). Only in case of internal exceptions will stacktraces be
printed. If the DEBUGIog level is chosen, truncated stacktraces are always
printed.

-sor--stacktrace Truncated stacktraces are printed. We recommend this over full
stacktraces. Groovy full stacktraces are extremely verbose (Due to the
underlying dynamic invocation mechanisms. Y et they usually do not
contain relevant information for what has gone wrong in your code.)

-Sor--full-stacktrackhefull stacktraces are printed out.

22.2. Writing your own log messages

A simple option for logging in your build file is to write messages to standard output. Gradle redirects
anything written to standard output to it's logging system at the QUI ET log level.

Example 22.1. Using stdout to write log messages

bui | d. gradl e

println ' A nessage which is | ogged at QU ET |evel'

Gradle also provides al ogger property to a build script, which is an instance of Logger . This interface
extends the SLF4J Logger interface and adds a few Gradle specific methods to it. Below is an example of
how thisisused in the build script:

Example 22.2. Writing your own log messages
bui |l d. gradl e

.quiet('An info | og nessage which is always | ogged.")
.error('An error |og nessage.')

.warn(' A warni ng | og nessage. ")

.lifecycle(' Alifecycle info | og nessage."')

.info(' An info | og message.")
. debug(' A debug | og nessage. ')
.trace(' A trace | og nessage.')

Y ou can also hook into Gradle's logging system from within other classes used in the build (classes from the
bui | dSr c directory for example). Simply use an SLF4J logger. Y ou can use this logger the same way as
you use the provided logger in the build script.

Page 148 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/logging/Logger.html

Example 22.3. Using SL F4J to write log messages
buil d. gradl e

i nport org.slf4j.Logger
i nport org.slf4j.LoggerFactory

Logger sl f4jLogger = LoggerFactory. getlLogger (' sonme-| ogger')
sl f4j Logger.info(' An info | og nessage | ogged using SLF4j")

22.3. Logging from external tools and libraries

Internally, Gradle uses Ant and Ivy. Both have their own logging system. Gradle redirects their logging
output into the Gradle logging system. There is a 1:1 mapping from the Ant/lvy log levels to the Gradle log
levels, except the Ant/lvy TRACE log level, which is mapped to Gradle DEBUG log level. This means the
default Gradle log level will not show any Ant/lvy output unlessit isan error or awarning.

There are many tools out there which still use standard output for logging. By default, Gradle redirects
standard output to the QUI ET log level and standard error to the ERROR level. This behavior is
configurable. The project object provides a Loggi nhgManager , which allows you to change the log levels
that standard out or error are redirected to when your build script is evaluated.

Example 22.4. Configuring standard output capture

bui |l d. gradl e

| oggi ng. capt ur eSt andar dCut put LogLevel . | NFO

println ' A nessage which is | ogged at | NFO | evel"'

To change the log level for standard out or error during task execution, tasks also provide a
Loggi ngManager .

Example 22.5. Configuring standard output capturefor atask

bui |l d. gradl e

task | oglnfo {
| oggi ng. capt ur eSt andar dCut put LogLevel . | NFO
doFirst {
println ' A task nessage which is | ogged at | NFO | evel'

}

Gradle aso provides integration with the Java Util Logging, Jakarta Commons Logging and Log4j logging
toolkits. Any log messages which your build classes write using these logging toolkits will be redirected to
Gradle'slogging system.

Page 149 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/logging/LoggingManager.html

22.4. Changing what Gradle logs

Y ou can replace much of Gradle's logging Ul with your own. Y ou might do this, for example, if you want to
customize the Ul in some way - to log more or less information, or to change the formatting. Y ou replace
the logging using the Gr adl e. uselLogger (j ava. | ang. Obj ect) method. Thisis accessible from a
build script, or an init script, or via the embedding API. Note that this completely disables Gradl€e's default
output. Below is an example init script which changes how task execution and build completion islogged.

Example 22.6. Customizing what Gradle logs
init.gradle
uselLogger (new Cust omEvent Logger ())
cl ass CustonEvent Logger extends Buil dAdapter inplenents TaskExecuti onLi stener {

public voi d beforeExecute(Task task) ({
println "[$task. nane] "

}

public void afterExecute(Task task, TaskState state) ({
println()

}

public void buil dFi ni shed(Buil dResult result) {
println "build conpleted
if (result.failure '= null) {
result.failure.printStackTrace()

Outputof gradle -1 init.gradle build
> gradle -1 init.gradle build
[conpi |l e]

conpi I i ng source

[test Conpil e]
conpi ling test source

[test]
running unit tests

[bui | d]

buil d conpl et ed

Your logger can implement any of the listener interfaces listed below. When you register alogger, only the
logging for the interfaces that it implements is replaced. Logging for the other interfaces is left untouched.
Y ou can find out more about the listener interfaces in Section 20.6, “Responding to the lifecycle in the build
script”.

® Bui |l dLi st ener

Page 150 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:useLogger(java.lang.Object)
http://www.gradle.org/docs/3.0/javadoc/org/gradle/BuildListener.html

Pr oj ect Eval uati onLi st ener
TaskExecuti onG aphLi st ener
TaskExecuti onLi st ener
TaskAct i onLi st ener

Page 151 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/execution/TaskActionListener.html

23

Dependency M anagement

23.1. Introduction

Dependency management is a critical feature of every build, and Gradle has placed an emphasis on offering
first-class dependency management that is both easy to understand and compatible with a wide variety of
approaches. If you are familiar with the approach used by either Maven or Ivy you will be delighted to learn
that Gradle is fully compatible with both approaches in addition to being flexible enough to support
fully-customized approaches.

Here are the mgjor highlights of Gradle's support for dependency management:

¢ Transitive dependency management: Gradle gives you full control of your project's dependency tree.

® Support for non-managed dependencies: If your dependencies are smply files in version control or a
shared drive, Gradle provides powerful functionality to support this.

* Support for custom dependency definitions.: Gradle's Module Dependencies give you the ability to
describe the dependency hierarchy in the build script.

* A fully customizable approach to Dependency Resolution: Gradle provides you with the ability to
customize resolution rules making dependency substitution easy.

¢ Full Compatibility with Maven and lvy: If you have defined dependencies in a Maven POM or an lvy
file, Gradle provides seamless integration with a range of popular build tools.

* |ntegration with existing dependency management infrastructure: Gradle is compatible with both Maven
and lvy repositories. If you use Archiva, Nexus, or Artifactory, Gradle is 100% compatible with all

repository formats.

With hundreds of thousands of interdependent open source components each with a range of versions and
incompatibilities, dependency management has a habit of causing problems as builds grow in complexity.
When a build's dependency tree becomes unwieldy, your build tool shouldn't force you to adopt a single,
inflexible approach to dependency management. A proper build system has to be designed to be flexible,
and Gradle can handle any situation.

Page 152 of 561

23.1.1. Flexible dependency management for migrations

Dependency management can be particularly challenging during a migration from one build system to
another. If you are migrating from atool like Ant or Maven to Gradle, you may be faced with some difficult
situations. For example, one common pattern is an Ant project with version-less jar files stored in the
filesystem. Other build systems require a wholesale replacement of this approach before migrating. With
Gradle, you can adapt your new build to any existing source of dependencies or dependency metadata. This
makes incremental migration to Gradle much easier than the aternative. On most large projects, build
migrations and any change to development process is incremental because most organizations can't afford to
stop everything and migrate to a build tool's idea of dependency management.

Even if your project is using a custom dependency management system or something like an Eclipse
.Classpath file as master data for dependency management, it is very easy to write a Gradle plugin to use this
data in Gradle. For migration purposes this is a common technique with Gradle. (But, once you've migrated,
it might be a good idea to move away from a .classpath file and use Gradl€e's dependency management
features directly.)

23.1.2. Dependency management and Java

It isironic that in alanguage known for itsrich library of open source components that Java has no concept
of libraries or versions. In Java, there is no standard way to tell the VM that you are using version 3.0.5 of
Hibernate, and there is no standard way to say that f oo- 1. 0. j ar depends on bar - 2. 0. j ar. This has
led to external solutions often based on build tools. The most popular ones at the moment are Maven and
Ivy. While Maven provides a complete build system, Ivy focuses solely on dependency management.

Both tools rely on descriptor XML files, which contain information about the dependencies of a particular
jar. Both also use repositories where the actual jars are placed together with their descriptor files, and both
offer resolution for conflicting jar versions in one form or the other. Both have emerged as standards for
solving dependency conflicts, and while Gradle originally used Ivy under the hood for its dependency
management. Gradle has replaced this direct dependency on Ivy with a native Gradle dependency resolution
engine which supports a range of approaches to dependency resolution including both POM and lvy
descriptor files.

23.2. Dependency Management Best Practices

While Gradle has strong opinions on dependency management, the tool gives you a choice between two
options: follow recommended best practices or support any kind of pattern you can think of. This section
outlines the Gradle project's recommended best practices for managing dependencies.

No matter what the language, proper dependency management is important for every project. From a
complex enterprise application written in Java depending on hundreds of open source libraries to the
simplest Clojure application depending on a handful of libraries, approaches to dependency management
vary widely and can depend on the target technology, the method of application deployment, and the nature
of the project. Projects bundled as reusable libraries may have different requirements than enterprise
applications integrated into much larger systems of software and infrastructure. Despite this wide variation
of requirements, the Gradle project recommends that all projects follow this set of core rules:

Page 153 of 561

23.2.1. Put the Version in the Filename (Version the jar)

The version of alibrary must be part of the filename. While the version of ajar is usually in the Manifest
file, it isn't readily apparent when you are inspecting a project. If someone asks you to look at a collection of
20 jar files, which would you prefer? A collection of fileswith nameslike cormons- beanutil s-1. 3. ar
or a collection of files with names like spri ng. j ar ? If dependencies have file names with version
numbers you can quickly identify the versions of your dependencies.

If versions are unclear you can introduce subtle bugs which are very hard to find. For example there might
be a project which uses Hibernate 2.5. Think about a developer who decides to install version 3.0.5 of
Hibernate on her machine to fix a critical security bug but forgets to notify othersin the team of this change.
She may address the security bug successfully, but she also may have introduced subtle bugs into a codebase
that was using a now-deprecated feature from Hibernate. Weeks later there is an exception on the integration
machine which can't be reproduced on anyone's machine. Multiple developers then spend days on this issue
only finally realising that the error would have been easy to uncover if they knew that Hibernate had been
upgraded from 2.5t0 3.0.5.

Versions in jar names increase the expressiveness of your project and make them easier to maintain. This
practice also reduces the potential for error.

23.2.2. Manage transitive dependencies

Transitive dependency management is a technique that enables your project to depend on libraries which, in
turn, depend on other libraries. This recursive pattern of transitive dependencies results in a tree of
dependencies including your project's first-level dependencies, second-level dependencies, and so on. If you
don't model your dependencies as a hierarchical tree of first-level and second-level dependenciesit is very
easy to quickly lose control over an assembled mess of unstructured dependencies. Consider the Gradle
project itself, while Gradle only has afew direct, first-level dependencies, when Gradle is compiled it needs
more than one hundred dependencies on the classpath. On a far larger scale, Enterprise projects using
Spring, Hibernate, and other libraries, alongside hundreds or thousands of internal projects, can result in
very large dependency trees.

When these large dependency trees need to change, you'll often have to solve some dependency version
conflicts. Say one open source library needs one version of a logging library and a another uses an
alternative version. Gradle and other build tools al have the ability to resolve conflicts, but what
differentiates Gradleis the control it gives you over transitive dependencies and conflict resolution.

While you could try to manage this problem manually, you will quickly find that this approach doesn't scale.
If you want to get rid of a first level dependency you really can't be sure which other jars you should
remove. A dependency of afirst level dependency might also be afirst level dependency itself, or it might
be a transitive dependency of yet another first level dependency. If you try to manage transitive
dependencies yourself, the end of the story is that your build becomes brittle: no one dares to change your
dependencies because the risk of breaking the build is too high. The project classpath becomes a complete
mess, and, if a classpath problem arises, hell on earth invites you for aride.

NOTE:In one project, we found a mystery LDAP related jar in the classpath. No code referenced this
jar and there was no connection to the project. No one could figure out what the jar was for, until it
was removed from the build and the application suffered massive performance problems whenever it

Page 154 of 561

attempted to authenticate to LDAP. This mystery jar was a necessary transitive, fourth-level
dependency that was easy to miss because ho one had bothered to use managed transitive
dependencies.

Gradle offers you different ways to express first-level and transitive dependencies. With Gradle you can mix
and match approaches; for example, you could store your jars in an SCM without XML descriptor files and
still use transitive dependency management.

23.2.3. Resolve version conflicts

Conflicting versions of the same jar should be detected and either resolved or cause an exception. If you
don't use transitive dependency management, version conflicts are undetected and the often accidental order
of the classpath will determine what version of a dependency will win. On a large project with many
developers changing dependencies, successful builds will be few and far between as the order of
dependencies may directly affect whether a build succeeds or fails (or whether a bug appears or disappears
in production).

If you haven't had to deal with the curse of conflicting versions of jars on a classpath, here is a small
anecdote of the fun that awaits you. In a large project with 30 submodules, adding a dependency to a
subproject changed the order of a classpath, swapping Spring 2.5 for an older 2.4 version. While the build
continued to work, developers were starting to notice all sorts of surprising (and surprisingly awful) bugsin
production. Worse yet, this unintentional downgrade of Spring introduced several security vulnerabilities
into the system, which now required afull security audit throughout the organization.

In short, version conflicts are bad, and you should manage your transitive dependencies to avoid them. You
might also want to learn where conflicting versions are used and consolidate on a particular version of a
dependency across your organization. With a good conflict reporting tool like Gradle, that information can
be used to communicate with the entire organization and standardize on a single version. If you think
version conflicts don't happen to you, think again. It is very common for different first-level dependenciesto
rely on arange of different overlapping versions for other dependencies, and the JVM doesn't yet offer an
easy way to have different versions of the same jar in the classpath (see Section 23.1.2, “Dependency
management and Java’).

Gradle offers the following conflict resolution strategies:

* Newest: The newest version of the dependency is used. Thisis Gradle's default strategy, and is often an
appropriate choice aslong as versions are backwards-compatible.

® Fail: A version conflict resultsin abuild failure. This strategy requires all version conflicts to be
resolved explicitly in the build script. See Resol uti onSt r at egy for details on how to explicitly
choose a particular version.

While the strategies introduced above are usualy enough to solve most conflicts, Gradle provides more
fine-grained mechanisms to resolve version conflicts:

® Configuring afirst level dependency as forced. This approach is useful if the dependency in conflict is
aready afirst level dependency. See examplesin DependencyHandl er .

® Configuring any dependency (transitive or not) as forced. This approach is useful if the dependency in
conflict is atransitive dependency. It also can be used to force versions of first level dependencies. See

Page 155 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

examplesin Resol uti onStr at egy
® Dependency resolve rules are an incubating feature introduced in Gradle 1.4 which give you fine-grained
control over the version selected for a particular dependency.

To deal with problems due to version conflicts, reports with dependency graphs are also very helpful. Such
reports are another feature of dependency management.

23.2.4. Use Dynamic Versions and Changing Modules

There are many situations when you want to use the latest version of a particular dependency, or the latest in
arange of versions. This can be a requirement during development, or you may be developing alibrary that
is designed to work with a range of dependency versions. You can easily depend on these constantly
changing dependencies by using a dynamic version. A dynamic version can be either aversion range (e.g. 2. +
) or it can be a placeholder for the latest version available (e.g. | at est . i nt egrati on).

Alternatively, sometimes the module you request can change over time, even for the same version. An
example of this type of changing module is a Maven SNAPSHOT module, which always points at the latest
artifact published. In other words, a standard Maven snapshot is a module that never stands still so to speak,
itisa*“changing module”.

The main difference between a dynamic version and a changing module is that when you resolve a dynamic
version, you'll get the real, static version as the module name. When you resolve a changing module, the
artifacts are named using the version you requested, but the underlying artifacts may change over time.

By default, Gradle caches dynamic versions and changing modules for 24 hours. You can override the
default cache modes using command line options. You can change the cache expiry times in your build
using the resolution strategy (see Section 23.9.3, “Fine-tuned control over dependency caching”).

23.3. Dependency configurations

In Gradle dependencies are grouped into configurations. Configurations have a name, a number of other
properties, and they can extend each other. Many Gradle plugins add pre-defined configurations to your
project. The Java plugin, for example, adds some configurations to represent the various classpaths it needs.
see Section 45.5, “Dependency management” for details. Of course you can add custom configurations on
top of that. There are many use cases for custom configurations. This is very handy for example for adding
dependencies not needed for building or testing your software (e.g. additional JDBC drivers to be shipped
with your distribution).

A project's configurations are managed by a confi gur ati ons object. The closure you pass to the
configurations object is applied against its APl. To learn more about this APl have a look at
Confi gur ati onCont ai ner.

To define a configuration:

Page 156 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.ConfigurationContainer.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.ConfigurationContainer.html

Example 23.1. Definition of a configuration

bui | d. gradl e

configurations {

conpil e
}

To access a configuration;

Example 23.2. Accessing a configuration
bui |l d. gradl e

println configurations. conpile. name
println configurations['conpile'].name

To configure a configuration:

Example 23.3. Configuration of a configuration
bui |l d. gradl e

configurations {
conpil e {
description = 'conpile classpath’
transitive = true
}
runtime {
ext endsFrom conpi |l e

}

}

configurations. conpile {
description = 'conpile classpath’

}

23.4. How to declare your dependencies

There are several different types of dependencies that you can declare:

Page 157 of 561

Table 23.1. Dependency types

Type Description

External module dependency A dependency on an external module in some repository.

Project dependency A dependency on another project in the same build.
File dependency A dependency on aset of files on the local filesystem.
Client module dependency A dependency on an external module, where the artifacts are located in

some repository but the module meta-data is specified by the local
build. Y ou use this kind of dependency when you want to override the
meta-data for the module.

Gradle API dependency A dependency on the API of the current Gradle version. Y ou use this
kind of dependency when you are developing custom Gradle plugins
and task types.

Local Groovy dependency A dependency on the Groovy version used by the current Gradle
version. You use this kind of dependency when you are developing
custom Gradle plugins and task types.

23.4.1. External module dependencies

External module dependencies are the most common dependencies. They refer to a module in an external
repository.

Example 23.4. M odule dependencies
bui |l d. gradl e

dependenci es {
runtime group: 'org.springfranework', name: 'spring-core', version: '2.5
runtime 'org.springfranmework: spring-core:2.5",
" org. springframework: spring-aop: 2. 5'
runti me(
[group: 'org.springfranework', name: 'spring-core', version: '2.5],
[group: 'org.springfranework', name: 'spring-aop', version: '2.5']
)
runti me(' org. hi bernate: hi bernate: 3.0.5") {
transitive = true
}
runtime group: 'org.hibernate', name: 'hibernate', version: '3.
runti me(group: 'org.hibernate', name: 'hibernate', version: '3.
transitive = true

0.
0.

}

See the DependencyHandl er class in the APl documentation for more examples and a complete
reference.

Gradle provides different notations for module dependencies. There is a string notation and a map notation.
A module dependency has an APl which allows further configuration. Have a look at

Ext er nal Modul eDependency to learn all about the API. This APl provides properties and
configuration methods. Via the string notation you can define a subset of the properties. With the map

Page 158 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html

notation you can define all properties. To have access to the complete API, either with the map or with the
string notation, you can assign a single dependency to a configuration together with a closure.

If you declare a module dependency, Gradle looks for a module descriptor file (pom xm ori vy. xm) in

the repositories. If such a module descriptor file exists, it is parsed and the artifacts of thismodule (e.g. hi ber nat
) as well as its dependencies (e.g. cglib) are downloaded. If no such module descriptor file exists, Gradle
looks for afile called hi ber nat e- 3. 0. 5. j ar to retrieve. In Maven, a module can have one and only

one artifact. In Gradle and Ivy, a module can have multiple artifacts. Each artifact can have a different set of
dependencies.

23.4.1.1. Depending on modules with multiple artifacts

As mentioned earlier, a Maven module has only one artifact. Hence, when your project depends on aMaven
module, it's obvious what its artifact is. With Gradle or Ivy, the case is different. Ivy's dependency descriptor
(i vy. xm) can declare multiple artifacts. For more information, see the Ivy referencefor i vy. xm . In
Gradle, when you declare a dependency on an Ivy module, you actually declare a dependency on the def aul t
configuration of that module. So the actual set of artifacts (typically jars) you depend onis the set of
artifacts that are associated with the def aul t configuration of that module. Here are some situations where
this matters:
* Thedef aul t configuration of a module contains undesired artifacts. Rather than depending on the
whole configuration, a dependency on just the desired artifacts is declared.
* Thedesired artifact belongs to a configuration other than def aul t . That configuration is explicitly
named as part of the dependency declaration.

There are other situations where it is hecessary to fine-tune dependency declarations. Please see the
DependencyHandl er classinthe APl documentation for examples and a complete reference for
declaring dependencies.

23.4.1.2. Artifact only notation

As said above, if no module descriptor file can be found, Gradle by default downloads a jar with the name of
the module. But sometimes, even if the repository contains module descriptors, you want to download only
the artifact jar, without the dependencies. (191 And sometimes you want to download a zip from arepository,
that does not have module descriptors. Gradle provides an artifact only notation for those use cases - simply
prefix the extension that you want to be downloaded with' @ sign:

Example 23.5. Artifact only notation

bui | d. gradl e

dependenci es {
runti me "org.groovy:groovy:2.2. 0@ar"

runti me group: 'org.groovy', name: 'groovy', version: '2.

An artifact only notation creates a module dependency which downloads only the artifact file with the
specified extension. Existing module descriptors are ignored.

Page 159 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

23.4.1.3. Classifiers

The Maven dependency management has the notion of classifiers. (11 Gradle supports this. To retrieve
classified dependencies from a Maven repository you can write:

Example 23.6. Dependency with classifier
bui |l d. gradl e

conpile "org.gradle.test.classifiers:service:1.0:jdkl5@ar"

ot her Conf group: 'org.gradle.test.classifiers', nane: 'service', version: '1.0",

As can be seen in thefirst line above, classifiers can be used together with the artifact only notation.
It is easy to iterate over the dependency artifacts of a configuration:

Example 23.7. Iterating over a configuration
bui |l d. gradl e

task listJars << {
configurations.conpile.each { File file -> println file.nane }

}

Outputof gradl e -q listJars

> gradle -q listJars

hi bernate-core-3.6.7. Final.jar
antlr-2.7.6.jar

commons-col | ections-3.1.jar

domdj-1.6.1.jar

hi ber nat e- commons-annot ati ons-3.2.0.Final.jar
hi bernate-j pa-2.0-api-1.0.1. Final.jar
jta-1.1.jar

slf4j-api-1.6.1.jar

23.4.2. Client module dependencies

Client module dependencies alow you to declare transitive dependencies directly in the build script. They
are areplacement for amodule descriptor in an external repository.

Page 160 of 561

Example 23.8. Client module dependencies - transitive dependencies
buil d. gradl e

dependenci es {
runti me nodul e("org. codehaus. groovy: groovy: 2. 4. 7") {
dependency(" comons-cli: commons-cli:1.0") {
transitive = fal se

}

nodul e(group: 'org.apache.ant', name: "ant', version: '1.9.6") {
dependenci es "org. apache. ant: ant-1launcher:1.9.6@ar",
"org. apache.ant:ant-junit:1.9.6"

This declares a dependency on Groovy. Groovy itself has dependencies. But Gradle does not look for an
XML descriptor to figure them out but gets the information from the build file. The dependencies of a client
module can be normal module dependencies or artifact dependencies or another client module. Also look at
the API documentation for the Cl i ent Mbdul e class.

In the current release client modules have one limitation. Let's say your project is alibrary and you want this
library to be uploaded to your company's Maven or lvy repository. Gradle uploads the jars of your project to
the company repository together with the XML descriptor file of the dependencies. If you use client modules
the dependency declaration in the XML descriptor fileis not correct. We will improve thisin afuture release
of Gradle.

23.4.3. Project dependencies

Gradle distinguishes between external dependencies and dependencies on projects which are part of the
same multi-project build. For the latter you can declare Project Dependencies.

Example 23.9. Project dependencies
buil d. gradl e

dependenci es {

conpil e project(':shared")

}

For more information see the APl documentation for Pr oj ect Dependency.

Multi-project builds are discussed in Chapter 24, Multi-project Builds.

23.4.4. File dependencies

File dependencies allow you to directly add a set of files to a configuration, without first adding them to a
repository. This can be useful if you cannot, or do not want to, place certain files in arepository. Or if you
do not want to use any repositories at all for storing your dependencies.

To add some files as a dependency for a configuration, you simply pass a file collection as a dependency:

Page 161 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/ClientModule.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/ProjectDependency.html

Example 23.10. File dependencies

bui | d. gradl e

dependenci es {
runtime files('libs/a.jar', 'libs/b.jar")

runtime fileTree(dir: "libs', include: '"*.jar")

File dependencies are not included in the published dependency descriptor for your project. However, file
dependencies are included in transitive project dependencies within the same build. This means they cannot
be used outside the current build, but they can be used with the same build.

Y ou can declare which tasks produce the files for a file dependency. Y ou might do this when, for example,
the files are generated by the build.

Example 23.11. Generated file dependencies
bui |l d. gradl e

dependenci es {
conmpile files("$buildDir/classes") {
builtBy 'conpil e’
}
}

task compile << {
println 'conpiling classes’

}

task |ist(dependsOn: configurations.conpile) << {
println "classpath = ${configurations.conpile.collect {File file -> file.na

}

Output of gradl e -qg |i st
> gradle -q list

conpi I i ng cl asses
cl asspath = [cl asses]

23.4.5. Gradle API Dependency

You can declare a dependency on the APl of the current version of Gradle by using the
DependencyHandl er. gr adl eApi () method. Thisis useful when you are developing custom Gradle
tasks or plugins.

Example 23.12. Gradle API dependencies

bui | d. gradl e

dependenci es {
conpi | e gradl eApi ()

}

Page 162 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()

23.4.6. Local Groovy Dependency

You can declare a dependency on the Groovy that is distributed with Gradle by using the
DependencyHandl er. | ocal Groovy() method. This is useful when you are developing custom
Gradle tasks or pluginsin Groovy.

Example 23.13. Gradle's Groovy dependencies

bui | d. gradl e

dependenci es {

conpi | e | ocal G oovy()

}

23.4.7. Excluding transitive dependencies

Y ou can exclude a transitive dependency either by configuration or by dependency:

Example 23.14. Excluding transitive dependencies
bui |l d. gradl e

configurations {
conpi | e. excl ude nodul e: ' conmons’
al | *. excl ude group: 'org.gradle.test.excludes', nodule: 'reports'

}

dependenci es {
conpi l e("org. gradl e.test.excludes:api:1.0") {
excl ude nodul e: ' shared'

}

If you define an exclude for a particular configuration, the excluded transitive dependency will be filtered
for al dependencies when resolving this configuration or any inheriting configuration. If you want to
exclude a transitive dependency from all your configurations you can use the Groovy spread-dot operator to
express this in a concise way, as shown in the example. When defining an exclude, you can specify either
only the organization or only the module name or both. Also look at the APl documentation of the
Dependency and Conf i gur ati on classes.

Not every transitive dependency can be excluded - some transitive dependencies might be essential for
correct runtime behavior of the application. Generally, one can exclude transitive dependencies that are
either not required by runtime or that are guaranteed to be available on the target environment/platform.

Should you exclude per-dependency or per-configuration? It turns out that in the majority of cases you want
to use the per-configuration exclusion. Here are some typical reasons why one might want to exclude a
transitive dependency. Bear in mind that for some of these use cases there are better solutions than
exclusions!

® The dependency isundesired due to licensing reasons.

Page 163 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/Dependency.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/Dependency.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.Configuration.html

* The dependency is not available in any remote repositories.

® The dependency is not needed for runtime.

® The dependency has a version that conflicts with a desired version. For that use case please refer to
Section 23.2.3, “Resolve version conflicts’ and the documentation on Resol ut i onSt r at egy for a
potentially better solution to the problem.

Basically, in most of the cases excluding the transitive dependency should be done per configuration. This
way the dependency declaration is more explicit. It is also more accurate because a per-dependency exclude
rule does not guarantee the given transitive dependency does not show up in the configuration. For example,
some other dependency, which does not have any exclude rules, might pull in that unwanted transitive
dependency.

Other examples of dependency exclusions can be found in the reference for the Modul eDependency or
DependencyHandl er classes.

23.4.8. Optional attributes

All attributes for a dependency are optional, except the name. Which attributes are required for actually
finding dependencies in the repository will depend on the repository type. See Section 23.6, “Repositories’.
For example, if you work with Maven repositories, you need to define the group, name and version. If you
work with filesystem repositories you might only need the name or the name and the version.

Example 23.15. Optional attributes of dependencies

bui | d. gradl e

dependenci es {
runtime ":junit:4.12", ":testng"

runti me nanme: 'testng'

You can aso assign collections or arrays of dependency notations to a configuration:

Example 23.16. Collections and arrays of dependencies
bui | d. gradl e

Li st groovy = ["org. codehaus. groovy: groovy-all:2. 4. 7@ar",
"comons-cli:comons-cli: 1. 0@ar",
"org.apache.ant:ant:1.9.6@ar"]

Li st hi bernate = ['org. hi bernate: hi bernate: 3. 0.5@ar"',

' sonegroup: soneorg: 1. 0@ar ']

dependenci es {
runti me groovy, hibernate

}

Page 164 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/ModuleDependency.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

23.4.9. Dependency configurations

In Gradle a dependency can have different configurations (as your project can have different
configurations). If you don't specify anything explicitly, Gradle uses the default configuration of the
dependency. For dependencies from a Maven repository, the default configuration is the only possibility
anyway. If you work with Ivy repositories and want to declare a non-default configuration for your
dependency you have to use the map notation and declare:

Example 23.17. Dependency configurations

bui |l d. gradl e

dependenci es {
runti me group: 'org.sonmegroup', name: 'sonedependency', version: '1.

}

To do the same for project dependencies you need to declare:

Example 23.18. Dependency configurationsfor project
bui |l d. gradl e

dependenci es {

conpile project(path: ':api', configuration: 'spi')

}

23.4.10. Dependency reports

You can generate dependency reports from the command line (see Section 4.7.4, “Listing project
dependencies’). With the help of the Project report plugin (see Chapter 27, The Project Report Plugin) such
areport can be created by your build.

Since Gradle 1.2 there is also a new programmatic API to access the resolved dependency information. The
dependency reports (see the previous paragraph) are using this APl under the covers. The API lets you walk
the resolved dependency graph and provides information about the dependencies. In future releases the API
will grow to provide more information about the resolution result. For more information about the API
please refer to the Javadocs on Resol vabl eDependenci es. get Resol uti onResul t () . Potentia
usages of the Resol uti onResul t API:

® Creation of advanced dependency reports tailored to your use case.
® Enabling the build logic to make decisions based on the content of the dependency graph.

23.5. Working with dependencies

For the examples below we have the following dependencies setup:

Page 165 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/ResolvableDependencies.html#getResolutionResult()
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/result/ResolutionResult.html

Example 23.19. Configur ation.copy
buil d. gradl e

configurations {
sealife
alllife

}

dependenci es {
sealife "sea.mammal s: orca: 1. 0", "sea.fish:shark:1.0", "sea.fish:tuna:1.0"
alllife configurations.sealife
alllife "air.birds: al batross: 1. 0"

The dependencies have the following transitive dependencies:

shark-1.0 -> seal-2.0, tuna-1.0

orca-1.0 -> seal-1.0

tuna-1.0 -> herring-1.0

Y ou can use the configuration to access the declared dependencies or a subset of those:

Example 23.20. Accessing declared dependencies
bui |l d. gradl e

t ask dependenci es << {
configurations.alllife.dependencies.each { dep -> println dep. name }
println()
configurations.alllife.all Dependenci es.each { dep -> println dep. nane }

println()
configurations.alllife.all Dependencies.findAll { dep -> dep.nane != "orca' }
.each { dep -> println dep. nane }

Output of gr adl e - g dependenci es

> gradl e -q dependenci es
al batross

al batross
orca
shar k
tuna

al bat ross
shar k
tuna

The dependenci es task returns only the dependencies belonging explicitly to the configuration. The
al | Dependenci es task includes the dependencies from extended configurations.

To get the library files of the configuration dependencies you can do:

Page 166 of 561

Example 23.21. Configuration.files

bui | d. gradl e

task allFiles << {
configurations.sealife.files.each { file ->

printin file.name

}

Outputof gradle -q all Files

> gradle -q allFiles
orca-1.0.jar
shark-1.0.jar
tuna-1.0.jar
herring-1.0.jar

seal -2.0.jar

Sometimes you want the library files of a subset of the configuration dependencies (e.g. of a single
dependency).

Example 23.22. Configuration.fileswith spec

bui | d. gradl e

task files << {
configurations.sealife.files { dep -> dep.na "orca’ }.each { file ->

println file.name

}

Outputof gradle -q files

> gradle -q files
orca-1.0.jar
seal -2.0.jar

The Confi guration. fil es method always retrieves al artifacts of the whole configuration. It then
filters the retrieved files by specified dependencies. As you can see in the example, transitive dependencies
areincluded.

You can aso copy a configuration. Y ou can optionally specify that only a subset of dependencies from the
original configuration should be copied. The copying methods come in two flavors. The copy method
copies only the dependencies belonging explicitly to the configuration. The copyRecur si ve method
copies all the dependencies, including the dependencies from extended configurations.

Page 167 of 561

Example 23.23. Configuration.copy

bui | d. gradl e

task copy << {
configurations.alllife.copyRecursive { dep -> dep.nane != "orca' }
. al | Dependenci es. each { dep -> println dep. name }

println()
configurations.alllife.copy().all Dependenci es
.each { dep -> println dep.nanme }

Output of gr adl e -q copy

> gradle -q copy
al batross

shar k

tuna

al bat ross

It is important to note that the returned files of the copied configuration are often but not always the same
than the returned files of the dependency subset of the original configuration. In case of version conflicts
between dependencies of the subset and dependencies not belonging to the subset the resolve result might be
different.

Example 23.24. Configuration.copy vs. Configuration.files

bui | d. gradl e

task copyVsFiles << {
configurations. sealife.copyRecursive { dep -> dep.nane == 'orca' }
.each { file -> println file.nane }

println()
configurations.sealife.files { dep -> dep.nane == 'orca' }
.each { file -> println file.name }

Output of gr adl e -g copyVsFil es

> gradle -q copyVsFiles
orca-1.0.jar
seal-1.0.jar

orca-1.0.jar
seal -2.0.jar

In the example above, or ca has a dependency on seal - 1. 0 whereas shar k has a dependency on
seal - 2. 0. The original configuration has therefore a version conflict which is resolved to the newer

seal - 2. 0 version. Thef i | es method therefore returns seal - 2. 0 as atransitive dependency ofor ca.
The copied configuration only has or ca as a dependency and therefore there is no version conflict and

seal - 1. 0 isreturned as a transitive dependency.

Once a configuration is resolved it is immutable. Changing its state or the state of one of its dependencies
will cause an exception. You can always copy a resolved configuration. The copied configuration is in the

Page 168 of 561

unresolved state and can be freshly resolved.

To learn more about the API of the configuration class see the API documentation: Conf i gur ati on.

23.6. Repositories

Gradle repository management, based on Apache lvy, gives you alot of freedom regarding repository layout
and retrieval policies. Additionally Gradle provides various convenience method to add pre-configured
repositories.

Y ou may configure any number of repositories, each of which is treated independently by Gradle. If Gradle
finds a module descriptor in a particular repository, it will attempt to download al of the artifacts for that
module from the same repository. Although module meta-data and module artifacts must be located in the
same repository, it is possible to compose a single repository of multiple URLS, giving multiple locations to
search for meta-data files and jar files.

There are several different types of repositories you can declare:

Table 23.2. Repository types

Type Description
Maven central repository A pre-configured repository that looks for dependenciesin Maven Central.

Maven JCenter repository A pre-configured repository that |ooks for dependencies in Bintray's
JCenter.

Maven local repository A pre-configured repository that looks for dependenciesin the local
Maven repository.

Maven repository A Maven repository. Can be located on the local filesystem or at some
remote location.

Ivy repository An lvy repository. Can be located on the local filesystem or at some
remote location.

Flat directory repository A simple repository on the local filesystem. Does not support any
meta-data formats.

23.6.1. Maven central repository

To add the central Maven 2 repository (http://repol.maven.org/maven2) simply add this to your build script:

Example 23.25. Adding central Maven repository
buil d. gradl e

repositories {
mavenCent ral ()

}

Now Gradle will look for your dependenciesin this repository.

Page 169 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.Configuration.html
http://repo1.maven.org/maven2

Warning: Be aware that the central Maven 2 repository is HTTP only and HTTPS is not supported. If you
need a public HTTPS enabled central repository, you can use the JCenter public repository (see
Section 23.6.2, “Maven JCenter repository”).

23.6.2. Maven JCenter repository

Bintray's JCenter is an up-to-date collection of all popular Maven OSS artifacts, including artifacts
published directly to Bintray.

To add the JCenter Maven repository (https://jcenter.bintray.com) simply add this to your build script:

Example 23.26. Adding Bintray's JCenter Maven repository

bui |l d. gradl e

repositories {

jcenter ()

}

Now Gradle will look for your dependencies in the JCenter repository. jcenter() uses HTTPS to connect to
the repository. If you want to use HTTP you can configurej cent er () :

Example 23.27. Using Bintrays's JCenter with HTTP
bui | d. gradl e
repositories {

jcenter {
url "http://jcenter.bintray.com "

}

23.6.3. Local Maven repository

To usethe local Maven cache as arepository you can do:

Example 23.28. Adding thelocal Maven cache asa repository

bui |l d. gradl e

repositories {
mavenLocal ()

}

Gradle uses the same logic as Maven to identify the location of your local Maven cache. If alocal repository
locationisdefinedinasetti ngs. xm , thislocation will beused. Thesetti ngs. xm in USER_HOVE/ . n2
takes precedence over the settings. xm in M2_HOVE/ conf. If no settings. xm is available,
Gradle uses the default location USER_HOVE/ . n2/ r eposi t ory.

23.6.4. Maven repositories

For adding a custom Maven repository you can do:

Page 170 of 561

http://jcenter.bintray.com
http://bintray.com
https://jcenter.bintray.com

Example 23.29. Adding custom Maven repository

bui | d. gradl e

repositories {
maven {

url "http://repo. nyconpany. conl maven2"

}

Sometimes a repository will have the POMs published to one location, and the JARS and other artifacts
published at another location. To define such arepository, you can do:

Example 23.30. Adding additional Maven repositoriesfor JAR files
buil d. gradl e

repositories {
maven {
/'l Look for POV and artifacts, such as JARs, here
url "http://repo2. myconpany. com maven2"
[/l Look for artifacts here if not found at the above | ocation
artifactWls "http://repo. myconpany.conljars"
artifactUls "http://repo. myconpany. com j ars2"

Gradle will look at the first URL for the POM and the JAR. If the JAR can't be found there, the artifact
URLs are used to look for JARS.

23.6.4.1. Accessing password protected Maven repositories

To access a Maven repository which uses basic authentication, you specify the username and password to
use when you define the repository:

Example 23.31. Accessing password protected Maven repository
buil d. gradl e

repositories {
maven {
credentials {
user nane 'user'
password ' password’

}

url "http://repo. nyconpany. com naven2"

It is advisable to keep your username and password in gr adl e. properti es rather than directly in the
build file.

23.6.5. Flat directory repository

If you want to use a (flat) filesystem directory as arepository, simply type:

Page 171 of 561

Example 23.32. Flat repository resolver
buil d. gradl e

repositories {
flatDir {
dirs "Iib'
}
flatDir {
dirs 'libl, 'lib2

}

This adds repositories which look into one or more directories for finding dependencies. Note that this type
of repository does not support any meta-data formats like lvy XML or Maven POM files. Instead, Gradle
will dynamically generate a module descriptor (without any dependency information) based on the presence
of artifacts. However, as Gradle prefers to use modules whose descriptor has been created from rea
meta-data rather than being generated, flat directory repositories cannot be used to override artifacts with
real meta-data from other repositories. So, for example, if Gradlefindsonly j nxri-1. 2. 1. j ar inaflat
directory repository, but j nxri - 1. 2. 1. pomin another repository that supports meta-data, it will use the
second repository to provide the module. For the use case of overriding remote artifacts with local ones
consider using an lvy or Maven repository instead whose URL points to alocal directory. If you only work
with flat directory repositories you don't need to set all attributes of a dependency. See Section 23.4.8,
“Optiona attributes”.

23.6.6. lvy repositories

23.6.6.1. Defining an vy repository with a standard layout

Example 23.33. vy repository
bui |l d. gradl e

repositories {
ivy {

url "http://repo. nyconpany. coni r epo"

}

23.6.6.2. Defining anamed layout for an vy repository

Y ou can specify that your repository conformsto the vy or Maven default layout by using a named layout.

Example 23.34. vy repository with named layout
buil d. gradl e
repositories {

ivy {
url "http://repo. nyconpany. conl repo”

| ayout "nmven"

Page 172 of 561

Valid named layout values are ' gr adl e' (the default), ' maven', "ivy' and ' pattern'. See
I vyArtifact Repository.layout(java.lang.String, groovy.lang.C osure) in the
API documentation for details of these named layouts.

23.6.6.3. Defining custom pattern layout for an vy repository
To define an lvy repository with a non-standard layout, you can define a 'pattern’ layout for the repository:

Example 23.35. vy repository with pattern layout

bui |l d. gradl e

repositories {
vy {
url "http://repo. nyconpany. coni r epo"
| ayout "pattern”, {

artifact "[nodul e]/[revision]/[type]l/[artifact].[ext]"

To define an Ivy repository which fetches vy files and artifacts from different locations, you can define
separate patterns to use to locate the Ivy files and artifacts:

Eachartifact ori vy specified for arepository adds an additional pattern to use. The patterns are used
in the order that they are defined.

Example 23.36. I vy repository with multiple custom patterns
buil d. gradl e

repositories {
vy {
url "http://repo. nyconpany. coni repo”
| ayout "pattern”, {
artifact "3rd-party-artifacts/[organisation]/[nodule]/[revision]/[an

artifact "conpany-artifacts/[organisation]/[nodule]/[revision]/[arti
ivy "ivy-files/[organisation]/[nodule]/[revision]/ivy.xm"

Optionally, a repository with pattern layout can have its 'organisation’ part laid out in Maven style, with
forward slashes replacing dots as separators. For example, the organisation ny. conpany would then be
represented as my/ conpany.

Page 173 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String, groovy.lang.Closure)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String, groovy.lang.Closure)

Example 23.37. | vy repository with Maven compatible layout

bui | d. gradl e

repositories {
vy {
url "http://repo. nyconpany. coni repo"
| ayout "pattern”, {

artifact "[organisation]/[nodule]/[revision]/[artifact]-[revision].]
n2conpati ble = true

23.6.6.4. Accessing password protected Ivy repositories

To access an vy repository which uses basic authentication, you specify the username and password to use
when you define the repository:

Example 23.38. I vy repository
bui |l d. gradl e

repositories {
ivy {
url "http://repo. nyconpany. coni
credential s {
user nane 'user'’

password ' passwor d'

23.6.7. Supported repository transport protocols

Maven and lvy repositories support the use of various transport protocols. At the moment the following
protocols are supported:

Table 23.3. Repository transport protocols

Type Credential types
file none

http username/password
htt ps username/password
sftp username/password
s3 access key/secret key

To define arepository use the r eposi t ori es configuration block. Within ther eposi t or i es closure,
aMaven repository is declared with maven. An Ivy repository is declared with i vy. The transport protocol
is part of the URL definition for a repository. The following build script demonstrates how to create a

Page 174 of 561

HTTP-based Maven and lvy repository:

Example 23.39. Declaring a Maven and I vy repository
bui |l d. gradl e
repositories {

maven {
url "http://repo. nyconpany. com naven2"

}

ivy {
url "http://repo. nyconpany. coni r epo"

}

If authentication is required for a repository, the relevant credentials can be provided. The following
exampl e shows how to provide username/password-based authentication for SFTP repositories:

Example 23.40. Providing credentialsto a Maven and | vy repository
buil d. gradl e

repositories {
maven {
url "sftp://repo. myconpany. com 22/ naven2"
credentials {
user nane 'user'
password ' password’

}

vy {
url "sftp://repo. myconpany.com 22/ repo"
credentials {
user nane 'user'
password ' password’

When using an AWS S3 backed repository you need to authenticate using AwsCr edent i al s, providing
access-key and a private-key. The following example shows how to declare a S3 backed repository and
providing AWS credentials:

Page 175 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.credentials.AwsCredentials.html

Example 23.41. Declaring a S3 backed Maven and | vy repository
buil d. gradl e

repositories {
maven {
url "s3://nmyConpanyBucket/ maven2"
credenti al s(AwsCredential s) {
accessKey "soneKey"
secret Key "sonmeSecret"

}

vy {
url "s3://nmyConpanyBucket/ivyrepo"
credenti al s(AwsCredential s) {
accessKey "soneKey"
secret Key "sonmeSecret"

23.6.7.1. S3 configuration properties

The following system properties can be used to configure the interactions with s3 repositories:

Table 23.4. S3 Configuration Properties

Property Description

org.gradle.s3.endpoint Used to override the AWS S3 endpoint when using anon AWS, S3
API compatible, storage service.

org.gradle.s3.maxErrorRetry Specifies the maximum number of timesto retry arequest in the event
that the S3 server responds with a HT TP 5xx status code. When not
specified adefault value of 3 isused.

23.6.7.2. S3 URL formats

S3 URL's are 'virtual-hosted-style' and must be in the following format s3: / / <bucket Nane>[. <r egi onSpe
e.g.s3:// myBucket. s3. eu-central - 1. anazonaws. com maven/rel ease

* nyBucket isthe AWS S3 bucket name.
® s3.eu-central - 1. amazonaws. comisthe optional region specific endpoint.
* /maven/rel ease isthe AWS S3 key (unique identifier for an object within a bucket)

23.6.7.3. S3 proxy settings

A proxy for S3 can be configured using the following system properties:

® https. proxyHost
® https. proxyPort
® https. proxyUser
® https. proxyPassword

Page 176 of 561

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

® http. nonProxyHosts

If the 'org.gradle.s3.endpoint' property has been specified with a http (not https) URI the following system
proxy settings can be used:

® http. proxyHost
® http. proxyPort
® http. proxyUser
® http. proxyPassword
® http. nonProxyHosts

23.6.7.4. AWS S3 V4 Signatures (AWS4-HM A C-SHA 256)

Some of the AWS S3 regions (eu-central-1 - Frankfurt) require that all HTTP requests are signed in
accordance with AWS's signature version 4. It is recommended to specify S3 URL's containing the region
specific endpoint when using buckets that require V4 signatures. e.g. s3: / / sonebucket . s3. eu-central -

NOTE: When aregion-specific endpoint is not specified for buckets requiring V4 Signatures, Gradle
will use the default AWS region (us-east-1) and the following warning will appear on the console:
Attempting to re-send the request to with AWS V4 authentication. To avoid this warning in the
future, please use region-specific endpoint to access buckets located in regions that require V4
signing.

Failing to specify the region-specific endpoint for buckets requiring V4 signatures means:

® 3 round-trips to AW5, as opposed to one, for every file upload and downl
® Depending on location - increased network | atencies and sl ower builds.
® | ncreased |ikelihood of transm ssion failures.

23.6.7.5. Configuring HTTP authentication schemes

When configuring a repository using HTTP or HTTPS transport protocols, multiple authentication schemes
are available. By default, Gradle will attempt to use all schemes that are supported by the Apache HttpClient
library, documented here. In some cases, it may be preferable to explicitly specify which authentication
schemes should be used when exchanging credentials with a remote server. When explicitly declared, only
those schemes are used when authenticating to a remote repository. The following example show how to
configure arepository to use only digest authentication:

Page 177 of 561

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/authentication.html#d5e625

Example 23.42. Configurerepository to use only digest authentication
buil d. gradl e

repositories {
maven {
url '"https://repo. nyconpany. conl naven2'
credential s {
user nane 'user'
password ' password'

}

aut henti cation {
di gest (Di gest Aut henti cati on)

Currently supported authentication schemes are:

Table 23.5. Authentication schemes

Type Description

Basi cAut henti cati on Basic access authentication over HTTP. When using this scheme,
credentials are sent preemptively.

Di gest Aut henti cati on Digest access authentication over HTTP.

23.6.7.6. Using preemptive authentication

Gradle's default behavior is to only submit credentials when a server responds with an authentication
challenge in the form of aHTTP 401 response. In some cases, the server will respond with a different code
(ex. for repositories hosted on GitHub a 404 is returned) causing dependency resolution to fail. To get
around this behavior, credentials may be sent to the server preemptively. To enable preemptive
authentication simply configure your repository to explicitly usethe Basi cAut hent i cat i on scheme:

Example 23.43. Configurerepository to use preemptive authentication
bui |l d. gradl e

repositories {
maven {
url 'https://repo. myconpany. com maven2'
credentials {
user nane 'user'
password ' password’

}

aut henti cation {
basi c(Basi cAut henti cati on)

23.6.8. Working with repositories

To access arepository:

Page 178 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.authentication.http.BasicAuthentication.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.authentication.http.DigestAuthentication.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.authentication.http.BasicAuthentication.html

Example 23.44. Accessing a repository

bui | d. gradl e

println repositories.|ocal Repository. nane

println repositories['|ocal Repository']. nane

To configure arepository:

Example 23.45. Configuration of arepository
bui |l d. gradl e

repositories {
flatDir {
nane '| ocal Repository
}
}
repositories {
| ocal Repository {
dirs "lib
}
}

repositories.| ocal Repository {
dirs 'lib'

}

23.6.9. More about Ivy resolvers

Gradleis extremely flexible regarding repositories:

® There are many options for the protocol to communicate with the repository (e.g. filesystem, http, ssh,
sftp ...)

® The protocol sftp currently only supports username/password-based authentication.

¢ Each repository can have its own layout.

Let's say, you declare adependency onthej uni t: j uni t: 3. 8. 2 library. Now how does Gradlefind it in
the repositories? Somehow the dependency information has to be mapped to a path. In contrast to Maven,
where this path is fixed, with Gradle you can define a pattern that defines what the path will look like. Here
are some examples; [12

/1l Maven2 layout (if a repository is marked as Maven2 conpati bl e, the organi zat
soner oot / [organi sati on] /[nmodul e]/[revision]/[ndul e]-[revision].[ext]

/1 Typical layout for an Ivy repository (the organization is not split into subf
soner oot /[organi sation]/[nmodul e]/[revision]/[type]s/[artifact].[ext]

/1 Sinmple layout (the organization is not used, no nested folders.)
soneroot/[artifact]-[revision].[ext]

To add any kind of repository (you can pretty easy write your own ones) you can do:

Page 179 of 561

Example 23.46. Definition of a custom repository

bui | d. gradl e

repositories {
ivy {
ivyPattern "$projectDir/repo/[organisation]/[nmodul e]-ivy-[revision].xm"

artifactPattern "$projectDir/repo/[organisation]/[nodul e]-[revision](-[d

An overview of which Resolvers are offered by Ivy and thus also by Gradle can be found here. With Gradle
you just don't configure them via XML but directly viatheir API.

23.7. How dependency resolution works

Gradle takes your dependency declarations and repository definitions and attempts to download all of your
dependencies by a process called dependency resolution. Below is abrief outline of how this process works.

® Given arequired dependency, Gradle first attempts to resolve the module for that dependency. Each
repository is inspected in order, searching first for a module descriptor file (POM or Ivy file) that
indicates the presence of that module. If no module descriptor is found, Gradle will search for the
presence of the primary module artifact file indicating that the module exists in the repository.
® |f the dependency is declared as a dynamic version (like 1. +), Gradle will resolve this to the newest
available static version (like 1. 2) in the repository. For Maven repositories, thisis done using the maven-
file, while for Ivy repositories thisis done by directory listing.
¢ |f the module descriptor is a POM file that has a parent POM declared, Gradle will recursively
attempt to resolve each of the parent modules for the POM.
® Once each repository has been inspected for the module, Gradle will choose the 'best’ oneto use. Thisis
done using the following criteria
® For adynamic version, a'higher' static version is preferred over a'lower' version.
® Modules declared by a module descriptor file (Ivy or POM file) are preferred over modules that have
an artifact file only.
® Modulesfrom earlier repositories are preferred over modulesin later repositories.
When the dependency is declared by a static version and a module descriptor file is found in a
repository, there is no need to continue searching later repositories and the remainder of the process is
short-circuited.
® All of the artifacts for the module are then requested from the same repository that was chosen in the
process above.

23.8. Fine-tuning the dependency resolution
process

In most cases, Gradle's default dependency management will resolve the dependencies that you want in your
build. In some cases, however, it can be necessary to tweak dependency resolution to ensure that your build
receives exactly the right dependencies.

There are anumber of ways that you can influence how Gradle resolves dependencies.

Page 180 of 561

http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html

23.8.1. Forcing a particular module version

Forcing a module version tells Gradle to always use a specific version for given dependency (transitive or
not), overriding any version specified in a published module descriptor. This can be very useful when
tackling version conflicts - for more information see Section 23.2.3, “Resolve version conflicts’.

Force versions can also be used to deal with rogue metadata of transitive dependencies. If a transitive
dependency has poor quality metadata that leads to problems at dependency resolution time, you can force
Gradle to use a newer, fixed version of this dependency. For an example, seethe Resol uti onSt r at egy
class in the APl documentation. Note that 'dependency resolve rules (outlined below) provide a more
powerful mechanism for replacing a broken module dependency. See Section 23.8.2.3, “Blacklisting a
particular version with a replacement”.

23.8.2. Using dependency resolve rules

A dependency resolve rule is executed for each resolved dependency, and offers a powerful api for
manipulating a requested dependency prior to that dependency being resolved. This feature is incubating,
but currently offers the ability to change the group, name and/or version of a requested dependency,
allowing a dependency to be substituted with a completely different module during resolution.

Dependency resolve rules provide a very powerful way to control the dependency resolution process, and
can be used to implement all sorts of advanced patterns in dependency management. Some of these patterns
are outlined below. For more information and code samples see the Resol ut i onSt r at egy classin the
API documentation.

23.8.2.1. Modelling rel easeable units

Often an organisation publishes a set of libraries with a single version; where the libraries are built, tested
and published together. These libraries form a 'rel easable unit', designed and intended to be used as a whole.
It does not make sense to use libraries from different releasable units together.

But it is easy for transitive dependency resolution to violate this contract. For example:

®* nodul e- adependsonr el easabl e-unit: part-one: 1.0
® nodul e- b dependsonr el easabl e-unit:part-two: 1.1

A build depending on both nodul e- a and nodul e- b will obtain different versions of libraries within the
releasable unit.

Dependency resolve rules give you the power to enforce releasable units in your build. Imagine areleasable
unit defined by all libraries that have 'org.gradl€’ group. We can force all of these libraries to use a consi stent
version:

Page 181 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

Example 23.47. Forcing consistent version for a group of libraries

bui | d. gradl e

configurations.all {
resol utionStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.group == '"org.gradle') {

details.useVersion '1.4'

23.8.2.2. Implement a custom versioning scheme

In some corporate environments, the list of module versions that can be declared in Gradle builds is
maintained and audited externally. Dependency resolve rules provide a neat implementation of this pattern:

® In the build script, the developer declares dependencies with the module group and name, but uses a
placeholder version, for example: 'def aul t .

® The'default’ version isresolved to a specific version via a dependency resolve rule, which looks up the
version in a corporate catalog of approved modules.

This rule implementation can be neatly encapsulated in a corporate plugin, and shared across al builds
within the organisation.

Example 23.48. Using a custom ver sioning scheme
bui |l d. gradl e

configurations.all {
resol utionStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.version == "default') {
def version = findDefaultVersionlnCatal og(details.requested.group,
det ai | s. useVer si on versi on

def findDefaultVersionlnCatal og(String group, String name) {
/I some custom | ogic that resolves the default version into a specific versid
"1.0"

23.8.2.3. Blacklisting a particular version with a replacement

Dependency resolve rules provide a mechanism for blacklisting a particular version of a dependency and
providing areplacement version. This can be useful if a certain dependency version is broken and should not
be used, where a dependency resolve rule causes this version to be replaced with a known good version. One
example of a broken module is one that declares a dependency on a library that cannot be found in any of
the public repositories, but there are many other reasons why a particular module version is unwanted and a
different version is preferred.

Page 182 of 561

In example below, imagine that version 1. 2. 1 contains important fixes and should always be used in
preference to 1. 2. The rule provided will enforce just this: any time version 1. 2 is encountered it will be
replaced with 1. 2. 1. Note that thisis different from aforced version as described above, in that any other
versions of this module would not be affected. This means that the 'newest' conflict resolution strategy
would still select version 1. 3 if this version was also pulled transitively.

Example 23.49. Blacklisting a version with a replacement

bui | d. gradl e

configurations.all {
resol utionStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.group == 'org.software’ && detail s.requested. name
/lprefer different version which contains sone necessary fixes

details.useVersion '1.2. 1

23.8.2.4. Substituting a dependency module with a compatible replacement

At times a completely different module can serve as a replacement for a requested module dependency.
Examplesinclude using 'gr oovy' in place of 'gr oovy-al | , or using'l og4j - over - sl f 4j 'instead of 'l 0g4
'. Starting with Gradle 1.5 you can make these substitutions using dependency resolve rules:

Example 23.50. Changing dependency group and/or name at the resolution
bui |l d. gradl e

configurations.all {
resol utionStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.nane == 'groovy-all"') {
/I prefer 'groovy' over 'groovy-all':
detail s. useTarget group: details.requested. group, nane: 'groovy', vd

}

if (details.requested. name == 'l o0g4]"') ({
[l prefer 'log4j-over-sif4j' over 'log4]j', with fixed version:
detail s. useTarget "org.slf4j:1og4j-over-slf4j:1.7.10"

23.8.3. Dependency Substitution Rules

Dependency substitution rules work similarly to dependency resolve rules. In fact, many capabilities of
dependency resolve rules can be implemented with dependency substitution rules. They alow project and
module dependencies to be transparently substituted with specified replacements. Unlike dependency
resolve rules, dependency substitution rules allow project and module dependencies to be substituted
interchangeably.

NOTE: Adding a dependency substitution rule to a configuration changes the timing of when that

Page 183 of 561

configuration is resolved. Instead of being resolved on first use, the configuration is instead resolved
when the task graph is being constructed. This can have unexpected consequences if the configuration
is being further modified during task execution, or if the configuration relies on modules that are
published during execution of another task.

To explain:

® A Configurati on canbedeclared as an input to any Task, and that configuration can include
project dependencies when it is resolved.

* |f aproject dependency isan input to a Task (via a configuration), then tasks to built the project
artifacts must be added to the task dependencies.

® |norder to determine the project dependencies that are inputs to atask, Gradle needs to resolve the
Conf i gur ati on inputs.

® Because the Gradle task graph is fixed once task execution has commenced, Gradle needsto
perform this resolution prior to executing any tasks.

In the absence of dependency substitution rules, Gradle knows that an external module dependency
will never transitively reference a project dependency. This makes it easy to determine the full set of
project dependencies for a configuration through simple graph traversal. With this functionality,
Gradle can no longer make this assumption, and must perform afull resolve in order to determine the
project dependencies.

23.8.3.1. Substituting an external module dependency with a project dependency

One use case for dependency substitution is to use a locally developed version of a module in place of one
that is downloaded from an external repository. This could be useful for testing alocal, patched version of a
dependency.

The module to be replaced can be declared with or without a version specified.

Example 23.51. Substituting a module with a project

bui |l d. gradl e

configurations.all {
resol uti onStrat egy. dependencySubstitution {
substitute nodul e("org.utils:api”) with project(":api")

substitute nodul e("org.utils:util:2.5") with project(":util")

Note that a project that is substituted must be included in the multi-project build (via settings.gradle).
Dependency substitution rules take care of replacing the module dependency with the project dependency
and wiring up any task dependencies, but do not implicitly include the project in the build.

Page 184 of 561

23.8.3.2. Substituting a project dependency with a module replacement

Another way to use substitution rules is to replace a project dependency with a module in a multi-project
build. This can be useful to speed up development with a large multi-project build, by allowing a subset of
the project dependencies to be downloaded from arepository rather than being built.

The module to be used as a replacement must be declared with a version specified.

Example 23.52. Substituting a project with a module

bui |l d. gradl e

configurations.all {
resol utionStrat egy. dependencySubstitution {

substitute project(":api") with nmodul e("org.utils:api:1.3")

}

When a project dependency has been replaced with a module dependency, that project is till included in the
overall multi-project build. However, tasks to build the replaced dependency will not be executed in order to
build the resolve the depending Conf i gur ati on.

23.8.3.3. Conditionally substituting a dependency

A common use case for dependency substitution is to allow more flexible assembly of sub-projects within a
multi-project build. This can be useful for developing alocal, patched version of an external dependency or
for building a subset of the modules within alarge multi-project build.

The following example uses a dependency substitution rule to replace any module dependency with the
group "org.example", but only if alocal project matching the dependency name can be located.

Example 23.53. Conditionally substituting a dependency
buil d. gradl e

configurations.all {
resol uti onStrat egy. dependencySubstitution.all { DependencySubstitution depe
i f (dependency. requested instanceof Mdul eConponent Sel ect or && dependend
def targetProject = findProject(":${dependency.requested. nodul e}")
if (targetProject !'= null) {

dependency. useTar get target Proj ect

Note that a project that is substituted must be included in the multi-project build (via settings.gradie).
Dependency substitution rules take care of replacing the module dependency with the project dependency,
but do not implicitly include the project in the build.

Page 185 of 561

23.8.4. Specifying default dependencies for a configuration

A configuration can be configured with default dependencies to be used if no dependencies are explicitly set
for the configuration. A primary use case of this functionality is for developing plugins that make use of
versioned tools that the user might override. By specifying default dependencies, the plugin can use a
default version of the tool only if the user has not specified a particular version to use.

Example 23.54. Specifying default dependencies on a configuration

bui | d. gradl e

configurations {
pl ugi nTool {
def aul t Dependenci es { dependenci es ->

dependenci es. add(t hi s. proj ect. dependenci es. create("org. gradl e: my-uti

23.8.5. Enabling Ivy dynamic resolve mode

Gradle's vy repository implementations support the equivalent to Ivy's dynamic resolve mode. Normally,
Gradle will usether ev attribute for each dependency definition included inani vy. xm file. In dynamic
resolve mode, Gradle will instead prefer the r evConst r ai nt attribute over the r ev attribute for a given
dependency definition. If ther evConst r ai nt attribute is not present, ther ev attribute is used instead.

To enable dynamic resolve mode, you need to set the appropriate option on the repository definition. A
couple of examples are shown below. Note that dynamic resolve mode is only available for Gradle's vy
repositories. It is not available for Maven repositories, or custom lvy DependencyResol ver
implementations.

Example 23.55. Enabling dynamic resolve mode

bui |l d. gradl e

/'l Can enabl e dynam c resol ve node when you define the repository
repositories {
ivy {
url "http://repo. myconpany. conirepo"
resol ve. dynani cMbde = true

}

// Can use a rule instead to enable (or disable) dynam c resolve node for all rd
repositories.w thType(lvyArtifactRepository) {
resol ve. dynani cMbde = true

}

Page 186 of 561

23.8.6. Component metadata rules

Each module (also called component) has metadata associated with it, such as its group, name, version,
dependencies, and so on. This metadata typically originates in the modul€e's descriptor. Metadata rules allow
certain parts of a modul€'s metadata to be manipulated from within the build script. They take effect after a
modul€'s descriptor has been downloaded, but before it has been selected among all candidate versions. This
makes metadata rules another instrument for customizing dependency resolution.

One piece of module metadata that Gradle understands is a module's status scheme. This concept, also
known from lvy, models the different levels of maturity that a module transitions through over time. The
default status scheme, ordered from least to most mature status, isi nt egr ati on, mi | est one, r el ease
. Apart from a status scheme, a module also has a (current) status, which must be one of the values in its
status scheme. If not specified in the (Ivy) descriptor, the status defaultsto i nt egr at i on for Ivy modules
and Maven snapshot modules, and r el ease for Maven modules that aren't snapshots.

A modul€e's status and status scheme are taken into consideration when a | at est version selector is
resolved. Specifically, | at est . soneSt at us will resolve to the highest module version that has status sone St
or a more mature status. For example, with the default status scheme in place, | at est . i nt egrati on

will select the highest module version regardless of its status (because i nt egr at i on is the least mature
status), whereas | at est . r el ease will select the highest module version with status r el ease. Hereis
what thislooks like in code:

Example 23.56. 'L atest' version selector

buil d. gradl e

dependenci es {
configl "org.sanple:client:|atest.integration”
config2 "org.sanple:client:|atest.rel ease"

}

task listConfigs << {
configurations.configl.each { println it.name }
println()
configurations.config2.each { println it.name}

Output of gradl e -qg |istConfigs

> gradle -q listConfigs
client-1.5.jar

client-1.4.jar

The next example demonstrates | at est selectors based on a custom status scheme declared in a
component metadata rule that appliesto al modules:

Page 187 of 561

Example 23.57. Custom status scheme

bui | d. gradl e

dependenci es {
config3 "org.sanpl e: api:latest.silver"
conponents {
all { Conponent Met adat aDetails details ->
if (details.id.group == "org.sanple" &% details.id.nane == "api") {

detail s. statusScheme = ["bronze", "silver", "gold", "platinuni]

Component metadata rules can be applied to a specified module. Modules must be specified in the form of
"group:module”.

Example 23.58. Custom status scheme by module
bui |l d. gradl e

dependenci es {
config4 "org.sanple:lib:latest.prod"
conponents {
wi t hModul e(' org. sanpl e: i b") { Conponent Met adat aDetails details ->
details.statusScheme = ["int", "rc", "prod"]

Gradle can also create component metadata rules utilizing Ivy-specific metadata for modules resolved from
an lvy repository. Values from the vy descriptor are made available via the | vyModul eDescri pt or
interface.

Example 23.59. | vy component metadata rule
buil d. gradl e

dependenci es {
config6 "org.sanple:lib:latest.rc"
conponents {
wi t hModul e("org. sanpl e: |1 b") { Conponent Met adat aDetails details, |vyMd
if (ivyMdul e.branch == "testing') {

details.status = "rc"

Note that any rule that declares specific arguments must always include a
Conmponent Met adat aDet ai | s argument as the first argument. The second Ivy metadata argument is
optional.

Component metadata rules can also be defined using a rule source object. A rule source object is any object

Page 188 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html

that contains exactly one method that defines the rule action and is annotated with @vut at e.
This method:

® must return void.
* must have Conponent Met adat aDet ai | s asthe first argument.
® may have an additional parameter of type| vyModul eDescri pt or.

Example 23.60. Rule sour ce component metadata rule
bui |l d. gradl e

dependenci es {
config5 "org.sanpl e: api : | atest. gol d"
conponents {
wi t hModul e(' org. sanpl e: api ', new Custontt at usRul e())
}
}

cl ass CustonttatusRul e {

@t at e
voi d set St at usSchene(Conponent Met adat aDetails details) {
detail s. statusScheme = ["bronze", "silver", "gold", "platinuni]

}

23.8.7. Component Selection Rules

Component selection rules may influence which component instance should be selected when multiple
versions are available that match a version selector. Rules are applied against every available version and
allow the version to be explicitly rejected by rule. This allows Gradle to ignore any component instance that
does not satisfy conditions set by the rule. Examples include:

® For adynamic version like '1.+' certain versions may be explicitly rejected from selection
* For adtatic version like '1.4' an instance may be rejected based on extra component metadata such as the
Ivy branch attribute, allowing an instance from a subsequent repository to be used.

Rules are configured via the Conponent Sel ecti onRul es object. Each rule configured will be called
with a Conponent Sel ect i on object as an argument which contains information about the candidate
version being considered. Calling Conponent Sel ection. rej ect(java.l ang. String) causes
the given candidate version to be explicitly rejected, in which case the candidate will not be considered for
the selector.

The following example shows a rule that disallows a particular version of a module but allows the dynamic
version to choose the next best candidate.

Page 189 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.ComponentSelectionRules.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.ComponentSelection.html#org.gradle.api.artifacts.ComponentSelection:reject(java.lang.String)

Example 23.61. Component selection rule
buil d. gradl e

configurations {
rej ectConfig {
resol utionStrategy {
conponent Sel ecti on {

/'l Accept the highest version matching the requested version thg

all { Component Sel ection sel ection ->
if (selection.candidate.group == 'org.sanple' && sel ection.d
selection.reject("version 1.5 is broken for 'org.sanple:

}

dependenci es {
rejectConfig "org. sanple: api : 1. +"

}

Note that version selection is applied starting with the highest version first. The version selected will be the
first version found that all component selection rules accept. A version is considered accepted no rule
explicitly rejectsit.

Similarly, rules can be targeted at specific modules. Modules must be specified in the form of
"group:module”.

Example 23.62. Component selection rule with module tar get
bui |l d. gradl e

configurations {
target Config {
resol utionStrategy {
conmponent Sel ecti on {
wi t hModul e("org. sanpl e: api ") { Conponent Sel ecti on sel ection ->
if (selection.candidate.version == "1.5") {

sel ection.reject("version 1.5 is broken for 'org.sanple:

}

Component selection rules can also consider component metadata when selecting a version. Possible
metadata arguments that can be considered are Conponent Met adat a and | vyModul eDescri pt or.

Page 190 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Example 23.63. Component selection rule with metadata
buil d. gradl e

configurations {
nmet adat aRul esConfi g {
resol utionStrategy {
conponent Sel ecti on {

/'l Reject any versions with a status of 'experinental’
all { Component Sel ection sel ecti on, Conponent Met adat a net adata -
if (selection.candidate.group == 'org.sanple' && metadat a. st
sel ection.reject("don't use experinental candidates fror

}
}

/'l Accept the highest version with either a "rel ease" branch or
wi t hModul e(' org. sanpl e: api ') { Conponent Sel ecti on sel ection, Iv
if (descriptor.branch != "rel ease" && netadata.status !="'m
sel ection.reject ("' org. sanpl e: api' nust have testing bra

}

Note that a Conponent Sel ect i on argument is always required as the first parameter when declaring a
component selection rule with additional Ivy metadata parameters, but the metadata parameters can be
declared in any order.

Lastly, component selection rules can also be defined using a rule source object. A rule source object is any
object that contains exactly one method that defines the rule action and is annotated with @vut at e.

This method:

® must return void.
* must have Conponent Sel ect i on asthefirst argument.
* may have additional parameters of type Conponent Met adat a and/or | vyModul eDescri pt or.

Page 191 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Example 23.64. Component selection rule using a rule sour ce object
buil d. gradl e

cl ass Rej ect Test Branch {
@t at e
voi d eval uat eRul e(Component Sel ecti on sel ection, |vyMdul eDescriptor ivy) {
if (ivy.branch == "test") {
sel ection.reject("reject test branch")

configurations {
rul eSour ceConfig {
resol uti onStrategy {
conponent Sel ecti on {
all new Rej ect Test Branch()

23.8.8. Module replacement rules

Module replacement rules allow a build to declare that a legacy library has been replaced by a new one. A
good example when a new library replaced a legacy one is the "google-collections" -> "guava' migration.
The team that created google-collections decided to change the module name from
"com.google.collections.google-collections” into "com.google.guava:guava’'. This a legal scenario in the
industry: teams need to be able to change the names of products they maintain, including the module
coordinates. Renaming of the module coordinates has impact on conflict resolution.

To explain the impact on conflict resolution, let's consider the "google-collections' -> "guava' scenario. It
may happen that both libraries are pulled into the same dependency graph. For example, "our" project
depends on guava but some of our dependencies pull in a legacy version of google-collections. This can
cause runtime errors, for example during test or application execution. Gradle does not automatically resolve
the google-collections VS guava conflict because it is not considered as a "version conflict”. It's because the
module coordinates for both libraries are completely different and conflict resolution is activated when
"group” and "name" coordinates are the same but there are different versions available in the dependency
graph (for more info, please refer to the section on conflict resolution). Traditional remedies to this problem
are;

® Declare exclusion rule to avoid pulling in "google-collections' to graph. It is probably the most popular
approach.

Avoid dependenciesthat pull in legacy libraries.

* Upgrade the dependency version if the new version no longer pullsin alegacy library.

* Downgrade to "google-collections'. It's not recommended, just mentioned for completeness.

Traditional approaches work but they are not general enough. For example, an organisation wants to resolve
the google-collections VS guava conflict resolution problem in all projects. Starting from Gradle 2.2 it is

Page 192 of 561

possible to declare that certain module was replaced by other. This enables organisations to include the
information about module replacement in the corporate plugin suite and resolve the problem holistically for
all Gradle-powered projectsin the enterprise.

Example 23.65. Declaring module replacement

bui | d. gradl e

dependenci es {
nodul es {
nmodul e(" com googl e. col | ecti ons: googl e-col | ecti ons") {

repl acedBy(" com googl e. guava: guava")

For more examples and detailed API, please refer to the DSL reference for
Conponent Met adat aHandl er .

What happens when we declare that "google-collections' are replaced by "guava'? Gradle can use this
information for conflict resolution. Gradle will consider every version of "guava' newer/better than any
version of "google-collections'. Also, Gradle will ensure that only guava jar is present in the classpath /
resolved file list. Please note that if only "google-collections' appears in the dependency graph (e.g. no
"guava') Gradle will not eagerly replace it with "guava'. Module replacement is an information that Gradle
uses for resolving conflicts. If there is no conflict (e.g. only "google-collections’ or only "guava' in the
graph) the replacement information is not used.

Currently it is not possible to declare that certain modules is replaced by a set of modules. However, it is
possible to declare that multiple modules are replaced by a single module.

23.9. The dependency cache

Gradle contains a highly sophisticated dependency caching mechanism, which seeks to minimise the
number of remote requests made in dependency resolution, while striving to guarantee that the results of
dependency resolution are correct and reproducible.

The Gradle dependency cache consists of 2 key types of storage:

* A file-based store of downloaded artifacts, including binaries like jars as well as raw downloaded
meta-data like POM files and lvy files. The storage path for a downloaded artifact includes the SHA1
checksum, meaning that 2 artifacts with the same name but different content can easily be cached.

® A binary store of resolved module meta-data, including the results of resolving dynamic versions,
module descriptors, and artifacts.

Separating the storage of downloaded artifacts from the cache metadata permits us to do some very powerful
things with our cache that would be difficult with a transparent, file-only cache layout.

The Gradle cache does not allow the local cache to hide problems and create other mysterious and difficult
to debug behavior that has been a challenge with many build tools. This new behavior isimplemented in a
bandwidth and storage efficient way. In doing so, Gradle enables reliable and reproducible enterprise builds.

Page 193 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.dsl.ComponentMetadataHandler.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.dsl.ComponentMetadataHandler.html

23.9.1. Key features of the Gradle dependency cache

23.9.1.1. Separate metadata cache

Gradle keeps a record of various aspects of dependency resolution in binary format in the metadata cache.
The information stored in the metadata cache includes:

® The result of resolving adynamic version (e.g. 1. +) to aconcrete version (e.g. 1. 2).

® The resolved module metadata for a particular module, including module artifacts and module
dependencies.

® Theresolved artifact metadata for a particular artifact, including a pointer to the downloaded artifact file.

® The absence of a particular module or artifact in a particular repository, eliminating repeated attemptsto
access aresource that does not exist.

Every entry in the metadata cache includes a record of the repository that provided the information as well
as atimestamp that can be used for cache expiry.

23.9.1.2. Repository caches are independent

As described above, for each repository there is a separate metadata cache. A repository is identified by its
URL, type and layout. If amodule or artifact has not been previously resolved from this repository, Gradle
will attempt to resolve the module against the repository. This will always involve a remote lookup on the
repository, however in many cases no download will be required (seeSection 23.9.1.3, “Artifact reuse”,
below).

Dependency resolution will fail if the required artifacts are not available in any repository specified by the
build, even if the local cache has a copy of this artifact which was retrieved from a different repository.
Repository independence allows builds to be isolated from each other in an advanced way that no build tool
has done before. Thisis akey feature to create builds that are reliable and reproducible in any environment.

23.9.1.3. Artifact reuse

Before downloading an artifact, Gradle tries to determine the checksum of the required artifact by
downloading the sha file associated with that artifact. If the checksum can be retrieved, an artifact is not
downloaded if an artifact already exists with the same id and checksum. If the checksum cannot be retrieved
from the remote server, the artifact will be downloaded (and ignored if it matches an existing artifact).

As well as considering artifacts downloaded from a different repository, Gradle will also attempt to reuse
artifacts found in the local Maven Repository. If a candidate artifact has been downloaded by Maven, Gradle
will usethis artifact if it can be verified to match the checksum declared by the remote server.

23.9.1.4. Checksum based storage

It is possible for different repositories to provide a different binary artifact in response to the same artifact
identifier. This is often the case with Maven SNAPSHOT artifacts, but can also be true for any artifact
which is republished without changing it's identifier. By caching artifacts based on their SHA1 checksum,
Gradle is able to maintain multiple versions of the same artifact. This means that when resolving against one
repository Gradle will never overwrite the cached artifact file from a different repository. This is done
without requiring a separate artifact file store per repository.

Page 194 of 561

23.9.1.5. Cache Locking

The Gradle dependency cache uses file-based locking to ensure that it can safely be used by multiple Gradle
processes concurrently. The lock is held whenever the binary meta-data store is being read or written, but is
released for slow operations such as downloading remote artifacts.

23.9.2. Command line options to override caching

23.9.2.1. Offline

The - - of f | i ne command line switch tells Gradle to always use dependency modules from the cache,
regardless if they are due to be checked again. When running with offline, Gradle will never attempt to
access the network to perform dependency resolution. If required modules are not present in the dependency
cache, build execution will fail.

23.9.2.2. Refresh

At times, the Gradle Dependency Cache can be out of sync with the actual state of the configured
repositories. Perhaps a repository was initially misconfigured, or perhaps a “non-changing” module was
published incorrectly. To refresh all dependencies in the dependency cache, usethe - - r ef r esh- dependenci ¢
option on the command line.

The - -refresh- dependenci es option tells Gradle to ignore all cached entries for resolved modules
and artifacts. A fresh resolve will be performed against all configured repositories, with dynamic versions
recal culated, modules refreshed, and artifacts downloaded. However, where possible Gradle will check if the
previously downloaded artifacts are valid before downloading again. This is done by comparing published
SHA1 valuesin the repository with the SHA1 values for existing downloaded artifacts.

23.9.3. Fine-tuned control over dependency caching

Y ou can fine-tune certain aspects of caching using the Resol ut i onSt r at egy for a configuration.

By default, Gradle caches dynamic versions for 24 hours. To change how long Gradle will cache the
resolved version for adynamic version, use:

Example 23.66. Dynamic version cache control

bui | d. gradl e

configurations.all {
resol uti onStrat egy. cacheDynam cVer si onsFor 10, 'm nutes'

}

By default, Gradle caches changing modules for 24 hours. To change how long Gradle will cache the
meta-data and artifacts for a changing module, use:

Page 195 of 561

Example 23.67. Changing module cache control
buil d. gradl e

configurations.all {

resol utionStrat egy. cacheChangi nghdul esFor 4, 'hours'

}

For more details, take alook at the APl documentation for Resol ut i onSt r at egy.

23.10. Strategies for transitive dependency
management

Many projects rely on the Maven Central repository. Thisis not without problems.

® The Maven Central repository can be down or can be slow to respond.

* The POM files of many popular projects specify dependencies or other configuration that are just plain
wrong (for instance, the POM file of the “conmons- ht t pcl i ent - 3. 0" module declares JUnit as a
runtime dependency).

* For many projects there is not one right set of dependencies (as more or less imposed by the POM
format).

If your project relies on the Maven Central repository you are likely to need an additional custom repository,
because:

® Y ou might need dependencies that are not uploaded to Maven Central yet.

® Youwant to deal properly with invalid metadatain a Maven Central POM file.

® You don't want to expose people to the downtimes or slow response of Maven Central, if they just want
to build your project.

It is not a big deal to set-up a custom repository, [13] put it can be tedious to keep it up to date. For a new
version, you always have to create the new XML descriptor and the directories. Y our custom repository is
another infrastructure element which might have downtimes and needs to be updated. To enable historical
builds, you need to keep all the past libraries, not to mention a backup of these. It is another layer of
indirection. Another source of information you have to lookup. All thisis not really a big deal but in its sum
it has an impact. Repository managers like Artifactory or Nexus make this easier, but most open source
projects don't usually have a host for those products. Thisis changing with new services like Bintray that let
developers host and distribute their release binaries using a self-service repository platform. Bintray also
supports sharing approved artifacts though the JCenter public repository to provide a single resolution
address for al popular OSS Java artifacts (see Section 23.6.2, “Maven JCenter repository™).

This is a common reason why many projects prefer to store their libraries in their version control system.
This approach is fully supported by Gradle. The libraries can be stored in aflat directory without any XML
module descriptor files. Yet Gradle offers complete transitive dependency management. Y ou can use either
client module dependencies to express the dependency relations, or artifact dependenciesin case afirst level
dependency has no transitive dependencies. People can check out such a project from your source code
control system and have everything necessary to build it.

Page 196 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
https://repo1.maven.org/maven2
http://bintray.com
http://jcenter.bintray.com

If you are working with a distributed version control system like Git you probably don't want to use the
version control system to store libraries as people check out the whole history. But even here the flexibility
of Gradle can make your life easier. For example, you can use a shared flat directory without XML
descriptors and yet you can have full transitive dependency management, as described above.

You could also have a mixed strategy. If your main concern is bad metadata in the POM file and
maintaining custom XML descriptors, then Client Modules offer an alternative. However, you can still use a
Maven2 repo or your custom repository as a repository for jars only and still enjoy transitive dependency
management. Or you can only provide client modules for POMs with bad metadata. For the jars and the
correct POMs you still use the remote repository.

23.10.1. Implicit transitive dependencies

There is another way to deal with transitive dependencies without XML descriptor files. You can do this
with Gradle, but we don't recommend it. We mention it for the sake of completeness and comparison with
other build tools.

The trick is to use only artifact dependencies and group them in lists. This will directly express your first
level dependencies and your transitive dependencies (see Section 23.4.8, “Optional attributes’). The
problem with thisis that Gradle dependency management will see this as specifying al dependencies as first
level dependencies. The dependency reports won't show your real dependency graph and the conpi | e task
uses all dependencies, not just the first level dependencies. All in al, your build is less maintainable and
reliable than it could be when using client modules, and you don't gain anything.

[10] Gradle supports partial multiproject builds (see Chapter 24, Multi-project Builds).
[11] http://books.sonatype.com/mvnref-book/reference/pom-rel ationshi ps-sect-project-rel ationships.html

[12] At http://ant.apache.org/ivy/history/latest-milestone/concept.ntml you can learn more about ivy
patterns.

[13] If you want to shield your project from the downtimes of Maven Central things get more complicated.
Y ou probably want to set-up a repository proxy for this. In an enterprise environment this is rather common.
For an open source project it looks like overkill.

Page 197 of 561

http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-relationships.html
http://ant.apache.org/ivy/history/latest-milestone/concept.html

24

Multi-project Builds

The powerful support for multi-project builds is one of Gradle's unique selling points. This topic is also the
most intellectually challenging.

A multi-project build in gradle consists of one root project, and one or more subprojects that may also have
subprojects.

24.1. Cross project configuration

While each subproject could configure itself in complete isolation of the other subprojects, it is common that
subprojects share common traits. It is then usually preferable to share configurations among projects, so the
same configuration affects several subprojects.

Let's start with a very simple multi-project build. Gradle is a general purpose build tool at its core, so the
projects don't have to be Java projects. Our first examples are about marine life.

24.1.1. Configuration and execution

Section 20.1, “Build phases’ describes the phases of every Gradle build. Let's zoom into the configuration
and execution phases of a multi-project build. Configuration here means executing the bui | d. gr adl e file
of a project, which implies e.g. downloading al plugins that were declared using 'appl y pl ugi n'. By
default, the configuration of all projects happens before any task is executed. This means that when a single
task, from a single project is requested, all projects of multi-project build are configured first. The reason
every project needs to be configured is to support the flexibility of accessing and changing any part of the
Gradle project model.

24.1.1.1. Configuration on demand

The Configuration injection feature and access to the complete project model are possible because every
project is configured before the execution phase. Y et, this approach may not be the most efficient in a very
large multi-project build. There are Gradle builds with a hierarchy of hundreds of subprojects. The
configuration time of huge multi-project builds may become noticeable. Scalability is an important
requirement for Gradle. Hence, starting from version 1.4 a new incubating 'configuration on demand' mode
isintroduced.

Configuration on demand mode attempts to configure only projects that are relevant for requested tasks, i.e.
it only executes the bui | d. gr adl e file of projects that are participating in the build. This way, the
configuration time of alarge multi-project build can be reduced. In the long term, this mode will become the
default mode, possibly the only mode for Gradle build execution. The configuration on demand feature is

Page 198 of 561

incubating so not every build is guaranteed to work correctly. The feature should work very well for
multi-project builds that have decoupled projects (Section 24.9, “Decoupled Projects’). In “configuration on
demand” mode, projects are configured as follows:

® Theroot project is aways configured. Thisway the typical common configuration is supported
(alprojects or subprojects script blocks).

® The project in the directory where the build is executed is a so configured, but only when Gradle is
executed without any tasks. This way the default tasks behave correctly when projects are configured on
demand.

® The standard project dependencies are supported and makes relevant projects configured. If project A
has a compile dependency on project B then building A causes configuration of both projects.

* Thetask dependencies declared viatask path are supported and cause relevant projectsto be configured.
Example: someTask.dependsOn(":someOtherProject:someOther Task™)

* A task requested viatask path from the command line (or Tooling API) causes the relevant project to be
configured. For example, building 'projectA:projectB:someTask' causes configuration of projectB.

Eager to try out this new feature? To configure on demand with every build run see Section 11.1,
“Configuring the build environment via gradle.properties’. To configure on demand just for a given build
please see Appendix D, Gradle Command Line.

24.1.2. Defining common behavior

Let'slook at some examples with the following project tree. Thisis a multi-project build with a root project
named wat er and a subproject named bl uewhal e.

Example 24.1. M ulti-project tree - water & bluewhale projects

Build layout

wat er /
bui | d. gradl e

settings. gradle
bl uewhal e/

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/first Exang
inthe‘-al’ distribution of Gradle.

settings.gradle

i ncl ude ' bl uewnhal e'

And where is the build script for the bl uewhal e project? In Gradle build scripts are optional. Obviously
for asingle project build, a project without a build script doesn't make much sense. For multiproject builds
the situation is different. Let'slook at the build script for the wat er project and executeit:

Page 199 of 561

Example 24.2. Build script of water (parent) project
buil d. gradl e

Closure cl = { task -> println "I'm $task. proj ect.nane" }
task hello << cl

project (' :bluewhale") {
task hello << ¢

}

Output of gradl e -q hell o

> gradle -q hello
I'' m wat er
1" m bl uewhal e

Gradle allows you to access any project of the multi-project build from any build script. The Project API
provides a method called pr oj ect () , which takes a path as an argument and returns the Project object for
this path. The capability to configure a project build from any build script we call cross project
configuration. Gradle implements this via configuration injection.

We are not that happy with the build script of the wat er project. It isinconvenient to add the task explicitly
for every project. We can do better. Let's first add another project called kri | | to our multi-project build.
Example 24.3. Multi-project tree - water, bluewhale & krill projects

Build layout

wat er /
bui | d. gradl e

settings. gradle
bl uewhal e/
krill/

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/addKrill/v
inthe *-all’ distribution of Gradle.

settings.gradle

i ncl ude ' bl uewhale', "krill'

Now we rewrite the wat er build script and boil it down to asingleline.

Page 200 of 561

Example 24.4. Water project build script

bui | d. gradl e

al | projects {
task hello << { task -> println "I'm $task. proj ect. nane" }

}

Output of gradl e -q hello

> gradle -q hello
I'''mwat er

1" m bl uewhal e
I"mkrill

Is this coal or is this cool? And how does this work? The Project API provides a property al | proj ects
which returns a list with the current project and all its subprojects underneath it. If you call al | proj ects
with a closure, the statements of the closure are delegated to the projects associated with al | pr oj ect s.
You could also do aniteration viaal | pr oj ect s. each, but that would be more verbose.

Other build systems use inheritance as the primary means for defining common behavior. We also offer
inheritance for projects as you will see later. But Gradle uses configuration injection as the usual way of
defining common behavior. We think it provides a very powerful and flexible way of configuring
multiproject builds.

Another possibilty for sharing configuration is to use a common external script. See Section 41.3,
“Configuring the project using an externa build script” for more information.

24.2. Subproject configuration

The Project API aso provides a property for accessing the subprojects only.

24.2.1. Defining common behavior
Example 24.5. Defining common behavior of all projectsand subprojects
bui |l d. gradl e

al | projects {
task hello << {task -> println "I'm $t ask. proj ect. nane" }

}

subproj ects {
hello << {println "- | depend on water"}

}

Outputof gradl e -q hello

> gradle -q hello
1" m wat er

1" m bl uewhal e

- | depend on water
I"mkrill

- | depend on water

Page 201 of 561

Y ou may notice that there are two code snippets referencing the “hel | 0” task. The first one, which uses the

“t ask” keyword, constructs the task and provides it's base configuration. The second piece doesn't usethe“t ask
" keyword, as it is further configuring the existing “hel | 0” task. You may only construct atask oncein a
project, but you may add any number of code blocks providing additional configuration.

24.2.2. Adding specific behavior

Y ou can add specific behavior on top of the common behavior. Usually we put the project specific behavior
in the build script of the project where we want to apply this specific behavior. But as we have already seen,
we don't have to do it this way. We could add project specific behavior for the bl uewhal e project like
this:

Example 24.6. Defining specific behaviour for particular project

bui |l d. gradl e

al | projects {
task hello << {task -> println "I'm $t ask. proj ect. nane" }

}
subproj ects {
hello << {println "- | depend on water"}
}
project (' :bluewhale').hello << {
println "- I"'mthe largest aninmal that has ever lived on this planet."

}

Output of gradl e -q hello

> gradle -q hello

I'"'m wat er

1" m bl uewhal e

- | depend on water

- I"'mthe largest animal that has ever lived on this planet.
I"mkrill

| depend on water

Aswe have said, we usually prefer to put project specific behavior into the build script of this project. Let's
refactor and also add some project specific behavior tothekri | | project.

Page 202 of 561

Example 24.7. Defining specific behaviour for project krill

Build layout

wat er /
bui |l d. gradl e
settings. gradle
bl uewhal e/

bui | d. gradl e
krill/
bui | d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul t i proj ect/ spreadSpec
inthe ‘-all’ distribution of Gradle.

settings.gradle

i nclude ' bluewhale', "krill"®

bl uewhal e/ bui | d. gradl e

hel | 0. doLast {
println "- I'mthe |largest aninmal that has ever lived on this planet."

}

krill/build.gradle

hel | 0. doLast {
println "- The wei ght of nmy species in summer is twi ce as heavy as all human ¢t

}

bui |l d. gradl e

al | projects {

task hello << {task -> println "I'm $t ask. proj ect. nane" }
}
subproj ects {

hello << {println "- | depend on water"}

}

Outputof gradl e -q hello

> gradle -q hello

I'''mwat er

I m bl uewhal e

- | depend on water

- I"'mthe largest animal that has ever lived on this planet.

I"mkrill

| depend on water

- The weight of ny species in sumrer is twice as heavy as all human beings.

24.2.3. Project filtering

To show more of the power of configuration injection, let's add another project called t r opi cal Fi sh and
add more behavior to the build via the build script of the wat er project.

Page 203 of 561

24.2.3.1. Filtering by name

Example 24.8. Adding custom behaviour to some projects (filtered by project name)

Build layout

wat er /
bui | d. gradl e
settings. gradle
bl uewhal e/

bui |l d. gradl e
krill/

bui | d. gradl e
tropi cal Fi sh/

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ addTr opi ce
inthe ‘-all’ distribution of Gradle.

settings.gradle

i ncl ude 'bluewhale', "krill', 'tropical Fish

bui |l d. gradl e

al | projects {
task hello << {task -> println "|I'm $t ask. proj ect. nane" }
}
subproj ects {
hello << {println "- | depend on water"}
}
configure(subprojects.findAll {it.name != "tropical Fish'}) {
hello << {println '- | love to spend tine in the arctic waters."}

}

Outputof gradl e -q hello

> gradle -q hello

1" m wat er

1" m bl uewhal e

- | depend on water

-1 love to spend tine in the arctic waters.

- I'"'mthe largest aninmal that has ever lived on this planet.
I"mkrill

| depend on water

-1 love to spend tine in the arctic waters.

- The weight of ny species in sumer is twice as heavy as all human bei ngs.
I'"mtropical Fi sh

| depend on water

Theconfi gur e() method takes alist as an argument and applies the configuration to the projects in this
list.

24.2.3.2. Filtering by properties

Using the project name for filtering is one option. Using extra project properties is another. (See
Section 16.4.2, “Extra properties’ for more information on extra properties.)

Page 204 of 561

Example 24.9. Adding custom behaviour to some projects (filtered by project properties)

Build layout

wat er /
bui | d. gradl e
settings. gradl e
bl uewhal e/

bui |l d. gradl e
krill/

bui | d. gradl e
t ropi cal Fi sh/

bui |l d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/tropi cal W
inthe*-all’ distribution of Gradle.

settings.gradle

i nclude ' bluewhale', "krill"', 'tropical Fish

bl uewhal e/ bui | d. gradl e

ext.arctic = true
hel | 0. doLast {
println "- I'mthe |argest aninmal that has ever lived on this planet."

}

krill/build.gradle

ext.arctic = true
hel | 0. doLast {
println "- The weight of my species in summer is twice as heavy as all humar

}

tropi cal Fi sh/ buil d. gradl e

ext.arctic = fal se

buil d. gradl e

al | projects {
task hello << {task -> println "I'm $t ask. proj ect. nane" }
}
subproj ects {
hel l o {
doLast {println "- | depend on water"}

afterEvaluate { Project project ->
if (project.arctic) { doLast {
println '- | love to spend tinme in the arctic waters.' }

Output of gradl e -q hello

Page 205 of 561

\%

gradle -q hello
''m wat er
''m bl uewhal e
| depend on water
I"mthe largest animal that has ever lived on this planet.
I love to spend tinme in the arctic waters.
"mkrill
| depend on water
The wei ght of ny species in sunmer is twice as heavy as all hunman bei ngs.
I love to spend tinme in the arctic waters.
"mtropical Fi sh
| depend on water

In the build file of thewat er project weusean af t er Eval uat e notification. This means that the closure
we are passing gets evaluated after the build scripts of the subproject are evaluated. As the property ar cti c

is set in those build scripts, we have to do it this way. Y ou will find more on this topic in Section 24.6,
“Dependencies - Which dependencies?’

24.3. Execution rules for multi-project builds

When we executed the hel | o task from the root project dir, things behaved in an intuitive way. All the hel | o
tasks of the different projects were executed. Let's switch to the bl uewhal e dir and see what happens if
we execute Gradle from there.

Example 24.10. Running build from subpr oj ect
Output of gradl e -q hello

> gradle -q hello

1" m bl uewhal e

- | depend on water

- I'"'mthe largest aninmal that has ever lived on this planet.
-1 love to spend tine in the arctic waters.

The basic rule behind Gradl€e's behavior is simple. Gradle looks down the hierarchy, starting with the
current dir, for tasks with the name hel | o and executes them. One thing is very important to note. Gradle
always evaluates every project of the multi-project build and creates all existing task objects. Then,
according to the task name arguments and the current dir, Gradle filters the tasks which should be executed.
Because of Gradle's cross project configuration every project has to be evaluated before any task gets
executed. We will have a closer look at this in the next section. Let's now have our last marine example.
Let'sadd atask to bl uewhal e andkri | I .

Page 206 of 561

Example 24.11. Evaluation and execution of projects

bl uewhal e/ bui | d. gradl e

ext.arctic = true
hello << { println "- I"'mthe |argest aninmal that has ever lived on this planet.

task di stanceTol ceberg << {
println '20 nautical mles'

}

krill/build.gradle

ext.arctic = true
hel l o << {
println "- The weight of my species in summer is twice as heavy as all humar

}

task di stanceTol ceberg << {
println '5 nautical mles’

}

Output of gradl e -qg di stanceTol ceberg

> gradle -q distanceTol ceberg
20 nautical mles
5 nautical niles

Here's the output without the - g option:

Example 24.12. Evaluation and execution of projects
Output of gr adl e di st anceTol ceberg

> gradl e di stanceTol ceberg

1 bl uewhal e: di st anceTol ceberg
20 nautical mles
ckrill:distanceTol ceberg

5 nautical mles

BU LD SUCCESSFUL

Total tinme: 1 secs

The build is executed from the wat er project. Neither wat er nor t r opi cal Fi sh have atask with the
name di st anceTol ceber g. Gradle does not care. The simple rule mentioned already above is. Execute
all tasks down the hierarchy which have this name. Only complain if thereis no such task!

24.4. Running tasks by their absolute path

As we have seen, you can run a multi-project build by entering any subproject dir and execute the build
from there. All matching task names of the project hierarchy starting with the current dir are executed. But
Gradle also offers to execute tasks by their absolute path (see also Section 24.5, “Project and task paths’):

Page 207 of 561

Example 24.13. Running tasks by their absolute path
Outputof gradle -q :hello :krill:hello hello

> gradle -q :hello :krill:hello hello

1" m wat er

I"mkrill

- | depend on water
The weight of ny species in sunmer is twice as heavy as all human bei ngs.
I love to spend tinme in the arctic waters.

I"mtropical Fi sh

| depend on water

The build is executed fromthet r opi cal Fi sh project. We execute the hel | o tasks of thewat er , thekri | |
and the t r opi cal Fi sh project. The first two tasks are specified by their absolute path, the last task is
executed using the name matching mechanism described above.

24.5. Project and task paths

A project path has the following pattern: It starts with an optional colon, which denotes the root project. The
root project is the only project in a path that is not specified by its name. The rest of a project path is a
colon-separated sequence of project names, where the next project is a subproject of the previous project.

The path of atask is ssimply its project path plus the task name, like “: bl uewhal e: hel | 0”. Within a
project you can address atask of the same project just by its name. Thisis interpreted as arelative path.

24.6. Dependencies - Which dependencies?

The examples from the last section were special, as the projects had no Execution Dependencies. They had
only Configuration Dependencies. The following sections illustrate the differences between these two types
of dependencies.

Page 208 of 561

24.6.1. Execution dependencies

24.6.1.1. Dependencies and execution order

Example 24.14. Dependencies and execution order

Build layout

nessages/
settings. gradle
consuner/

bui | d. gradl e
pr oducer/
bui | d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dependenci
inthe‘-al’ distribution of Gradle.

settings.gradle

i ncl ude 'consuner', 'producer’

consuner/ bui | d. gradl e

task action << {
println("Consuni ng nessage: ${rootProject.producer Message}")

}

producer/ buil d. gradl e

task action << {
println "Produci ng nessage: "

root Proj ect. producer Message = 'Watch the order of execution.'

Output of gradl e -g action

> gradle -q action
Consum ng nmessage: nul |
Pr oduci ng nessage:

Thisdidn't quite do what we want. If nothing else is defined, Gradle executes the task in a phanumeric order.
Therefore, Gradle will execute “: consuner: acti on” before “: producer: action”. Let's try to
solve thiswith a hack and rename the producer project to “aPr oducer .

Page 209 of 561

Example 24.15. Dependencies and execution or der

Build layout

nessages/
settings.gradle
aPr oducer/

bui | d. gradl e
consuner/
bui |l d. gradl e

settings.gradle

i ncl ude ' consuner', 'aProducer'

aProducer/buil d. gradl e

task action << {
println "Produci ng nessage:"
root Proj ect. producer Message = ' Watch the order of execution.

consurner/ bui |l d. gradl e

task action << {

println("Consum ng nmessage: ${root Project.producer Message}")

}

Output of gradl e -g action
> gradle -q action

Pr oduci ng nessage:
Consumi ng nessage: Watch the order of execution

We can show where this hack doesn't work if we now switch to the consuner dir and execute the build.

Example 24.16. Dependencies and execution or der
Output of gradl e -g action

> gradle -q action
Consumi ng nessage: nul

The problem is that the two “act i on” tasks are unrelated. If you execute the build from the “nessages”
project Gradle executes them both because they have the same name and they are down the hierarchy. In the
last example only one “act i on” task was down the hierarchy and therefore it was the only task that was
executed. We need something better than this hack.

Page 210 of 561

24.6.1.2. Declaring dependencies

Example 24.17. Declaring dependencies

Build layout

nessages/
settings. gradl e
consuner/

bui | d. gradl e
pr oducer/
bui | d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul t i proj ect/ dependenci
inthe ‘-all’ distribution of Gradle.

settings.gradle

i ncl ude ' consuner', ' producer’

consuner/bui |l d. gradl e

task action(dependsOn: ":producer:action") << {
println("Consum ng nessage: ${root Project.producer Message}")

}

producer/ buil d. gradl e

task action << {
println "Produci ng nessage:"

root Proj ect. producer Message = ' Watch the order of execution.

Output of gradl e -g action
> gradle -q action

Pr oduci ng nessage:
Consumi ng nessage: Watch the order of execution

Running thisfrom the consumner directory gives:

Example 24.18. Declaring dependencies
Output of gradl e -g action

> gradle -q action
Pr oduci ng nessage:
Consumi ng nmessage: Watch the order of execution.

This is now working better because we have declared that the “act i on” task in the “consuner ” project
has an execution dependency onthe“act i on” task inthe“pr oducer ” project.

Page 211 of 561

24.6.1.3. The nature of cross project task dependencies

Of course, task dependencies across different projects are not limited to tasks with the same name. Let's
change the naming of our tasks and execute the build.

Example 24.19. Cross project task dependencies

consumer/ bui | d. gradl e

task consune(dependsOn: ':producer: produce') << {

println("Consuni ng nessage: ${rootProject.producer Message}")

}

producer/ buil d. gradl e

task produce << {
println "Produci ng nessage: "

root Proj ect. producer Message = 'Watch the order of execution.'

Output of gradl e -g consune
> gradle -q consume

Pr oduci ng nessage:
Consumi ng nessage: Watch the order of execution.

24.6.2. Configuration time dependencies

Let's see one more example with our producer-consumer build before we enter Java land. We add a
property to the “pr oducer ” project and create a configuration time dependency from “consuner ” to “pr oduc

Example 24.20. Configuration time dependencies

consuner/ bui |l d. gradl e

def message = root Project. producer Message

task consune << {
println("Consunm ng nessage: " + nmessage)

}

producer/ buil d. gradl e

root Proj ect. producer Message = ' Watch the order of evaluation.'

Output of gr adl e -g consune

> gradle -q consune
Consum ng message: nul |

The default evaluation order of projects is alphanumeric (for the same nesting level). Therefore the “consurmer
" project is evaluated before the “pr oducer ” project and the “pr oducer Message” value is set after it

Page 212 of 561

isread by the“consuner ” project. Gradle offers a solution for this.

Example 24.21. Configuration time dependencies - evaluationDependsOn

consuner/bui |l d. gradl e

eval uat i onDependsOn(' : producer ')

def nessage = root Project. producer Message

task consume << {
println("Consum ng nessage: " + nmessage)

}

Output of gr adl e -g consune

> gradle -q consune
Consumi ng nessage: Watch the order of eval uation.

The use of the “eval uati onDependsOn” command results in the evaluation of the “producer”
project before the “consuner” project is evaluated. This example is a bit contrived to show the
mechanism. In this case there would be an easier solution by reading the key property at execution time.
Example 24.22. Configuration time dependencies

consuner/bui |l d. gradl e

task consume << {
println("Consum ng nessage: ${root Project.producer Message}")

}

Output of gr adl e -g consune

> gradle -q consune
Consumi ng nmessage: Watch the order of eval uation.

Configuration dependencies are very different from execution dependencies. Configuration dependencies
are between projects whereas execution dependencies are always resolved to task dependencies. Also note
that all projects are always configured, even when you start the build from a subproject. The default
configuration order is top down, which is usually what is needed.

To change the default configuration order to “bottom up”, use the“eval uat i onDependsOnChi | dren()
" method instead.

On the same nesting level the configuration order depends on the alphanumeric position. The most common
use case is to have multi-project builds that share a common lifecycle (e.g. all projects use the Java plugin).
If you declare with depends On a execution dependency between different projects, the default behavior of
this method is to also create a configuration dependency between the two projects. Therefore it islikely that
you don't have to define configuration dependencies explicitly.

Page 213 of 561

24.6.3. Redl life examples

Gradle's multi-project features are driven by real life use cases. One good example consists of two web
application projects and a parent project that creates a distribution including the two web applications. [14]
For the example we use only one build script and do cross project configuration.

Example 24.23. Dependencies - real life example - crossproject configuration

Build layout

webDi st/
settings. gradle
bui | d. gradl e
dat e/
src/ mai n/ j aval

or g/ gradl e/ sanpl e/
Dat eSer vl et . j ava
hel | o/
src/ mai n/j aval
or g/ gradl e/ sanpl e/
Hel | oServl et.java

Note: The code for this example can be found at sanpl es/ user gui de/ nul ti proj ect/ dependenci
inthe*-all’ distribution of Gradle.

settings.gradle

i nclude 'date', 'hello

bui | d. gradl e

al | projects {
apply plugin: 'java
group = 'org.gradle.sanpl e’
version = '1. 0

}

subproj ects {
apply plugin: "war'
repositories {
mavenCent ral ()

}

dependenci es {
conpi l e "javax. servlet:servlet-api:2. 5"

}
}

task expl odedDi st (type: Copy) {
into "$buil dDir/expl odedDi st "
subproj ects {
fromtasks.w t hType(War)
}

We have an interesting set of dependencies. Obviously the dat e and hel | o projects have a configuration

Page 214 of 561

dependency on webDi st , as all the build logic for the webapp projects is injected by webDi st . The

execution dependency isin the other direction, aswebDi st depends on the build artifacts of dat e and hel | o

. There is even a third dependency. webDi st has a configuration dependency on dat e and hel | o
because it needs to know the ar chi vePat h. But it asks for this information at execution time. Therefore
we have no circular dependency.

Such dependency patterns are daily bread in the problem space of multi-project builds. If a build system
does not support these patterns, you either can't solve your problem or you need to do ugly hacks which are
hard to maintain and massively impair your productivity as a build master.

24.7. Project lib dependencies

What if one project needs the jar produced by another project in its compile path, and not just the jar but also
the transitive dependencies of this jar? Obviously this is a very common use case for Java multi-project
builds. As aready mentioned in Section 23.4.3, “Project dependencies’, Gradle offers project lib
dependencies for this.

Example 24.24. Project lib dependencies
Build layout

j aval/
settings. gradle
bui | d. gradl e
api /
src/ mai n/ j aval/
or g/ gr adl e/ sanpl e/
api /
Per son. j ava
api | npl /
Per sonl npl . j ava
servi ces/ personServi ce/
src/
mai n/ j ava/
or g/ gradl e/ sanpl e/ servi ces/
Per sonServi ce. j ava
test/javal/
or g/ gr adl e/ sanpl e/ servi ces/
Per sonServi ceTest . j ava
shar ed/
src/ mai n/ j aval
or g/ gr adl e/ sanpl e/ shar ed/
Hel per.j ava

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dependenci

inthe ‘-all’ distribution of Gradle.

We have the projects “shar ed”, “api ” and “per sonSer vi ce”. The“per sonSer vi ce” project hasa
lib dependency on the other two projects. The “api ” project has a lib dependency on the “shar ed”
project. [19]

Page 215 of 561

Example 24.25. Project lib dependencies

settings.gradle

include "api', 'shared', 'services: personService

bui |l d. gradl e

subproj ects {
apply plugin: 'java
group = 'org.gradle.sanple'
version = '1. 0
repositories {
mavenCentral ()
}
dependenci es {
testConpile "junit:junit:4.12"
}
}

project (' :api') {
dependenci es {
conpil e project(':shared")
}
}

proj ect (' :services: personService') {
dependenci es {
conpile project(':shared"), project(':api

}

)

All the build logicisinthe“bui | d. gr adl e” file of the root project. (16] A «[ib” dependency is a special
form of an execution dependency. It causes the other project to be built first and adds the jar with the classes
of the other project to the classpath. It also adds the dependencies of the other project to the classpath. So
you can enter the “api ” directory and trigger a“gr adl e conpi | e”. First the “shar ed” project is built
and then the “api " project is built. Project dependencies enable partial multi-project builds.

If you come from Maven land you might be perfectly happy with this. If you come from Ivy land, you might

expect some more fine grained control. Gradle offers thisto you:

Page 216 of 561

Example 24.26. Fine grained control over dependencies
buil d. gradl e

subproj ects {
apply plugin: 'java
group = 'org.gradle.sanpl e’
version = '1.0

}

project(':api') {
configurations {
sp
}
dependenci es {
conpil e project(':shared")
}
task spiJar(type: Jar) {
baseNane = 'api - spi
dependsOn cl asses
from sour ceSet s. nai n. out put
i ncl ude("' org/ gradl e/ sanpl e/ api /**")
}
artifacts {
spi spiJar
}
}

proj ect (' :services: personService') ({
dependenci es {
conpil e project(':shared")
conpil e project(path: ':api', configuration
testConpile "junit:junit:4. 12", project(':api

The Java plugin adds per default ajar to your project libraries which contains all the classes. In this example
we create an additional library containing only the interfaces of the “api ” project. We assign this library to
anew dependency configuration. For the person service we declare that the project should be compiled only

against the “api " interfaces but tested with all classes from “api ”.

24.7.1. Disabling the build of dependency projects

Sometimes you don't want depended on projects to be built when doing a partia build. To disable the build

of the depended on projects you can run Gradle with the - a option.

24.8. Parallel project execution

With more and more CPU cores available on developer desktops and Cl servers, it isimportant that Gradle
isableto fully utilise these processing resources. More specificaly, the parallel execution attempts to:

® Reduce tota build time for a multi-project build where execution is 10 bound or otherwise does not

consume all available CPU resources.

* Provide faster feedback for execution of small projects without awaiting completion of other projects.

Page 217 of 561

Although Gradle already offers parallel test execution via Test . set MaxPar al | el Forks(i nt) the
feature described in this section is parallel execution at a project level. Parallel execution is an incubating
feature. Please use it and let us know how it works for you.

Parallel project execution allows the separate projects in a decoupled multi-project build to be executed in
paralel (see also: Section 24.9, “Decoupled Projects’). While parallel execution does not strictly require
decoupling at configuration time, the long-term goal is to provide a powerful set of features that will be
available for fully decoupled projects. Such features include:

® Section 24.1.1.1, “Configuration on demand”.

® Configuration of projectsin parallel.

® Re-use of configuration for unchanged projects.

® Project-level up-to-date checks.

® Using pre-built artifacts in the place of building dependent projects.

How does parallel execution work? First, you need to tell Gradle to use the parallel mode. Y ou can use the
command line argument (Appendix D, Gradle Command Line) or configure your build environment (
Section 11.1, “Configuring the build environment via gradle.properties’). Unless you provide a specific
number of paralel threads Gradle attempts to choose the right number based on available CPU cores. Every
parallel worker exclusively owns a given project while executing a task. This means that 2 tasks from the
same project are never executed in parallel. Therefore only multi-project builds can take advantage of
parallel execution. Task dependencies are fully supported and parallel workers will start executing upstream
tasks first. Bear in mind that the alphabetical scheduling of decoupled tasks, known from the sequential
execution, does not really work in parallel mode. Y ou need to make sure the task dependencies are declared
correctly to avoid ordering issues.

Warning: Be aware that task ordering is not strictly enforced when using parallel execution and can lead to
unexpected results. A common case that surfaces this limitation is the use of the cl ean task provided by
the base plugin in combination with any other task producing an output for a multi-project build if
executed in parallel. For example let us assume a multi-project build with project A and project B where B
dependson A. Running gr adl e cl ean build --parall el couldlead tothefollowing situation:

* A: cl ean isexecuted after A: j ar .
* B dependson A and needsthe JAR file of A. However, B: cl asses falsasit was executed after A: cl ean
which deleted the JAR file B depends on for compilation.

Furthermore, thetasks cl ean and cl asses could run at the same time and delete files that are needed for
compilation across project boundaries. Gradle emits a warning for those situations. Future versions of
Gradle will provide an appropriate fix.

24.9. Decoupled Projects

Gradle alows any project to access any other project during both the configuration and execution phases.
While this provides a great deal of power and flexibility to the build author, it also limits the flexibility that
Gradle has when building those projects. For instance, this effectively prevents Gradle from correctly
building multiple projects in parallel, configuring only a subset of projects, or from substituting a pre-built
artifact in place of a project dependency.

Page 218 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks(int)

Two projects are said to be decoupled if they do not directly access each other's project model. Decoupled
projects may only interact in terms of declared dependencies: project dependencies (Section 23.4.3, “ Project
dependencies’) and/or task dependencies (Section 14.5, “Task dependencies’). Any other form of project
interaction (i.e. by modifying another project object or by reading a value from another project object)
causes the projects to be coupled. The consequence of coupling during the configuration phase is that if
gradle is invoked with the 'configuration on demand' option, the result of the build can be flawed in severa
ways. The consequence of coupling during execution phase is that if gradle is invoked with the parallel
option, one project task runs too late to influence a task of a project building in parallel. Gradle does not
attempt to detect coupling and warn the user, as there are too many possibilities to introduce coupling.

A very common way for projects to be coupled is by using configuration injection (Section 24.1, “Cross
project configuration”). It may not be immediately apparent, but using key Gradle features likethe al | pr oj ect ¢
and subpr oj ect s keywords automatically cause your projects to be coupled. This is because these
keywords are used in a bui | d. gr adl e file, which defines a project. Often this is a “root project” that
does nothing more than define common configuration, but as far as Gradle is concerned this root project is

still a fully-fledged project, and by using al | pr oj ect s that project is effectively coupled to all other
projects. Coupling of the root project to subprojects does not impact ‘configuration on demand', but using the

al | proj ect s andsubpr oj ect s inany subproject'sbui | d. gr adl e filewill have an impact.

This means that using any form of shared build script logic or configuration injection (al | pr oj ect s, subpr 0j
, etc.) will cause your projects to be coupled. As we extend the concept of project decoupling and provide
features that take advantage of decoupled projects, we will aso introduce new features to help you to solve
common use cases (like configuration injection) without causing your projects to be coupled.

In order to make good use of cross project configuration without running into issues for parallel and
‘configuration on demand' options, follow these recommendations:

* Avoid asubproject'sbui | d. gr adl e referencing other subprojects; prefering cross configuration from
the root project.
® Avoid changing the configuration of other projects at execution time.

24.10. Multi-Project Building and Testing

The bui | d task of the Java plugin is typically used to compile, test, and perform code style checks (if the
CodeQuality plugin is used) of asingle project. In multi-project builds you may often want to do all of these
tasks across arange of projects. The bui | dNeeded and bui | dDependent s tasks can help with this.

Look at Example 24.25, “Project lib dependencies’. In this example, the“: ser vi ces: per sonservi ce
" project depends on both the“: api ” and “: shar ed” projects. The“: api ” project also depends onthe“: shar
" project.

Assume you are working on a single project, the “: api ” project. You have been making changes, but have
not built the entire project since performing a clean. You want to build any necessary supporting jars, but
only perform code quality and unit tests on the project you have changed. The bui | d task does this.

Page 219 of 561

Example 24.27. Build and Test Single Proj ect

Output of gr adl e : api : build

> gradle :api:build
:shared: conpi | eJava

: shar ed: processResour ces
:shared: cl asses
:shared:jar

:api: conpi |l eJava

:api : processResour ces
capi:cl asses

rapi:jar

:api:assenbl e
;api:conpi |l eTest Java
:api: processTest Resour ces
;api:testd asses

rapi:test
:api : check
;api:build

BUI LD SUCCESSFUL

Total tinme: 1 secs

While you are working in atypical development cycle repeatedly building and testing changesto the “: api

" project (knowing that you are only changing files in this one project), you may not want to even suffer the
expense of building “: shar ed: conpi | e” to see what has changed in the “: shar ed” project. Adding
the “- a” option will cause Gradle to use cached jars to resolve any project lib dependencies and not try to

re-build the depended on projects.

Example 24.28. Partial Build and Test Single Project

Outputof gradl e -a :api:build

> gradle -a :api:build
rapi:conpil eJava

: api : processResour ces
;api:cl asses

rapi:jar

rapi:assenbl e

:api: conpil eTest Java

:api : processTest Resour ces
;api:testd asses

rapi:test
:api : check
;api:build

BU LD SUCCESSFUL

Total tinme: 1 secs

If you have just gotten the latest version of source from your version control system which included changes
in other projects that “: api " depends on, you might want to not only build all the projects you depend on,
but test them as well. The bui | dNeeded task also tests all the projects from the project lib dependencies

of the testRuntime configuration.

Page 220 of 561

Example 24.29. Build and Test Depended On Projects
Output of gr adl e : api : bui | dNeeded

> gradl e :api:buil dNeeded
:shared: conpi | eJava

: shar ed: processResour ces
:shared: cl asses
:shared:jar

:api: conpi |l eJava

:api : processResour ces
capi:cl asses

rapi:jar

:api:assenbl e
;api:conpi |l eTest Java
:api: processTest Resour ces
;api:testd asses

rapi:test
:api : check
;api:build

:shared: assenbl e
:shared: conpi | eTest Java

: shar ed: processTest Resour ces
:shared: test Cl asses

:shared: test

: shar ed: check

:shared: build

: shar ed: bui | dNeeded

:api : bui | dNeeded

BU LD SUCCESSFUL

Total tinme: 1 secs

Y ou also might want to refactor some part of the “: api ” project that is used in other projects. If you make
these types of changes, it is not sufficient to test just the “: api ” project, you also need to test all projects
that depend on the “: api ” project. The bui | dDependent s task aso tests all the projects that have a

project lib dependency (in the testRuntime configuration) on the specified project.

Page 221 of 561

Example 24.30. Build and Test Dependent Projects

Output of gr adl e : api : bui | dDependent s

> gradl e :api: buil dDependent s

:shared: conpi | eJava

: shar ed: processResour ces

:shared: cl asses
:shared:jar
:api: conpi |l eJava

: api : processResour ces

capi:cl asses
rapi:jar
:api:assenbl e
;api:conpi |l eTest Java

;api: processTest Resour ces

;api:testd asses

rapi:test
:api : check
;api:build

:services: personServ
:services: personServ
:services: personServi
:services: personServi
:services: personServ
:services: personServ
:services: personServi
:services: personServi
:services: personServ
:services: personServ
:services: personServi
:services: personServi
:api : bui | dDependent s

BU LD SUCCESSFUL

Total tinme: 1 secs

ce:
ce:
ce:
ce:
ce:
ce:
. processTest Resour ces
ce:
ce:
ce:
ce:
ce:

ce

conpi | eJava
processResour ces
cl asses

jar

assenbl e
conpi | eTest Java

test C asses

t est

check

build

bui | dDependent s

Finally, you may want to build and test everything in all projects. Any task you run in the root project folder
will cause that same named task to be run on al the children. So you can just run “gr adl e bui | d” to

build and test all projects.

24.11. Multi Project and buildSrc

Section 41.4, “Build sourcesin the bui | dSr ¢ project” tells us that we can place build logic to be compiled
and tested in the special bui | dSr ¢ directory. In a multi project build, there can only be one bui | dSr ¢
directory which must be located in the root directory.

24.12. Property and method inheritance

Properties and methods declared in a project are inherited to all its subprojects. This is an alternative to
configuration injection. But we think that the model of inheritance does not reflect the problem space of
multi-project builds very well. In afuture edition of this user guide we might write more about this.

Page 222 of 561

Method inheritance might be interesting to use as Gradle's Configuration Injection does not support
methods yet (but will in afuture release).

Y ou might be wondering why we have implemented a feature we obviously don't like that much. One reason
isthat it is offered by other tools and we want to have the check mark in a feature comparison :). And we
like to offer our users a choice.

24.13. Summary

Writing this chapter was pretty exhausting and reading it might have a similar effect. Our final message for

this chapter is that multi-project builds with Gradle are usually not difficult. There are five elements you

need to remember: al | pr oj ect s, subpr oj ect s, eval uati onDependsOn, eval uati onDependsOnC
and project lib dependencies. (17 with those elements, and keeping in mind that Gradle has a distinct
configuration and execution phase, you already have a lot of flexibility. But when you enter steep territory
Gradle does not become an obstacle and usually accompanies and carries you to the top of the mountain.

[14] The real use case we had, was using http://lucene.apache.org/solr, where you need a separate war for
each index you are accessing. That was one reason why we have created a distribution of webapps. The
Resin servlet container allows us, to let such a distribution point to a base installation of the servlet
container.

[15] “ser vi ces” isaso aproject, but we use it just as a container. It has no build script and gets nothing
injected by another build script.

[16] We do this here, as it makes the layout a bit easier. We usually put the project specific stuff into the
build script of the respective projects.

[17] So we are well in the range of the 7 plus 2 Rule :)

Page 223 of 561

http://lucene.apache.org/solr
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

25

Gradle Plugins

Gradle at its core intentionally provides very little for real world automation. All of the useful features, like
the ability to compile Java code, are added by plugins. Plugins add new tasks (e.g. JavaConpi | e),
domain objects (e.g. Sour ceSet), conventions (e.g. Java source is located at sr ¢/ mai n/ j ava) as well
as extending core objects and objects from other plugins.

In this chapter we discuss how to use plugins and the terminology and concepts surrounding plugins.

25.1. What plugins do

Applying aplugin to a project allows the plugin to extend the project's capabilities. It can do things such as:

* Extend the Gradle model (e.g. add new DSL elements that can be configured)
® Configure the project according to conventions (e.g. add new tasks or configure sensible defaults)
* Apply specific configuration (e.g. add organizational repositories or enforce standards)

By applying plugins, rather than adding logic to the project build script, we can reap a number of benefits.
Applying plugins:

® Promotes reuse and reduces the overhead of maintaining similar logic across multiple projects
* Allows ahigher degree of modularization, enhancing comprehensibility and organization
® Encapsulatesimperative logic and allows build scripts to be as declarative as possible

25.2. Types of plugins

There are two general types of plugins in Gradle, script plugins and binary plugins. Script plugins are
additional build scripts that further configure the build and usually implement a declarative approach to
manipulating the build. They are typically used within a build although they can be externalized and
accessed from aremote location. Binary plugins are classes that implement the Pl ugi n interface and adopt
a programmatic approach to manipulating the build. Binary plugins can reside within a build script, within
the project hierarchy or externally in aplugin jar.

A plugin often starts out as a script plugin (because they are easy to write) and then, as the code becomes
more valuable, it's migrated to a binary plugin that can be easily tested and shared between multiple projects
or organizations.

Page 224 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/Plugin.html

25.3. Using plugins

To use the build logic encapsulated in a plugin, Gradle needs to perform two steps. First, it needsto resolve
the plugin, and then it needs to apply the plugin to the target, usually a Pr oj ect .

Resolving a plugin means finding the correct version of the jar which contains a given plugin and adding it
the script classpath. Once a plugin is resolved, its APl can be used in a build script. Script plugins are
self-resolving in that they are resolved from the specific file path or URL provided when applying them.
Core binary plugins provided as part of the Gradle distribution are automatically resolved.

Applying a plugin means actually executing the plugin's Pl ugi n. appl y(T) on the Project you want to
enhance with the plugin. Applying plugins is idempotent. That is, you can safely apply any plugin multiple
times without side effects.

The most common use case for using a plugin is to both resolve the plugin and apply it to the current
project. Since this is such a common use case, it's recommended that build authors use the plugins DSL to
both resolve and apply plugins in one step. The feature is technically still incubating, but it works well, and
should be used by most users.

25.4. Script plugins

Example 25.1. Applying a script plugin
bui | d. gradl e

apply from 'other.gradle'

Script plugins are automatically resolved and can be applied from a script on the local filesystem or at a
remote location. Filesystem locations are relative to the project directory, while remote script locations are
specified with an HTTP URL. Multiple script plugins (of either form) can be applied to a given target.

25.5. Binary plugins

You apply plugins by their plugin id, which is a globally unique identifier, or name, for plugins. Core
Gradle plugins are special in that they provide short names, such as' j ava' for the core JavaPl ugi n.
All other binary plugins must use the fully qualified form of the plugin id (e.g. com gi t hub. f 0o. bar),
although some legacy plugins may still utilize a short, unqualified form. Where you put the plugin id
depends on whether you are using the plugins DSL or the buildscript block.

25.5.1. Locations of binary plugins

A pluginissimply any class that implementsthe Pl ugi n interface. Gradle provides the core plugins (e.g. JavaP
) as part of its distribution which means they are automatically resolved. However, non-core binary plugins
need to be resolved before they can be applied. This can be achieved in a number of ways:

® Including the plugin from the plugin portal or a custom repository using the plugins DSL (see

Page 225 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/Plugin.html#apply(T)
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/Plugin.html

Section 25.5.2, “ Applying plugins with the plugins DSL").

¢ Including the plugin from an externa jar defined as a buildscript dependency (see Section 25.5.3.2,
“Applying plugins with the buildscript block™).

* Defining the plugin as a source file under the buildSrc directory in the project (see Section 41.4, “Build
sourcesinthe bui | dSr ¢ project”).

® Defining the plugin as an inline class declaration inside a build script.

For more on defining your own plugins, see Chapter 39, Writing Custom Plugins.
25.5.2. Applying plugins with the plugins DSL

The plugins DSL is currently incubating. Please be aware that the DSL and other configuration may
changein later Gradle versions.

The new plugins DSL provides a succinct and convenient way to declare plugin dependencies. It works with
the Gradle plugin portal to provide easy access to both core and community plugins. The plugins DSL block
configures an instance of Pl ugi nDependenci esSpec.

To apply acore plugin, the short name can be used:

Example 25.2. Applying a core plugin
bui | d. gradl e

pl ugi ns {
id'java'

}

To apply acommunity plugin from the portal, the fully qualified plugin id must be used:

Example 25.3. Applying a community plugin

bui |l d. gradl e

pl ugi ns {
id "comjfrog. bintray" version "0.4.1"

}

See Pl ugi nDependenci esSpec for more information on using the Plugin DSL.

25.5.2.1. Limitations of the plugins DSL

This way of adding plugins to a project is much more than a more convenient syntax. The plugins DSL is
processed in a way which allows Gradle to determine the plugins in use very early and very quickly. This
allows Gradle to do smart things such as:

¢ Optimize the loading and reuse of plugin classes.
* Allow different plugins to use different versions of dependencies.
® Provide editors detailed information about the potential properties and values in the buildscript for

Page 226 of 561

http://plugins.gradle.org
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html

editing assistance.

This requires that plugins be specified in a way that Gradle can easily and quickly extract, before executing
therest of the build script. It also requires that the definition of plugins to use be somewhat static.

There are some key differences between the new plugin mechanism and the “traditional” appl y() method
mechanism. There are also some constraints, some of which are temporary limitations while the mechanism
is till being developed and some are inherent to the new approach.

25.5.2.1.1. Constrained Syntax

The new pl ugi ns {} block does not support arbitrary Groovy code. It is constrained, in order to be
idempotent (produce the same result every time) and side effect free (safe for Gradle to execute at any time).

Theformis:

pl ugi ns {

id «plugin id» version «plugin version» [apply «fal se»]

}

Where «pl ugi n versi on» and «pl ugi n i d» must be constant, literal, strings and the appl y
statement with a bool ean can be used to disable the default behavior of applying the plugin immediately
(e.g. you want to apply it only in subpr oj ect s). No other statements are allowed; their presence will
cause a compilation error.

The pl ugi ns {} block must also be a top level statement in the buildscript. It cannot be nested inside
another construct (e.g. an if-statement or for-loop).

25.5.2.1.2. Can only be used in build scripts

The pl ugi ns {} block can currently only be used in a project's build script. It cannot be used in script
plugins, the settings.gradiefile or init scripts.

FEuture versions of Gradle will remove thisrestriction.

If the restrictions of the new syntax are prohibitive, the recommended approach isto apply plugins using the build:

25.5.2.2. Applying pluginsto subprojects

If you have a multi-project build, you probably want to apply plugins to some or all of the subprojects in
your build, but not to ther oot or mast er project. The default behavior of the pl ugi ns {} block isto
immediately r esol ve and appl y the plugins. But, you can usethe appl y f al se syntax to tell Gradle
not to apply the plugin to the current project and then use appl y pl ugi n: «plugi n versi on» in
thesubpr oj ect s block:

Page 227 of 561

Example 25.4. Applying pluginsonly on certain subprojects.

settings.gradle

i ncl ude ' hel | oA

i nclude ' hel |l oB'
i ncl ude ' goodbyeC

bui |l d. gradl e

pl ugi ns {
id "org.gradl e.sanple. hello" version "1.0.0" apply false
id "org.gradl e. sanpl e. goodbye" version "1.0.0" apply false

}

subproj ects { subproject ->
i f (subproject.nane.startsWth("hello")) {
apply plugin: 'org.gradle.sanple.hello
}
i f (subproject.nane.startsWth("goodbye")) ({
apply plugin: 'org.gradle. sanpl e. goodbye
}

If youthenrungradl e hel | o you'll seethat only the helloA and helloB subprojects had the hello plugin
applied.

gr adl e/ subpr oj ect s/ docs/ src/ sanpl es/ pl ugi ns/ mul ti proj ect $> gradle hello
Paral | el execution is an incubating feature

:hel |l oA: hel |l o

:hell oB: hel | o

Hel | o!
Hel | o

BU LD SUCCESSFUL

25.5.2.3. Custom Plugin Repositories

The pl ugi nRepositories {} DSL is currently incubating. Please be aware that the DSL and
other configuration may changein later Gradle versions.

By default, the pl ugi ns {} DSL resolves plugins from the public Gradle Plugin Portal. Many build
authors would also like to resolve plugins from private Maven or lvy repositories because the plugins
contain proprietary implementation details, or just to have more control over what plugins are available to
their builds.

To specify custom plugin repositories, add a pl ugi nRepositories {} block to the
settings. gradl e file

Page 228 of 561

https://plugins.gradle.org

Example 25.5. Using plugins from custom plugin repositories.
settings.gradle

pl ugi nReposi tories {
maven {
url ' maven-repo’

}

gr adl ePl ugi nPortal ()
ivy {
url '"ivy-repo'
}
}

This tells Gradle to first look in the Maven repository at maven- r epo when resolving plugins and then to
check the Gradle Plugin Portal if the plugins are not found in the Maven repository. If you don't want the
Gradle Plugin Portal to be searched, omit the gr adl ePl ugi nPort al () line. Finally, the Ivy repository
ati vy-repo will be checked.

The pl ugi nReposi tories {} block may only appear in the setti ngs. gr adl e file, and must be
the first block in the file. Custom Maven and Ivy plugin repositories must contain plugin marker artifactsin
addition to the artifacts which actually implement the plugin. For more information on publishing plugins to
custom repositories read Chapter 40, The Java Gradle Plugin Devel opment Plugin.

See Pl ugi nReposi t ori esSpec for complete documentation for using the pl ugi nReposi t ori es
{} block.

25.5.2.4. Plugin Marker Artifacts

Since the pl ugi ns {} DSL block only allows for declaring plugins by their globally unique plugin i d

and ver si on properties, Gradle needs a way to look up the coordinates of the plugin implementation
artifact. To do so, Gradle will look for a Plugin Marker Artifact with the coordinates pl ugi n. i d: pl ugi n. i d.
. This marker needs to have a dependency on the actual plugin implementation. Publishing these markersis
automated by the java-gradie-plugin.

For example, the following complete sample from the sanpl e- pl ugi ns project shows how to publishaor g. ¢
plugin and a or g. gr adl e. sanpl e. goodbye plugin to both an Ivy and Maven repository using the
combination of the java-gradle-plugin, the maven-publish plugin, and the ivy-publish plugin.

Page 229 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.plugin.repository.PluginRepositoriesSpec.html

Example 25.6. Complete Plugin Publishing Sample

bui | d. gradl e

pl ugi ns {
id'java-gradl e-plugin'
id ' maven- publ i sh’
id 'ivy-publish'

}

group 'org.gradle.sanpl e
version '1.0.0

gradl ePl ugi n {
pl ugi ns {
hell o {
id = "org.gradl e. sanpl e. hel | 0"
i npl ement ati onCl ass = "org. gradl e. sanpl e. hel | 0. Hel | oPI ugi n"

}
goodbye {
id = "org.gradl e. sanpl e. goodbye"
i npl ement ati onCl ass = "org. gradl e. sanpl e. goodbye. GoodbyePI ugi n"

publ i shing {
repositories {
maven {
url "../consum ng/ maven-repo"

ivy {
url "../consum ng/ivy-repo"

Running gr adl e publ i sh inthe sample directory causes the following repo layouts to exist:

Page 230 of 561

~

./maven-repo

groupld org.gradle.sample.hello
artifactld org.gradle.sample.hello.gradle.plugin

groupld org.gradle.s
artifactld sample-ph

version 1.0.0 7 version 1.0.0
groupld org.gradle. sample.goodbye sampl !
artifactld org.gradie. sample.goodbye.gradle.plugin
version 1.0.0

_ g

/— .[ivy-repo
org org.gradle sample. hello org org.gradle.samp
moadule org.gradie.sample. hello.gradle.plugin maodule sample-pluc
rev 1.0.0 — rev 1.0.0

org org.gradle. sample.goodbye
module org.gradle. sample. goodbye.gradle.plugin
rev 1.0.0

sampl

\ 4

25.5.3. Legacy Plugin Application
With the introduction of the plugins DSL, users should have little reason to use the legacy method of
applying plugins. It is documented here in case a build author cannot use the plugins DSL due to restrictions
in how it currently works.

25.5.3.1. Applying Binary Plugins
Example 25.7. Applying a binary plugin
bui | d. gradl e

apply plugin: 'java'

Plugins can be applied using a plugin id. In the above case, we are using the short name ‘j ava’ to apply the
JavaPl ugi n.

Rather than using aplugin id, plugins can also be applied by ssimply specifying the class of the plugin:

Example 25.8. Applying a binary plugin by type
bui |l d. gradl e

apply plugin: JavaPl ugi n

The JavaPl ugi n symbol in the above sample refers to the the JavaPl ugi n. This class does not strictly
need to be imported as the or g. gr adl e. api . pl ugi ns package is automatically imported in al build

Page 231 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/plugins/JavaPlugin.html

scripts (see Section 16.8, “Default imports’). Furthermore, it is not necessary to append . cl ass to identify
aclassliteral in Groovy asitisin Java

25.5.3.2. Applying plugins with the buildscript block

Binary plugins that have been published as external jar files can be added to a project by adding the plugin
to the build script classpath and then applying the plugin. External jars can be added to the build script
classpath usingthe bui | dscri pt {} block asdescribed in 7??2.

Example 25.9. Applying a plugin with the buildscript block
bui |l d. gradl e

bui I dscript {
repositories {
jcenter ()
}
dependenci es {
cl asspath "com jfrog. bi ntray. gradl e: gradl e-bi ntray-plugin:0.4.1"

}

}

apply plugin: "comjfrog.bintray"

25.6. Finding community plugins

Gradle has a vibrant community of plugin developers who contribute plugins for a wide variety of
capabilities. The Gradle plugin portal provides an interface for searching and exploring community plugins.

25.7. More on plugins

This chapter aims to serve as an introduction to plugins and Gradle and the role they play. For more
information on the inner workings of plugins, see Chapter 39, Writing Custom Plugins.

Page 232 of 561

http://plugins.gradle.org

26

Standard Gradle plugins

There are anumber of pluginsincluded in the Gradle distribution. These are listed below.

26.1. Language plugins

These plugins add support for various languages which can be compiled for and executed in the VM.

Table 26.1. Language plugins

Plugin
Id

j ava

gr oovy

scal a

antlr

Automatically Works
applies with

j ava- base -

j ava, groovy- base

j ava, scal a- base

j ava -

Description

Adds Java compilation, testing and bundling capabilities to
aproject. It serves as the basis for many of the other Gradle
plugins. See also Chapter 44, Java Quickstart.

Adds support for building Groovy projects. See also
Chapter 52, Groovy Quickstart.

Adds support for building Scala projects.

Adds support for generating parsers using Antlr.

26.2. Incubating language plugins

These plugins add support for various languages:

Page 233 of 561

http://www.antlr.org/

Table 26.2. Language plugins

Plugin Id Automatically Works Description
applies with

assenbl er - - Adds native assembly language capabilities
to a project.

c - - Adds C source compilation capabilities to a
project.

cpp - - Adds C++ source compilation capabilities
to aproject.

obj ective-c - - Adds Objective-C source compilation

capabilities to a project.

obj ective-cpp Adds Objective-C++ source compilation

capabilities to a project.

W ndows-r esour ces Adds support for including Windows

resources in native binaries.

26.3. Integration plugins

These plugins provide some integration with various runtime technol ogies.

Page 234 of 561

Table 26.3. Integration plugins

Plugin Id Automatically Works Description
applies with
application java,distribution Adds tasks for running and bundling a Java project

as a command-line application.

ear - j ava Adds support for building J2EE applications.

jetty war - Deploys your web application to a Jetty web
container embedded in the build. See also
Chapter 46, Web Application Quickstart. This
plugin is deprecated and will be removed in
Gradle 4.0. Consider using the more feature-rich
Gretty plugin instead.

maven - j ava, Adds support for publishing artifacts to Maven
war repositories.
osgi j ava- base j ava Adds support for building OSGi bundles.
war j ava - Adds support for assembling web application
WAR files. See also Chapter 46, Web Application
Quickstart.

26.4. Incubating integration plugins

These plugins provide some integration with various runtime technol ogies.

Page 235 of 561

https://github.com/akhikhl/gretty

Table 26.4. Incubating integration plugins

Plugin Id Automatically Works Description
applies with

di stribution - - Adds support for building
ZIP and TAR distributions.

java-library-distribution java,distribution Adds support for building
ZIP and TAR distributions
for aJavalibrary.

i vy-publish - j ava, This plugin provides a new
war DSL to support publishing

artifacts to lvy repositories,

which improves on the

existing DSL.
maven- publ i sh - j ava, This plugin provides a new
war DSL to support publishing

artifacts to Maven
repositories, which improves
on the existing DSL.

26.5. Software development plugins

These plugins provide help with your software development process.

Table 26.5. Softwar e development plugins

Plugin Id Automatically Works Description
applies with

announce - - Publish messages to your
favourite platforms, such as
Twitter or Growl.

bui | d- announcenent s announce - Sends local announcements to
your desktop about interesting
eventsin the build lifecycle.

checkstyl e j ava- base - Performs quality checks on your
project's Java source files using
Checkstyle and generates reports
from these checks.

Page 236 of 561

http://checkstyle.sourceforge.net/index.html

codenarc groovy- base - Performs quality checks on your
project's Groovy source files
using CodeNarc and generates
reports from these checks.

eclipse - j ava,gr ooBenerates files that are used by
,scala Eclipse IDE, thus making it
possible to import the project into
Eclipse. See also Chapter 44,
Java Quickstart.

eclipse-wp - ear,war Does the same as the eclipse
plugin plus generates eclipse
WTP (Web Tools Platform)
configuration files. After
importing to eclipse your war/ear
projects should be configured to
work with WTP. See also
Chapter 44, Java Quickstart.

fi ndbugs j ava- base - Performs quality checks on your
project's Java source files using
FindBugs and generates reports
from these checks.

i dea - j ava Generates files that are used by
Intellij IDEA IDE, thus making it
possible to import the project into
IDEA.

j depend j ava- base - Performs quality checks on your
project's source files using
JDepend and generates reports
from these checks.

prd j ava- base - Performs quality checks on your
project's Java source files using
PMD and generates reports from

these checks.

proj ect-report reporting-base - Generates reports containing
useful information about your
Gradle build.

Page 237 of 561

http://codenarc.sourceforge.net/index.html
http://eclipse.org
http://findbugs.sourceforge.net
http://www.jetbrains.com/idea/index.html
http://clarkware.com/software/JDepend.html
http://pmd.sourceforge.net

si gni ng base - Adds the ability to digitally sign
built files and artifacts.

26.6. Incubating software development plugins

These plugins provide help with your software development process.

Table 26.6. Softwar e development plugins

Plugin Id Automatically Works Description

applies with
bui | d- dashboar d reporting-base - Generates build dashboard report.
build-init wrapper - Adds support for initializing a new

Gradle build. Handles converting a
Maven build to a Gradle build.

cunit - - Adds support for running CUnit tests.

j acoco reporting-base java Provides integration with the JaCoCo
code coverage library for Java.

vi sual - st udi o - native Adds integration with Visual Studio.
language
plugins

wWr apper - - Adds a W apper task for generating

Gradle wrapper files.

java-gradl e-plugin java Assists with development of Gradle
plugins by providing standard plugin
build configuration and validation.

26.7. Base plugins

These plugins form the basic building blocks which the other plugins are assembled from. They are
available for you to use in your build files, and are listed here for completeness. However, be aware that
they are not yet considered part of Gradle's public API. As such, these plugins are not documented in the
user guide. Y ou might refer to their APl documentation to learn more about them.

Page 238 of 561

http://cunit.sourceforge.net
http://www.eclemma.org/jacoco/
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

Table 26.7. Base plugins

Plugin Id Description
base Adds the standard lifecycle tasks and configures reasonable defaults for the archive
tasks:

® addsbuild Conf i gur at i onNane tasks. Those tasks assemble the artifacts
belonging to the specified configuration.

® addsupload Conf i gur at i onNane tasks. Those tasks assemble and upload the
artifacts belonging to the specified configuration.

® configures reasonable default values for all archive tasks (e.g. tasks that inherit
from Abst r act Ar chi veTask). For example, the archive tasks are tasks of
types: Jar, Tar, Zi p. Specifically, dest i nati onDi r, baseNane andver si on
properties of the archive tasks are preconfigured with defaults. Thisis extremely
useful because it drives consistency across projects; the consistency regarding
naming conventions of archives and their location after the build completed.

java-base Adds the source sets concept to the project. Does not add any particular source sets.
groovy-base Adds the Groovy source sets concept to the project.
scala-base Adds the Scala source sets concept to the project.

reporting-base Adds some shared convention properties to the project, relating to report generation.

26.8. Third party plugins

You can find alist of external plugins at the Gradle Plugins site.

Page 239 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Zip.html
http://plugins.gradle.org/

27

The Project Report Plugin

The Project report plugin adds some tasks to your project which generate reports containing useful
information about your build. These tasks generate the same content that you get by executing the t asks, depen
, and properti es tasks from the command line (see Section 4.7, “Obtaining information about your
build™). In contrast to the command line reports, the report plugin generates the reports into afile. Thereis

also an aggregating task that depends on all report tasks added by the plugin.

We plan to add much more to the existing reports and create additional onesin future releases of Gradle.

27.1. Usage

To use the Project report plugin, include the following in your build script:

apply plugin: '"project-report'’

27.2. Tasks

The project report plugin defines the following tasks:

Page 240 of 561

Table 27.1. Project report plugin - tasks

Task name Dependson Type Dext

dependencyReport - DependencyReport Task Gene
theg
depe
repo

ht m DependencyReport - Ht M DependencyReport Task Gen

depe
and

depe
insic
repo
theg
ora
proje

pr opertyReport - Pr opert yReport Task Gen
theg

prop
repo

t askReport - TaskReport Task Gene
ther
task

pr oj ect Report dependencyReport , properTg&eport Gene
,taskReport, ht ml DependencyReport al p
repo

27.3. Project layout

The project report plugin does not require any particular project layout.

27.4. Dependency management

The project report plugin does not define any dependency configurations.

27.5. Convention properties

The project report defines the following convention properties:

Page 241 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.diagnostics.DependencyReportTask.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.reporting.dependencies.HtmlDependencyReportTask.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.diagnostics.PropertyReportTask.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.diagnostics.TaskReportTask.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html

Table 27.2. Project report plugin - convention properties

Property name

reportsDi r Nane

reportsDir

proj ects

proj ect Report Di r Name

proj ect ReportDir

These convention

properties are

Type
String

Fi | e (read-only)

Set <Pr o] ect >

String

Fi | e (read-only)

Pr oj ect Report sPl ugi nConventi on.

provided by a

Default value

reports

Description

The name of
the directory
to generate
reportsinto,
relative to the
build
directory.

bui | dDi r/ report sDi r NameThe directory

A one element set with the
project the plugin was
applied to.

pr oj ect

to generate
reportsinto.

The projects
to generate the
reportsfor.

The name of
the directory
to generate the
project report
into, relative
to the reports
directory.

report sDi r/ proj ect ReporTHia diNataey

convention

object

to generate the
project report
into.

of type

Page 242 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html

28

The Build Dashboard Plugin

The build dashboard plugin is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

The Build Dashboard plugin can be used to generate a single HTML dashboard that provides a single point
of accessto all of the reports generated by a build.

28.1. Usage

To use the Build Dashboard plugin, include the following in your build script:

Example 28.1. Using the Build Dashboard plugin

bui |l d. gradl e
apply plugin: 'buil d-dashboard'

Applying the plugin adds the bui | dDashboar d task to your project. The task aggregates the reports for
all tasks that implement the Repor t i ng interface from all projects in the build. It istypicaly only applied
to the root project.

The bui | dDashboar d task does not depend on any other tasks. It will only aggregate the reporting tasks
that are independently being executed as part of the build run. To generate the build dashboard, simply
include this task in the list of tasks to execute. For example, “gr adl e bui | dDashboard bui | d” will
generate adashboard for al of the reporting tasks that are dependents of the bui | d task.

28.2. Tasks

The Build Dashboard plugin adds the following task to the project:

Page 243 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.reporting.Reporting.html

Table 28.1. Build Dashboard plugin - tasks

Task name Depends Type Description
on
bui | dDashboar d - Gener at eBui | dDashboar d Generates build dashboard
report.

28.3. Project layout

The Build Dashboard plugin does not require any particular project layout.

28.4. Dependency management

The Build Dashboard plugin does not define any dependency configurations.

28.5. Configuration

Y ou can influence the location of build dashboard plugin generation via Repor t i ngExt ensi on.

Page 244 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.reporting.GenerateBuildDashboard.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.reporting.ReportingExtension.html

29

Comparing Builds

Build comparison support is an incubating feature. This means that it is incomplete and not yet at
regular Gradle production quality. This also means that this Gradle User Guide chapter is awork in
progress.

Gradle provides support for comparing the outcomes (e.g. the produced binary archives) of two builds.
There are several reasons why you may want to compare the outcomes of two builds. You may want to
compare:

® A build with anewer version of Gradle than it's currently using (i.e. upgrading the Gradle version).

* A Gradle build with a build executed by another tool such as Apache Ant, Apache Maven or something
else (i.e. migrating to Gradle).

® The same Gradle build, with the same version, before and after a change to the build (i.e. testing build
changes).

By comparing builds in these scenarios you can make an informed decision about the Gradle upgrade,
migration to Gradle or build change by understanding the differences in the outcomes. The comparison
process produces a HTML report outlining which outcomes were found to be identical and identifying the
differences between non-identical outcomes.

29.1. Definition of terms

The following are the terms used for build comparison and their definitions.

“Build”
In the context of build comparison, a build is not necessarily a Gradle build. It can be any invokable
“process’ that produces observable “outcomes’. At least one of the builds in a comparison will be a
Gradle build.

“Build Outcome”
Something that happens in an observable manner during a build, such as the creation of a zip file or test
execution. These are the things that are compared.

“ Sour ce Build”
The build that comparisons are being made against, typically the build in its “current” state. In other
words, the left hand side of the comparison.

Page 245 of 561

“Target Build”
The build that is being compared to the source build, typicaly the “proposed” build. In other words, the
right hand side of the comparison.

“Host Build”
The Gradle build that executes the comparison process. It may be the same project as either the “target”
or “source” build or may be a completely separate project. It does not need to be the same Gradle
version as the “source” or “target” builds. The host build must be run with Gradle 1.2 or newer.

“Compared Build Outcome”
Build outcomes that are intended to be logically equivalent in the “source” and “target” builds, and are
therefore meaningfully comparable.

“Uncompared Build Outcome’
A build outcome is uncompared if alogical equivalent from the other build cannot be found (e.g. a build
produces a zip file that the other build does not).

“Unknown Build Outcome”
A build outcome that cannot be understood by the host build. This can occur when the source or target
build is a newer Gradle version than the host build and that Gradle version exposes new outcome types.
Unknown build outcomes can be compared in so far as they can be identified to be logically equivalent
to an unknown build outcome in the other build, but no meaningful comparison of what the build
outcome actualy is can be performed. Using the latest Gradle version for the host build will avoid
encountering unknown build outcomes.

29.2. Current Capabilities

Asthisisan incubating feature, alimited set of the eventual functionality has been implemented at thistime.

29.2.1. Supported builds

Only support for comparing Gradle builds is available at this time. Both the source and target build must
execute with Gradle newer or equal to version 1. 0. The host build must be at least version 1. 2.

Future versions will provide support for executing builds from other build systems such as Apache Ant or
Apache Maven, as well as support for executing arbitrary processes (e.g. shell script based builds)

29.2.2. Supported build outcomes

Only support for comparing build outcomes that are zi p archivesis supported at thistime. Thisincludesj ar
,war and ear archives,

Future versions will provide support for comparing outcomes such as test execution (i.e. which tests were
executed, which tests failed, etc.)

Page 246 of 561

29.3. Comparing Gradle Builds

The conpar e- gr adl e- bui | ds plugin can be used to facilitate a comparison between two Gradle
builds. The plugin adds a Conpar eGr adl eBui | ds task named “conpar eGr adl eBui | ds” to the
project. The configuration of this task specifies what is to be compared. By default, it is configured to
compare the current build with itself using the current Gradle version by executing thetasks: “cl ean assenbl ¢

apply plugin: 'conpare-gradl e-buil ds’

Thistask can be configured to change what is compared.

conpar eG adl eBui | ds {

sourceBui | d {
projectDir "/projects/project-a"
gradl eVersion "1.1"

}

targetBuil d {
projectDir "/projects/project-b"
gradl eVersion "1.2"

The example above specifies a comparison between two different projects using two different Gradle
versions.

29.3.1. Trying Gradle upgrades

Y ou can use the build comparison functionality to very quickly try anew Gradle version with your build.

To try your current build with a different Gradle version, simply add the following to the bui | d. gr adl e
of the root project.

apply plugin: 'conpare-gradl e-builds'

conpar eG adl eBui | ds {
target Bui | d. gradl eVersi on = "«gradl e versi on»"

}

Then simply execute the compar eGradleBuilds task. You will see the console output of the “source” and
“target” builds as they are executing.

Page 247 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.buildcomparison.gradle.CompareGradleBuilds.html

29.3.2. The comparison “result”

If there are any differences between the compared outcomes, the task will fail. The location of the HTML
report providing insight into the comparison will be given. If all compared outcomes are found to be
identical, and there are no uncompared outcomes, and there are no unknown build outcomes, the task will
succeed.

Y ou can configure the task to not fail on compared outcome differences by setting thei gnor eFai | ur es
property to true.

conpar eG adl eBui | ds {
i gnoreFailures = true

}

29.3.3. Which archives are compared?

For an archive to be a candidate for comparison, it must be added as an artifact of the archives configuration.
Take alook at Chapter 30, Publishing artifacts for more information on how to configure and add artifacts.

The archive must also have been produced by a Zi p, Jar, War , Ear task. Future versions of Gradle will
support increased flexibility in this area.

Page 248 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ear.Ear.html

30

Publishing artifacts

This chapter describes the original publishing mechanism available in Gradle 1.0: in Gradle 1.3 a
new mechanism for publishing was introduced. While this new mechanism is incubating and not yet
complete, it introduces some new concepts and features that do (and will) make Gradle publishing
even more powerful.

Y ou can read about the new publishing pluginsin Chapter 33, Ivy Publishing (new) and Chapter 34,
Maven Publishing (new). Please try them out and give us feedback.

30.1. Introduction

This chapter is about how you declare the outgoing artifacts of your project, and how to work with them
(e.g. upload them). We define the artifacts of the projects as the files the project provides to the outside
world. This might be alibrary or a ZIP distribution or any other file. A project can publish as many artifacts
asit wants.

30.2. Artifacts and configurations

Like dependencies, artifacts are grouped by configurations. In fact, a configuration can contain both artifacts
and dependencies at the sametime.

For each configuration in your project, Gradle provides the tasks upl oad Conf i gur ati onNanme and bui | dG
. [18] Execution of these tasks will build or upload the artifacts belonging to the respective configuration.

Table 45.5, “Java plugin - dependency configurations’ shows the configurations added by the Java plugin.
Two of the configurations are relevant for the usage with artifacts. The ar chi ves configuration is the
standard configuration to assign your artifacts to. The Java plugin automatically assigns the default jar to
this configuration. We will talk more about the r unt i me configuration in Section 30.5, “More about
project libraries’. As with dependencies, you can declare as many custom configurations as you like and
assign artifacts to them.

Page 249 of 561

30.3. Declaring artifacts

30.3.1. Archivetask artifacts

Y ou can use an archive task to define an artifact:

Example 30.1. Defining an artifact using an ar chive task
bui |l d. gradl e
task myJar(type: Jar)

artifacts {
archi ves nyJar

}

It is important to note that the custom archives you are creating as part of your build are not automatically
assigned to any configuration. Y ou have to explicitly do this assignment.

30.3.2. File artifacts

Y ou can aso use afile to define an artifact:

Example 30.2. Defining an artifact using afile
bui |l d. gradl e

def soneFile = file(' build/ sonefile.txt")

artifacts {

ar chi ves soneFil e

}

Gradle will figure out the properties of the artifact based on the name of the file. Y ou can customize these
properties:

Example 30.3. Customizing an artifact

bui |l d. gradl e

task nyTask(type: MTaskType) ({
destFile = file(' build/sonmefile.txt")

}

artifacts {

archi ves(nyTask. destFile) {
name 'ny-artifact’
type 'text’
bui I t By myTask

Page 250 of 561

There is a map-based syntax for defining an artifact using a file. The map must include afi | e entry that
definesthe file. The map may include other artifact properties:

Example 30.4. Map syntax for defining an artifact using afile

bui | d. gradl e

task generate(type: MTaskType) {
destFile = file(' build/ sonmefile.txt")

}

artifacts {
archives file: generate.destFile, name: 'ny-artifact', type: 'text', builtB

}

30.4. Publishing artifacts

We have said that there is a specific upload task for each configuration. Before you can do an upload, you
have to configure the upload task and define where to publish the artifacts to. The repositories you have
defined (as described in Section 23.6, “Repositories’) are not automatically used for uploading. In fact,
some of those repositories only allow downloading artifacts, not uploading. Here is an example of how you
can configure the upload task of a configuration:

Example 30.5. Configuration of the upload task
bui |l d. gradl e
repositories {
flatDir {

nane "fil eRepo”
dirs "repo”

}
upl oadAr chi ves {

repositories {
add project.repositories.fil eRepo

ivy {
credentials {
user nane "username"
password " pw'

}

url "http://repo. nyconpany. cont'

As you can see, you can either use a reference to an existing repository or create a new repository. As
described in Section 23.6.9, “More about Ivy resolvers’, you can use al the Ivy resolvers suitable for the
purpose of uploading.

If an upload repository is defined with multiple patterns, Gradle must choose a pattern to use for uploading
each file. By default, Gradle will upload to the pattern defined by the ur | parameter, combined with the

Page 251 of 561

optional | ayout parameter. If nour | parameter is supplied, then Gradle will usethefirst defined arti f act Pe
for uploading, or the first defined i vyPat t er n for uploading Ivy files, if thisis set.

Uploading to a Maven repository is described in Section 31.6, “Interacting with Maven repositories’.

30.5. More about project libraries

If your project is supposed to be used as alibrary, you need to define what are the artifacts of thislibrary and
what are the dependencies of these artifacts. The Java plugin adds a r unt i ne configuration for this
purpose, with the implicit assumption that the r unt i me dependencies are the dependencies of the artifact
you want to publish. Of course thisis fully customizable. Y ou can add your own custom configuration or let
the existing configurations extend from other configurations. Y ou might have a different group of artifacts
which have a different set of dependencies. This mechanism is very powerful and flexible.

If someone wants to use your project as a library, she simply needs to declare which configuration of the
dependency to depend on. A Gradle dependency offers the conf i gur ati on property to declare this. If
thisis not specified, the def aul t configuration is used (see Section 23.4.9, “ Dependency configurations”).
Using your project as a library can either happen from within a multi-project build or by retrieving your
project from arepository. In the latter case, ani vy. xm descriptor in the repository is supposed to contain
al the necessary information. If you work with Maven repositories you don't have the flexibility as
described above. For how to publish to a Maven repository, see the section Section 31.6, “Interacting with
Maven repositories’.

[18] To be exact, the Base plugin provides those tasks. This plugin is automatically applied if you use the
Javaplugin.

Page 252 of 561

31

The Maven Plugin

This chapter isawork in progress

The Maven plugin adds support for deploying artifacts to Maven repositories.

31.1. Usage

To use the Maven plugin, include the following in your build script:

Example 31.1. Using the Maven plugin

bui |l d. gradl e

apply plugin: 'nmaven'

31.2. Tasks

The Maven plugin defines the following tasks:

Table 31.1. Maven plugin - tasks

Task Depends Type Description

name on

install All tasks Upl oad Installsthe associated artifacts to the local Maven cache,
that build including Maven metadata generation. By default the install
the task is associated with the ar chi ves configuration. This
associated configuration has by default only the default jar as an element.
archives. To learn more about installing to the local repository, see:

Section 31.6.3, “Ingtalling to the local repository”

31.3. Dependency management

The Maven plugin does not define any dependency configurations.

Page 253 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Upload.html

31.4. Convention properties

The Maven plugin defines the following convention properties:

Table 31.2. Maven plugin - properties

Property name Type Default value Descr

mavenPonDi r File ${project.buildD r}/ ponmed
where
gener:
arewr

conf 2ScopeMappi ngs Conf 2ScopeMappi ngCont ai ner n/ a Instrur
mappi
confic
toMa
scope:
Sectic
“Depe
mappi

These properties are provided by a MavenPl ugi nConvent i on convention object.

31.5. Convention methods

The maven plugin provides a factory method for creating a POM. Thisis useful if you need a POM without
the context of uploading to a Maven repo.

Example 31.2. Creating a stand alone pom.
bui |l d. gradl e

task writeNewPom << {
pom {
project {
i nceptionYear '2008'
l'i censes ({
license {

name ' The Apache Software License, Version 2.0
url "http://ww. apache. org/|icenses/ LI CENSE-2. 0.t xt'
di stribution 'repo’

}

}
}.witeTo("$buil dDi r/ newpom xm ")

Amongst other things, Gradle supports the same builder syntax as polyglot Maven. To learn more about the
Gradle Maven POM object, see MavenPom See also: MavenPl ugi nConvent i on

Page 254 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.MavenPluginConvention.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.MavenPluginConvention.html

31.6. Interacting with Maven repositories

31.6.1. Introduction

With Gradle you can deploy to remote Maven repositories or install to your local Maven repository. This
includes all Maven metadata manipulation and works also for Maven snapshots. In fact, Gradle's
deployment is 100 percent Maven compatible as we use the native Maven Ant tasks under the hood.

Deploying to a Maven repository is only half the fun if you don't have a POM. Fortunately Gradle can
generate this POM for you using the dependency information it has.

31.6.2. Deploying to a Maven repository

Let's assume your project produces just the default jar file. Now you want to deploy this jar file to aremote
Maven repository.

Example 31.3. Upload of fileto remote Maven repository
bui |l d. gradl e
apply plugin: 'maven'

upl oadAr chi ves {
repositories {

mavenDepl oyer {
repository(url: "file://local host/tnp/ my/Repo/")

That is all. Calling the upl oadAr chi ves task will generate the POM and deploys the artifact and the
POM to the specified repository.

There is more work to do if you need support for protocols other than f i | e. In this case the native Maven
code we delegate to needs additional libraries. Which libraries are needed depends on what protocol you
plan to use. The available protocols and the corresponding libraries are listed in Table 31.3, “Protocol jars
for Maven deployment” (those libraries have transitive dependencies which have transitive dependencies). [
191 For example, to use the ssh protocol you can do:

Page 255 of 561

Example 31.4. Upload of file via SSH
buil d. gradl e

configurations {
depl oyer Jars

}

repositories {
mavenCent ral ()

}

dependenci es {
depl oyerJars "org. apache. maven. wagon: wagon- ssh: 2. 2"

}

upl oadAr chi ves {
reposi tories. mavenDepl oyer {
configuration = configurations. depl oyerJars
repository(url: "scp://repos. nyconpany. conirel eases") {
aut henti cati on(userNane: "ne", password: "nyPassword")

There are many configuration options for the Maven deployer. The configuration is done via a Groovy
builder. All the elements of this tree are Java beans. To configure the simple attributes you pass a map to the
bean elements. To add bean elements to its parent, you use a closure. In the example above repository and
authentication are such bean elements. Table 31.4, “Configuration elements of the MavenDeployer” lists
the available bean elements and a link to the Javadoc of the corresponding class. In the Javadoc you can see
the possible attributes you can set for a particular element.

In Maven you can define repositories and optionally snapshot repositories. If no snapshot repository is
defined, releases and snapshots are both deployed to the r eposi t or y element. Otherwise snapshots are
deployed to the snapshot Reposi t ory element.

Table 31.3. Protocol jarsfor Maven deployment

Protocol Library
http org.apache.maven.wagon:wagon-http: 2.2
ssh org.apache.maven.wagon:wagon-ssh: 2.2

ssh-external org.apache.maven.wagon:wagon-ssh-external:2.2

ftp org.apache.maven.wagon:wagon-ftp:2.2
webdav org.apache.maven.wagon:wagon-webdav:1.0-beta-2
file -

Page 256 of 561

Table 31.4. Configuration elements of the MavenDeployer

Element Javadoc

root MavenDepl oyer

repository org.apache.maven.artifact.ant. RemoteRepository
authentication org.apache.maven.artifact.ant. Authentication
releases org.apache.maven.artifact.ant.RepositoryPolicy
snapshots org.apache.maven.artifact.ant.RepositoryPolicy
proxy org.apache.maven.artifact.ant.Proxy

snapshotRepository org.apache.maven.artifact.ant.RemoteRepository

31.6.3. Installing to the local repository

The Maven pluginaddsan i nst al | task to your project. Thistask depends on al the archives task of the ar chi
configuration. It installs those archives to your local Maven repository. If the default location for the local
repository isredefined inaMaven set t i ngs. xnl , thisis considered by this task.

31.6.4. Maven POM generation

When deploying an artifact to a Maven repository, Gradle automatically generates a POM for it. The gr oupl d
,artifactld,versionandpackagi ng elements used for the POM default to the values shown in the
table below. The dependency elements are created from the project's dependency declarations.

Table 31.5. Default Valuesfor Maven POM generation

Maven Default Value

Element

groupld project.group

artifactld uploadTask.repositories.mavenDeployer.pom.artifactld (if set) or

archiveTask.baseName.
version project.version

packaging archiveTask.extension

Here, upl oadTask and ar chi veTask refer to the tasks used for uploading and generating the archive,
respectively (for example upl oadAr chi ves andj ar). ar chi veTask. baseNane defaultsto pr oj ect . ar
which in turn defaultsto pr oj ect . nane.

When you set the “ar chi veTask. baseNane” property to a value other than the default, you'll
also have to set upl oadTask. r eposi tori es. mavenDepl oyer. pom artifactld to the
same value. Otherwise, the project at hand may be referenced with the wrong artifact ID from
generated POMs for other projects in the same build.

Page 257 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RemoteRepository.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/Authentication.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/Proxy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RemoteRepository.html

Generated POMs can be found in <bui | dDi r >/ pons. They can be further customized via the
MavenPom API. For example, you might want the artifact deployed to the Maven repository to have a
different version or name than the artifact generated by Gradle. To customize these you can do:

Example 31.5. Customization of pom

bui |l d. gradl e

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ nyRepo/")

pomversion = '1. 0Maven'
pomartifactld = ' myMavenNane'

To add additional content to the POM, the pom pr oj ect builder can be used. With this builder, any
element listed in the Maven POM reference can be added.

Example 31.6. Builder style customization of pom
bui | d. gradl e

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ m/Repo/")
pom proj ect {
i censes {
license {

nane ' The Apache Software License, Version 2.0
url "http://ww. apache. org/licenses/ LI CENSE-2. 0.t xt"'
di stribution 'repo’

Note: groupl d, artifactld, version, and packagi ng should always be set directly on the pom
object.

Example 31.7. Modifying auto-gener ated content

bui | d. gradl e

def installer = install.repositories. mavenlnstall er
def depl oyer = upl oadArchi ves. repositories. mavenDepl oyer

[instal | er, deployer]*.pont.whenConfigured {pom ->
pom dependenci es. find {dep -> dep.groupld == 'group3’ && dep.artifactld =="

}

Page 258 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://maven.apache.org/pom.html

If you have more than one artifact to publish, things work a little bit differently. See Section 31.6.4.1,
“Multiple artifacts per project”.

To customize the settings for the Maven installer (see Section 31.6.3, “Installing to the local repository™),
you can do:

Example 31.8. Customization of Maven installer

bui | d. gradl e

install {
repositories. mavenl nstal | er {
pom version = '1. 0Maven'

pomartifactld = ' nmyNane'

31.6.4.1. Multiple artifacts per project

Maven can only deal with one artifact per project. Thisis reflected in the structure of the Maven POM. We
think there are many situations where it makes sense to have more than one artifact per project. In such a
case you need to generate multiple POMs. In such a case you have to explicitly declare each artifact you
want to publish to a Maven repository. The MavenDepl oyer and the Maveninstaller both provide an API
for this:

Example 31.9. Generation of multiple poms
bui |l d. gradl e

upl oadAr chi ves {
repositories {
mavenDepl oyer {

repository(url: "file://local host/tnp/ my/Repo/")

addFilter('api') {artifact, file ->
artifact.name == 'api'

}

addFilter('service') {artifact, file ->
artifact.name == 'service'

}

pon(' api').version = 'mySpeci al MavenVer si on'

Y ou need to declare afilter for each artifact you want to publish. This filter defines a boolean expression for
which Gradle artifact it accepts. Each filter has a POM associated with it which you can configure. To learn
more about this have alook at Ponti | t er Cont ai ner and its associated classes.

Page 259 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/maven/PomFilterContainer.html

31.6.4.2. Dependency mapping

The Maven plugin configures the default mapping between the Gradle configurations added by the Java and
War plugin and the Maven scopes. Most of the time you don't need to touch this and you can safely skip this
section. The mapping works like the following. You can map a configuration to one and only one scope.
Different configurations can be mapped to one or different scopes. You can also assign a priority to a
particular configuration-to-scope mapping. Have a look at Conf 2ScopeMappi ngCont ai ner to learn
more. To access the mapping configuration you can say:

Example 31.10. Accessing a mapping configuration

bui |l d. gradl e

task mappi ngs << {
println conf2ScopeMappi ngs. mappi ngs

}

Gradle exclude rules are converted to Maven excludes if possible. Such a conversion is possible if in the
Gradle exclude rule the group as well as the module name is specified (as Maven needs both in contrast to
Ivy). Per-configuration excludes are also included in the Maven POM, if they are convertible.

[19] It is planned for afuture rel ease to provide out-of-the-box support for this

Page 260 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html

32

The Signing Plugin

The signing plugin adds the ability to digitally sign built files and artifacts. These digital signatures can then
be used to prove who built the artifact the signature is attached to as well as other information such as when
the signature was generated.

The signing plugin currently only provides support for generating OpenPGP signatures (which is the
signature format required for publication to the Maven Central Repository).

32.1. Usage

To use the Signing plugin, include the following in your build script:

Example 32.1. Using the Signing plugin

bui | d. gradl e

apply plugin: 'signing

32.2. Signatory credentials

In order to create OpenPGP signatures, you will need a key pair (instructions on creating a key pair using
the GnuPG tools can be found in the GhuPG HOWTOs). Y ou need to provide the signing plugin with your
key information, which means three things:

® Thepublic key ID (an 8 character hexadecimal string).
* The absolute path to the secret key ring file containing your private key.
® The passphrase used to protect your private key.

These items must be supplied as the values of propertiessi gni ng. keyl d, si gni ng. secr et KeyRi ngFi | €
, and si gni ng. passwor d respectively. Given the personal and private nature of these values, a good
practice is to store them in the user gr adl e. properti es file (described in Section 11.2, “Gradle
properties and system properties’).

si gni ng. keyl d=24875D73

si gni ng. passwor d=secr et
si gni ng. secr et KeyRi ngFi | e=/ User s/ ne/ . gnupg/ secri ng. gpg

Page 261 of 561

https://en.wikipedia.org/wiki/Pretty_Good_Privacy#OpenPGP
http://central.sonatype.org/pages/requirements.html#sign-files-with-gpgpgp
https://www.gnupg.org/
https://www.gnupg.org/documentation/howtos.html

If specifying this information (especially si gni ng. passwor d) in the user gr adl e. properti es file
is not feasible for your environment, you can source the information however you need to and set the project
properties manually.

i nport org.gradl e. plugins. signing. Sign

gradl e. t askG aph. whenReady { taskG aph ->
if (taskG aph.all Tasks.any { it instanceof Sign }) {
/'l Use Java 6's console to read fromthe console (no good for
/1 a Cl environnent)
Consol e consol e = System consol e()
console.printf "\n\nW have to sign sone things in this build." +
"\'n\ nPl ease enter your signing details.\n\n"

def id = consol e.readLi ne("PGP Key 1d: ")
def file = consol e.readLine("PGP Secret Key Ring File (absol ute path)
def password = consol e. readPassword(" PGP Private Key Password: ")

al | projects { ext."signing.keyld" =id }
al | projects { ext."signing.secretKeyR ngFile"

=file }
al | projects { ext."signing. password" = password }

consol e. printf "\nThanks.\n\n"

32.2.1. Using OpenPGP subkeys

OpenPGP supports subkeys, which are like the normal keys, except they're bound to a master key pair. One
feature of OpenPGP subkeys is that they can be revoked independently of the master keys which makes key
management easier. A practical case study of how subkeys can be leveraged in software development can be
read on the Debian wiki.

The signing plugin supports OpenPGP subkeys out of the box. Just specify a subkey ID asthe valueinthe si gni |
property.

32.3. Specifying what to sign

Aswell as configuring how things are to be signed (i.e. the signatory configuration), you must also specify
what is to be signed. The Signing plugin provides a DSL that allows you to specify the tasks and/or
configurations that should be signed.

32.3.1. Signing Configurations

It iscommon to want to sign the artifacts of a configuration. For example, the Java plugin configures ajar to
build and this jar artifact is added to the ar chi ves configuration. Using the Signing DSL, you can specify
that all of the artifacts of this configuration should be signed.

Page 262 of 561

https://wiki.debian.org/Subkeys

Example 32.2. Signing a configuration

bui | d. gradl e

signi ng {

si gn configurations. archives

}

Thiswill create atask (of type Si gn) in your project named “si gnAr chi ves”, that will build any ar chi ves
artifacts (if needed) and then generate signatures for them. The signature files will be placed alongside the
artifacts being signed.

Example 32.3. Signing a configuration output

Output of gr adl e si gnArchi ves

> gradl e signArchives
:conpi | eJava

: processResour ces

1 cl asses

djar

:si gnArchi ves

BUI LD SUCCESSFUL

Total tinme: 1 secs

32.3.2. Signing Tasks

In some cases the artifact that you need to sign may not be part of a configuration. In this case you can
directly sign the task that produces the artifact to sign.

Example 32.4. Signing atask

bui | d. gradl e

task stuffzZip (type: Zip) {
baseNane = "stuff"
from"src/stuff"

}

signi ng {
sign stuffZp

}

This will create atask (of type Si gn) in your project named “si gnSt uf f Zi p”, that will build the input
task's archive (if needed) and then sign it. The signature file will be placed alongside the artifact being
signed.

Page 263 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.signing.Sign.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.signing.Sign.html

Example 32.5. Signing a task output
Output of gr adl e si gnStuffZip
> gradle signStuffZp
cstuffzip
:signStuffzZip
BUI LD SUCCESSFUL

Total time: 1 secs

For atask to be “signable”, it must produce an archive of some type. Tasks that do this are the Tar , Zi p,
Jar , War and Ear tasks.

32.3.3. Conditional Signing

A common usage pattern is to only sign build artifacts under certain conditions. For example, you may not
wish to sign artifacts for non release versions. To achieve this, you can specify that signing is only required
under certain conditions.

Example 32.6. Conditional signing

bui |l d. gradl e

version = '1.0- SNAPSHOT'
ext.i sRel easeVersi on = !version. endsWt h(" SNAPSHOT")

si gni ng {

requi red { isRel easeVersion && gradl e.taskG aph. hasTask("upl oadArchi ves") }
sign configurations. archi ves

In this example, we only want to require signing if we are building a release version and we are going to
publish it. Because we are inspecting the task graph to determine if we are going to be publishing, we must
set the signing.required property to a closure to defer the evaluation. See
Si gni ngExt ensi on. set Requi red(j ava. | ang. Cbj ect) for more information.

32.4. Publishing the signatures

When specifying what is to be signed via the Signing DSL, the resultant signature artifacts are automatically
added to the si gnat ur es and ar chi ves dependency configurations. This means that if you want to

upload your signatures to your distribution repository along with the artifacts you simply execute the upl oadAr ¢
task as normal.

Page 264 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ear.Ear.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/plugins/signing/SigningExtension.html#setRequired(java.lang.Object)
http://www.gradle.org/docs/3.0/javadoc/org/gradle/plugins/signing/SigningExtension.html#setRequired(java.lang.Object)

32.5. Signing POM files

When deploying signatures for your artifacts to a Maven repository, you will aso want to sign the published
POM file. The signing plugin adds a signing.signPom) (see:

Si gni ngExt ensi on. si gnPon(or g. gradl e. api . artifacts. maven. MavenDepl oynent,
groovy. | ang. C osur e)) method that can be used in the bef or eDepl oynent () block in your
upload task configuration.

Example 32.7. Signing a POM for deployment
bui |l d. gradl e

upl oadAr chi ves {
repositories {
mavenDepl oyer {
bef or eDepl oynent { MavenDepl oynent depl oynent -> signi ng. si gnPon{ deq

When signing is not required and the POM cannot be signed due to insufficient configuration (i.e. no
credentials for signing) then the si gnPon() method will silently do nothing.

Page 265 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)

33

vy Publishing (new)

This chapter describes the new incubating Ivy publishing support provided by the “i vy- publ i sh”
plugin. Eventually this new publishing support will replace publishing viathe Upl oad task.

If you are looking for documentation on the original Ivy publishing support using the Upl oad task
please see Chapter 30, Publishing artifacts.

This chapter describes how to publish build artifacts in the Apache Ivy format, usually to a repository for
consumption by other builds or projects. What is published is one or more artifacts created by the build, and
an lvy module descriptor (normally i vy. xml) that describes the artifacts and the dependencies of the
artifacts, if any.

A published Ivy module can be consumed by Gradle (see Chapter 23, Dependency Management) and other
tools that understand the Ivy format.

33.1. The“i vy- publ i sh” Plugin
The ability to publish in the Ivy format is provided by the“i vy- publ i sh” plugin.

The “publ i shi ng” plugin creates an extension on the project named “publ i shi ng” of type
Publ i shi ngExt ensi on. This extension provides a container of named publications and a container of
named repositories. The “i vy- publ i sh” plugin works with | vyPubl i cati on publications and
I vyArtifact Repository repositories.

Example 33.1. Applying the “ivy-publish” plugin
bui |l d. gradl e

apply plugin: "ivy-publish'

Applyingthe“i vy- publ i sh” plugin does the following:

* Appliesthe“publ i shi ng” plugin
* Establishesaruleto automaticaly create a Gener at el vyDescr i pt or task for each
I vyPubl i cat i on added (see Section 33.2, “Publications”).
® Establishesaruleto automatically create a Publ i shTol vyReposi t ory task for the combination of

Page 266 of 561

http://ant.apache.org/ivy/
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

each | vyPubl i cat i on added (see Section 33.2, “Publications’), with each
I vyArtifact Repository added (see Section 33.3, “Repositories’).

33.2. Publications

If you are not familiar with project artifacts and configurations, you should read Chapter 30,
Publishing artifacts, which introduces these concepts. This chapter also describes “publishing
artifacts” using a different mechanism than what is described in this chapter. The publishing
functionality described here will eventually supersede that functionality.

Publication objects describe the structure/configuration of a publication to be created. Publications are
published to repositories via tasks, and the configuration of the publication object determines exactly what is
published. AIl of the publications of a project are defined in the
Publ i shi ngExt ensi on. get Publ i cati ons() container. Each publication has a unique name
within the project.

For the “i vy- publ i sh” plugin to have any effect, an | vyPubl i cat i on must be added to the set of
publications. This publication determines which artifacts are actually published as well as the details
included in the associated Ivy module descriptor file. A publication can be configured by adding
components, customizing artifacts, and by modifying the generated module descriptor file directly.

33.2.1. Publishing a Software Component

The simplest way to publish a Gradle project to an Ivy repository is to specify a Sof t war eConponent to
publish. The components presently available for publication are:

Table 33.1. Software Components

Name Provided By Artifacts Dependencies
java JavaPlugin Generated jar file Dependencies from 'runtime' configuration
web War Plugin Generated war file No dependencies

In the following example, artifacts and runtime dependencies are taken from the “java’ component, which is
added by the Java Pl ugi n.

Example 33.2. Publishing a Java moduleto vy

bui |l d. gradl e

publ i cations {
i vyJava(l vyPubl i cation) {

from conponents. java

}

Page 267 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/component/SoftwareComponent.html

33.2.2. Publishing custom artifacts

It is also possible to explicitly configure artifacts to be included in the publication. Artifacts are commonly
supplied asraw files, or asinstances of Abst r act Ar chi veTask (e.g. Jar, Zip).

For each custom artifact, it is possible to specify the nane, ext ensi on, t ype, cl assi fi er and conf
values to use for publication. Note that each artifacts must have a unique name/classifier/extension
combination.

Configure custom artifacts as follows:

Example 33.3. Publishing additional artifact to Ivy
bui |l d. gradl e

task sourceldar(type: Jar) {
from sourceSets. mai n.java
classifier "source"
}
publ i shing {
publ i cations {
i vy(lvyPublication) {

from conponents. j ava

artifact(sourcedar) ({
type "source"
conf "runtine"

Seethe |l vyPubl i cati on classin the APl documentation for more detailed information on how artifacts
can be customized.

33.2.3. Identity values for the published project

The generated vy module descriptor file contains an <i nf 0> element that identifies the module. The
default identity values are derived from the following:

® organi sation-Project.get Goup()
®* nodul e - Proj ect. get Nane()

® revision-Project.getVersion()

® status-Project.getStatus()

® pranch - (not set)

Overriding the default identity valuesis easy: simply specify the or gani sat i on, nodul e orr evi si on
attributes when configuring the | vyPubl i cat i on. The st at us and br anch attributes can be set via
the descri pt or property (see | vyModul eDescri pt or Spec). The descri pt or property can aso
be used to add additional custom elements as children of the <i nf 0> element.

Page 268 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:status
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html

Example 33.4. customizing the publication identity

bui | d. gradl e

publ i shing {
publications {
i vy(lvyPublication) {
organi sation 'org.gradl e. sanpl e’
nmodul e ' proj ect 1- sanpl €'
revision '1.1'
descriptor.status = 'ni | estone'

descriptor.branch = 'testing'
descriptor.extralnfo 'http://nmy. nanespace', 'nyEl enment', 'Sonme val ud

from conmponent s. j ava

Gradle will handle any valid Unicode character for organisation,
module and revision (as well as artifact name, extension and
classifier). The only values that are explicitly prohibited are'\ ', '/

Certain repositories are not able
to handle al supported
characters. For example, the "'
character cannot be used as an
identifier when publishing to a
33.2.4. Modifying the generated module filesystem-backed repository on
descriptor Windows.

"and any 1SO control character. The supplied values are
validated early during publication.

At times, the module descriptor file generated from the project
information will need to be tweaked before publishing. The “i vy- publ i sh” plugin provides a hook to
allow such modification.

Example 33.5. Customizing the module descriptor file
bui | d. gradl e
publications {
i vyCust om(| vyPubl i cati on) {

descriptor.w thXxm {
asNode() . i nfo[0] . appendNode(' descri ption',

" A denponstration of ivy descriptor custd

In this example we are simply adding a 'description’ element to the generated Ivy dependency descriptor, but
this hook allows you to modify any aspect of the generated descriptor. For example, you could replace the
version range for a dependency with the actual version used to produce the build.

See | vyModul eDescri pt or Spec. wi t hXm (org. gradl e.api.Action) in the AP
documentation for more information.

It is possible to modify virtually any aspect of the created descriptor should you need to. This means that it
is also possible to modify the descriptor in such away that it is no longer a valid vy module descriptor, so

Page 269 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html#org.gradle.api.publish.ivy.IvyModuleDescriptorSpec:withXml(org.gradle.api.Action)

care must be taken when using this feature.

The identifier (organisation, module, revision) of the published module is an exception; these values cannot
be modified in the descriptor using the “withXML" hook.

33.2.5. Publishing multiple modules

Sometimes it's useful to publish multiple modules from your Gradle build, without creating a separate
Gradle subproject. An example is publishing a separate APl and implementation jar for your library. With
Gradle thisissimple:

Example 33.6. Publishing multiple modules from a single project

bui |l d. gradl e

task api Jar(type: Jar) {
baseNane "publ i shing-api"
from sour ceSet s. nai n. out put
exclude " **/inpl/**'

}

publ i shing {
publications {

i mpl (1 vyPublication) {
organi sation 'org.gradle.sanple.inpl’
nmodul e ' proj ect2-i npl"'
revision '2.3

from conmponents. j ava

}

api (I vyPublication) {
organi sation 'org.gradl e. sanpl e’
nmodul e ' proj ect 2- api
revision '2'

If a project defines multiple publications then Gradle will publish each of these to the defined repositories.
Each publication must be given a unique identity as described above.

33.3. Repositories

Publications are published to repositories. The repositories to publish to are defined by the
Publ i shi ngExt ensi on. get Reposi tori es() container.

Page 270 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories

Example 33.7. Declaring repositoriesto publish to

bui | d. gradl e

repositories {
ivy {
/'l change to point to your repo, e.g. http://ny.org/repo

url "$buil dDir/repo”

The DSL used to declare repositories for publishing is the same DSL that is used to declare repositories for
dependencies (Reposi t or yHandl er). However, in the context of Ivy publication only the repositories
created by thei vy () methods can be used as publication destinations. Y ou cannot publishan | vyPubl i cati o
to aMaven repository for example.

33.4. Performing a publish

The “i vy- publ i sh” plugin automatically creates a Publ i shTol vyReposi tory task for each
I vyPubl i cationandl vyArtifact Repository combinationinthe publ i shi ng. publi cati ons
and publ i shi ng. reposi t ori es containers respectively.

The created task is named “publ i sh« PUBNAME»Publ i cati onTo« REPONAME»Repository”,
whichis“publ i shl vyJavaPubl i cati onTol vyReposi t ory” for thisexample. Thistask is of type
Publ i shTol vyRepository.

Page 271 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

Example 33.8. Choosing a particular publication to publish

bui | d. gradl e

apply plugin: 'java
apply plugin: "ivy-publish

group = 'org.gradle.sanpl e’
version = '1.0

publ i shing {
publ i cations {
i vyJava(l vyPublication) {
from conponents. j ava
}
}
repositories {
ivy {
/'l change to point to your repo, e.g. http://ny.org/repo
url "$buil dDir/repo”

Output of gr adl e publ i shl vyJavaPubl i cati onTol vyRepository

> gradl e publishlvyJavaPublicationTol vyRepository
s gener at eDescri ptorFi | eForlvyJavaPublication
:conpi | eJava UP- TO DATE

: processResour ces UP- TO- DATE

:cl asses UP- TO DATE

tjar

: publ i shl vyJavaPubl i cati onTol vyReposi tory

BU LD SUCCESSFUL

Total tinme: 1 secs

33.4.1. The“publ i sh” lifecycle task

The“publ i sh” plugin (that the “i vy- publ i sh” plugin implicitly applies) adds a lifecycle task that can
be used to publish al publicationsto al applicable repositories named “publ i sh”.

In more concrete terms, executing this task will execute all Publ i shTol vyReposi t ory tasks in the
project. Thisisusually the most convenient way to perform a publish.

Page 272 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

Example 33.9. Publishing all publicationsviathe“publish” lifecycle task
Output of gr adl e publ i sh

> gradl e publish

1 gener at eDescri ptor Fi | eFor |l vyJavaPubl i cation
:conpi | eJava UP- TO- DATE

: processResources UP- TO DATE

:cl asses UP-TO DATE

vjar

: publ i shl vyJavaPubl i cati onTol vyRepository

s publish

BUI LD SUCCESSFUL

Total tinme: 1 secs

33.5. Generating the Ivy module descriptor file
without publishing
At timesit is useful to generate the vy module descriptor file (normally i vy. xm) without publishing your

module to an Ivy repository. Since descriptor file generation is performed by a separate task, this is very
easy to do.

The “i vy- publ i sh” plugin creates one Gener at el vyDescri pt or task for each registered

| vyPubl i cati on, named “gener at eDescri pt or Fi | eFor « PUBNAME»Publ i cati on”, which

will be“gener at eDescri pt or Fi | eFor | vyJavaPubl i cati on” for the previous example of the“i vyJe
” publication.

Y ou can specify where the generated Ivy file will be located by setting the dest i nat i on property on the
generated task. By default thisfileiswrittento “bui | d/ publ i cat i ons/ « PUBNAME»/ i vy. xm ”.

Example 33.10. Generating the Ivy module descriptor file

bui |l d. gradl e

nodel {
t asks. gener at eDescri pt or Fi | eFor | vyCust onPubl i cati on {
destination = file("$buil dDir/generated-ivy.xm")

}

Output of gr adl e gener at eDescri ptorFi |l eFor | vyCust onPubl i cati on

> gradl e generateDescriptorFil eForlvyCustonPublication
:gener at eDescriptorFi | eForl vyCust onPubl i cation

BUI LD SUCCESSFUL

Total tinme: 1 secs

Page 273 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.IvyPublication.html

The“i vy- publ i sh” plugin leverages some experimental support for late plugin configuration, and
the Gener at el vyDescri pt or task will not be constructed until the publishing extension is
configured. The simplest way to ensure that the publishing plugin is configured when you attempt to
access the Gener at el vyDescri pt or task is to place the access inside a model block, as the
exampl e above demonstrates.

The same applies to any attempt to access publication-specific tasks like
Publ i shTol vyReposi t ory. These tasks should be referenced from within anodel block.

33.6. Complete example

The following example demonstrates publishing with a multi-project build. Each project publishes a Java
component and a configured additional source artifact. The descriptor file is customized to include the
project description for each project.

Page 274 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

Example 33.11. Publishing a Java module
buil d. gradl e

subproj ects {
apply plugin: 'java
apply plugin: "ivy-publish'

version = '1. 0
group = 'org.gradle.sanpl e’

repositories {
mavenCentral ()

}

task sourceldar(type: Jar) {
from sourceSets. mai n.java
classifier "source"

}

project (":projectl") {
description = "The first project”

dependenci es {
conpile "junit:junit:4.12', project(':project2')
}
}

project (":project2") {
description = "The second project"

dependenci es {
conpi |l e ' commons-col | ecti ons: commons-col | ections: 3.2.2
}
}

subproj ects {
publ i shing {
repositories {
vy {
/'l change to point to your repo, e.g. http://ny.org/repo
url "${rootProject.buildDir}/repo"
}
}

publications {
i vy(lvyPublication) {

from conmponents. j ava

artifact(sourcedar) {
type "source"
conf "runtine"

}

descriptor.w thXm {
asNode().info[0] . appendNode(' description', description)

}

Theresult isthat the following artifacts will be published for each project:

Page 275 of 561

® The lvy module descriptor file: “i vy- 1. 0. xm ”.
® Theprimary “jar” artifact for the Java component: “pr oj ect 1-1. 0. j ar”.
* Thesource“jar” artifact that has been explicitly configured: “pr oj ect 1- 1. O- source. jar”.

When pr oj ect 1 is published, the module descriptor (i.e. the i vy. xm file) that is produced will ook
like:

Example 33.12. Example generated ivy.xml

out put -i vy. xn Note that «PUBLI CATI ON- TI ME- STA
in this example Ivy module
descriptor will be the timestamp

<?xm version="1.0" encodi ng="UTF- 8" ?>
<i vy- nodul e version="2.0">
<i nf o organi sation="org. gradl e. sanpl e" nodul e=" prsJEE;ARal=/s i3IS e dhe] (o] AL
<descri pti on>The first project</description> generated.
</i nf o>
<confi gurati ons>
<conf name="defaul t" visibility="public" extendS=
<conf name="runtinme" visibility="public"/>
</ confi gurati ons>
<publ i cati ons>
<artifact nane="projectl" type="jar" ext="jar" conf="runtinme"/>
<artifact name="projectl” type="source" ext="jar" conf="runtinme" mclassifig

</ publi cati ons>
<dependenci es>
<dependency org="junit" name="junit" rev="4.12" conf="runtine-> default"/
<dependency org="org. gradl e. sanpl e" nanme="project2" rev="1.0" conf="runti ne-
</ dependenci es>
</ivy-nodul e>

33.7. Future features

The*“i vy- publ i sh” plugin functionality as described above isincomplete, as the feature is still incubating
. In upcoming Gradle releases, the functionality will be expanded to include (but not limited to):

® Convenient customization of module attributes (modul e, or gani sat i on etc.)
® Convenient customization of dependencies reported in nodul e descri ptor.
® Multiple discrete publications per project

Page 276 of 561

34

Maven Publishing (new)

This chapter describes the new incubating Maven publishing support provided by the “maven- publ i sh
" plugin. Eventually this new publishing support will replace publishing viathe Upl oad task.

If you are looking for documentation on the original Maven publishing support using the Upl oad
task please see Chapter 30, Publishing artifacts.

This chapter describes how to publish build artifacts to an Apache Maven Repository. A module published
to a Maven repository can be consumed by Maven, Gradle (see Chapter 23, Dependency Management) and
other tools that understand the Maven repository format.

34.1. The“maven- publ i sh” Plugin

The ability to publish in the Maven format is provided by the “maven- publ i sh” plugin.

The “publ i shi ng” plugin creates an extension on the project named “publ i shi ng” of type
Publ i shi ngExt ensi on. This extension provides a container of named publications and a container of
named repositories. The “maven- publ i sh” plugin works with MavenPubl i cat i on publications and
MavenArti f act Reposi t ory repositories.

Example 34.1. Applying the 'maven-publish' plugin
bui |l d. gradl e

apply plugin: 'maven-publish'

Applying the “maven- publ i sh” plugin does the following:

* Appliesthe“publ i shi ng” plugin
® Establishesaruleto automatically create a Gener at eMavenPomtask for each
MavenPubl i cat i on added (see Section 34.2, “Publications’).
* Establishesaruleto automaticaly create a Publ i shToMavenReposi t ory task for the combination
of each MavenPubl i cat i on added (see Section 34.2, “Publications’), with each
MavenArti f act Reposi t ory added (see Section 34.3, “Repositories’).
® Establishesaruleto automaticaly create a Publ i shToMavenLocal task for each
MavenPubl i cat i on added (seeSection 34.2, “Publications”).

Page 277 of 561

http://maven.apache.org/
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.maven.MavenPublication.html

34.2. Publications

If you are not familiar with project artifacts and configurations, you should read the Chapter 30,

Publishing artifacts that introduces these concepts. This chapter also describes “publishing artifacts’
using a different mechanism than what is described in this chapter. The publishing functionality
described here will eventually supersede that functionality.

Publication objects describe the structure/configuration of a publication to be created. Publications are
published to repositories viatasks, and the configuration of the publication object determines exactly what is
published. All of the publications of a project are defined in the
Publ i shi ngExt ensi on. get Publ i cati ons() container. Each publication has a unique name
within the project.

For the “maven- publ i sh” plugin to have any effect, a MavenPubl i cat i on must be added to the set
of publications. This publication determines which artifacts are actualy published as well as the details
included in the associated POM file. A publication can be configured by adding components, customizing
artifacts, and by modifying the generated POM file directly.

34.2.1. Publishing a Software Component

The simplest way to publish a Gradle project to a Maven repository is to specify a Sof t war eConponent
to publish. The components presently available for publication are:

Table 34.1. Software Components

Name Provided By Artifacts Dependencies

java Chapter 45, The Java Generated jar file Dependencies from ‘runtime’
Plugin configuration

web Chapter 47, The War Generated war No dependencies
Plugin file

In the following example, artifacts and runtime dependencies are taken from the “java’ component, which is
added by the Java Pl ugi n.

Example 34.2. Adding a MavenPublication for a Java component

bui |l d. gradl e

publ i shi ng {
publ i cations {
mavenJava(MavenPubl i cati on) {

from conponents. j ava

Page 278 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/component/SoftwareComponent.html

34.2.2. Publishing custom artifacts

It is also possible to explicitly configure artifacts to be included in the publication. Artifacts are commonly
supplied asraw files, or asinstances of Abst r act Ar chi veTask (e.g. Jar, Zip).

For each custom artifact, it is possible to specify the ext ensi on and cl assi fi er values to use for
publication. Note that only one of the published artifacts can have an empty classifier, and all other artifacts
must have a unique classifier/extension combination.

Configure custom artifacts as follows:

Example 34.3. Adding additional artifact to a MavenPublication
bui |l d. gradl e

task sourceldar(type: Jar) {
from sourceSets. mai n. al |l Java

}

publ i shing {
publ i cations {
mavenJava(MavenPubl i cati on) {

from conponents. j ava

artifact sourcedar {
classifier "sources"

See the MavenPubl i cat i on class in the APl documentation for more information about how artifacts
can be customized.

34.2.3. Identity values in the generated POM

The attributes of the generated POM file will contain identity values derived from the following project
properties:

® groupld-Project.getGoup()
® artifactld-Project.getName()
® version-Project.getVersion()

Overriding the default identity values is easy: simply specify the gr oupl d, arti fact!ld or versi on
attributes when configuring the MavenPubl i cat i on.

Page 279 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version

Example 34.4. customizing the publication identity
buil d. gradl e

publ i shing {
publications {
maven(MavenPubl i cati on) {
groupld 'org.gradle. sanpl e
artifactld 'projectl-sanple'
version '1.1'

from conponents. j ava

Maven restricts 'groupld' and 'artifactld' to a limited character
set ([A-Za-z0-9 \\-.]+) and Gradle enforces this
restriction. For 'version' (as well as artifact 'extension' and
‘classifier’), Gradle will handle any valid Unicode character.

Certain repositories will not be
able to handle all supported
characters. For example, the "'
character cannot be used as an
identifier when publishing to a
filesystem-backed repository on
Windows.

The only Unicode values that are explicitly prohibited are’\ ', '/
and any 1SO control character. Supplied values are validated
early in publication.

34.2.4. Modifying the generated POM

The generated POM file may need to be tweaked before publishing. The “maven- publ i sh” plugin
provides a hook to allow such modification.

Example 34.5. M odifying the POM file

bui | d. gradl e

publ i cations {
mavenCust on(MavenPubl i cati on) {
pom wi t hXm {
asNode() . appendNode(' description',

" A denonstration of maven POM custom zation')

In this example we are adding a ‘description’ element for the generated POM. With this hook, you can
modify any aspect of the POM. For example, you could replace the version range for a dependency with the
actual version used to produce the build.

See MavenPom wi t hXm (org. gradl e. api . Action) in the APl documentation for more
information.

It is possible to modify virtually any aspect of the created POM should you need to. This means that it is
also possible to modify the POM in such a way that it is no longer a valid Maven Pom, so care must be
taken when using this feature.

Page 280 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.maven.MavenPom.html#org.gradle.api.publish.maven.MavenPom:withXml(org.gradle.api.Action)

The identifier (groupld, artifactld, version) of the published module is an exception; these values cannot be
modified in the POM using the "withXML" hook.

34.2.5. Publishing multiple modules

Sometimes it's useful to publish multiple modules from your Gradle build, without creating a separate
Gradle subproject. An example is publishing a separate APl and implementation jar for your library. With
Gradlethisissimple:

Example 34.6. Publishing multiple modules from a single proj ect
bui |l d. gradl e

task api Jar(type: Jar) {
baseNane "publ i shing-api"
from sourceSet s. mai n. out put
exclude ' **/inpl/**"

}

publ i shing {
publications {
i npl (MavenPubl i cation) {
groupld 'org.gradl e.sanple.inpl'
artifactld 'project2-inpl'
version '2.3'

from conmponents. j ava

}
api (MavenPubl i cation) {

groupld 'org.gradle. sanpl e
artifactld 'project2-api’
version ' 2

artifact apiJar

If a project defines multiple publications then Gradle will publish each of these to the defined repositories.
Each publication must be given a unique identity as described above.

34.3. Repositories

Publications are published to repositories. The repositories to publish to are defined by the
Publ i shi ngExt ensi on. get Reposi t ori es() container.

Page 281 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories

Example 34.7. Declaring repositoriesto publish to

bui | d. gradl e

publ i shing {
repositories {
maven {
/1l change to point to your repo, e.g. http://nmy.org/repo

url "$buil dDir/repo”

The DSL used to declare repositories for publication is the same DSL that is used to declare repositories to
consume dependencies from, Reposi t or yHandl er . However, in the context of Maven publication only
MavenArti f act Reposi t ory repositories can be used for publication.

34.4. Performing a publish

The “maven- publ i sh” plugin automatically creates a Publ i shToMavenReposi t ory task for each
MavenPubl i cati on and MavenArti f act Reposi t ory combinationinthe publ i shi ng. publicatio
and publ i shi ng. reposi t ori es containers respectively.

The created task isnamed “publ i sh« PUBNAME»Publ i cati onTo« REPONAME»Reposi t ory”.

Page 282 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html

Example 34.8. Publishing a project to a Maven repository

bui | d. gradl e

apply plugin: 'java
apply plugin: 'maven-publish'

group = 'org.gradle.sanpl e’
version = '1. 0

publ i shing {
publ i cations {
mavenJava(MavenPubl i cati on) {
from conponents. j ava

}
}
}
publ i shing {
repositories {
maven {
/'l change to point to your repo, e.g. http://ny.org/repo
url "$buil dDir/repo"

Output of gr adl e publ i sh

> gradl e publish

: gener at ePonfi | eFor MavenJavaPubl i cati on
:conpi | eJava

: processResour ces UP- TO DATE

1 cl asses

djar

: publ i shMavenJavaPubl i cati onToMavenReposi tory
s publish

BU LD SUCCESSFUL

Total tinme: 1 secs

In this example, a task named “publ i shMavenJavaPubl i cati onToMavenRepository” is
created, which is of type Publ i shToMavenReposi t ory. Thistask iswired into the publ i sh lifecycle
task. Executing “gr adl e publ i sh” builds the POM file and al of the artifacts to be published, and
transfers them to the repository.

34.5. Publishing to Maven Local

For integration with a local Maven installation, it is sometimes useful to publish the module into the local
.m2 repository. In Maven parlance, this is referred to as ‘installing' the module. The “naven- publ i sh”
plugin makes this easy to do by automatically creating a Publ i shToMavenLocal task for each

MavenPubl i cati oninthepubl i shi ng. publ i cati ons container. Each of these tasksiswired into
the publ i shToMavenLocal lifecycle task. You do not need to have “mavenLocal” in your
“publishing.repositories’ section.

Page 283 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.maven.MavenPublication.html

The created task is named “publ i sh« PUBNAME»Publ i cati onToMavenLocal ”.

Example 34.9. Publish a project to the Maven local repository
Output of gr adl e publ i shToMavenLocal

> gradl e publishToMavenLocal

: gener at ePonti | eFor MavenJavaPubl i cati on
:conpi | eJava

:processResources UP- TO- DATE

:cl asses

tjar

: publ i shMavenJavaPubl i cati onToMavenLocal
: publ i shToMavenLocal

BU LD SUCCESSFUL

Total tinme: 1 secs

The resulting task in this example is named “publ i shMavenJavaPubl i cati onToMavenLocal ”.
Thistask iswired into the publ i shToMavenLocal lifecycletask. Executing “gr adl e publ i shToMavenL

" builds the POM file and all of the artifacts to be published, and “installs’ them into the local Maven
repository.

34.6. Generating the POM file without publishing

At times it is useful to generate a Maven POM file for a module without actually publishing. Since POM
generation is performed by a separate task, it is very easy to do so.

The task for generating the POM file is of type Gener at eMavenPom and it is given a name based on the
name of the publication: “gener at ePonfi | eFor « PUBNAME»Publ i cati on”. So in the example
below, where the publication is named “nmavenCust onf, the task will be named “gener at ePonti | eFor Mav

Example 34.10. Generate a POM file without publishing

bui | d. gradl e

nodel {
t asks. gener at ePonti | eFor MavenCust onPubl i cati on {
destination = file("$buil dDir/generated-pom xmi ")

}

Output of gr adl e gener at ePonti | eFor MavenCust onPubl i cati on

> gradl e gener at ePonFi | eFor MavenCust onPubl i cati on
: gener at ePonti | eFor MavenCust onPubl i cati on

BU LD SUCCESSFUL

Total tinme: 1 secs

Page 284 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html

All details of the publishing model are still considered in POM generation, including conponent s,
customarti f act s, and any modifications made viapom wi t hXmi .

The “maven- publ i sh” plugin leverages some experimental support for late plugin configuration,
and any Gener at eMavenPom tasks will not be constructed until the publishing extension is
configured. The simplest way to ensure that the publishing plugin is configured when you attempt to
access the Gener at eMavenPomtask is to place the access inside a nodel block, as the example
above demonstrates.

The same applies to any attempt to access publication-specific tasks like
Publ i shToMavenReposi t or y. These tasks should be referenced from within anodel block.

Page 285 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html

35

The Distribution Plugin

The distribution plugin is currently incubating. Please be aware that the DSL and other configuration
may change in later Gradle versions.

The distribution plugin facilitates building archives that serve as distributions of the project. Distribution
archives typically contain the executable application and other supporting files, such as documentation.

35.1. Usage

To use the distribution plugin, include the following in your build script:

Example 35.1. Using the distribution plugin

bui |l d. gradl e
apply plugin: "distribution'

The plugin adds an extension named “di st ri buti ons” of type Di stri buti onCont ai ner to the
project. It also creates a single distribution in the distributions container extension named “mai n”. If your
build only produces one distribution you only need to configure this distribution (or use the defaults).

Youcanrun“gradl e di st Zi p” to package the main distribution asa ZIP, or “gr adl e di st Tar” to
create a TAR file. To build both types of archives just run gr adl e assenbl eDi st . The files will be
created at “$bui | dDi r / di stri buti ons/ $proj ect. name- $proj ect. versi on. «ext »”.

Youcanrun“gradl e i nstal | Di st” toassemble the uncompressed distributioninto“$bui | dDir /i nst a

35.2. Tasks

The Distribution plugin adds the following tasks to the project:

Page 286 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.distribution.DistributionContainer.html

Table 35.1. Distribution plugin - tasks

Task name
distZip

di st Tar

assenbl eDi st

install D st

Dependson

Type
Zip

Tar

di st Tar, di st Zipask

Sync

Description
Creates a ZIP archive of the distribution contents
Creates a TAR archive of the distribution contents

Creates ZIP and TAR archives with the distribution
contents

Assembl es the distribution content and installs it on
the current machine

For each extra distribution set you add to the project, the distribution plugin adds the following tasks:

Table 35.2. Multipledistributions - tasks

Task name

${di stribution.nanme}DistZp

${ di stribution. nane}Di st Tar

assenbl e${di stri buti on. nanme. capi tal i &fedi)§tDiisthut i on. nane} Di stask

instal | ${di stribution.nane.capitalize()}D st Sync

Dependson Type Description

Creates a
ZIP archive
of the
distribution
contents

- Zip

Createsa
TAR
archive of
the
distribution
contents

- Tar

Assembles
,${distribution.nane}Distzip al
distribution
archives

Assembles
the
distribution
content and
installsit on
the current
machine

Page 287 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Sync.html

Example 35.2. Adding extra distributions
buil d. gradl e
apply plugin: "distribution'

version = '1.2
di stributions {
custom {}

}

Thiswill add following tasks to the project:

® customDistZip

® customDistTar

® assembleCustomDist
¢ installCustomDist

Given that the project nameis“mypr oj ect” and version “1. 2”, running “gr adl e cust onDi st Zi p”
will produce a ZIP file named “nypr oj ect - cust om 1. 2. zi p”.

Running “gr adl e i nstal | Cust onDi st ” will install the distribution contentsinto “ $bui | dDi r /i nst al |

35.3. Distribution contents

All of thefilesinthe“sr ¢/ $di st ri buti on. nane/ di st” directory will automatically be included in
the distribution. Y ou can add additional files by configuring the Di st ri but i on object that is part of the
container.

Page 288 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/distribution/Distribution.html

Example 35.3. Configuring the main distribution

bui | d. gradl e

apply plugin: "distribution'

di stributions {
mai n {
baseNane = ' soneNaneg'
contents {
from{ 'src/readme' }

apply plugin:"' maven’

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://sonme/repo")

In the example above, the content of the “sr c/ readne” directory will be included in the distribution
(adlong with thefilesinthe“sr ¢/ mai n/ di st ” directory which are added by default).

The “baseNane” property has also been changed. This will cause the distribution archives to be created
with adifferent name.

35.4. Publishing distributions

The distribution plugin adds the distribution archives as candidate for default publishing artifacts. With the maven
plugin applied the distribution zip file will be published when running uploadArchives if no other default
artifact is configured

Example 35.4. publish main distribution

bui |l d. gradl e

apply plugin:"' maven'

upl oadAr chi ves {
repositories {

mavenDepl oyer {
repository(url: "file://sone/repo")

Page 289 of 561

36

The Announce Plugin

The Gradle announce plugin allows you to send custom announcements during a build. The following
notification systems are supported:

* Twitter

* notify-send (Ubuntu)
® Snarl (Windows)

® Growl (Mac OS X)

36.1. Usage

To use the announce plugin, apply it to your build script:

Example 36.1. Using the announce plugin

buil d. gradl e

apply plugin: 'announce'

Next, configure your notification service(s) of choice (see table below for which configuration properties are
available):

Example 36.2. Configure the announce plugin

bui |l d. gradl e

announce {
user nane "nyld
password " myPasswor d'

}

Finally, send announcements with the announce method:

Page 290 of 561

http://twitter.com
http://manpages.ubuntu.com/manpages/gutsy/man1/notify-send.1.html
https://sites.google.com/site/snarlapp/home
http://growl.info/

Example 36.3. Using the announce plugin
buil d. gradl e

task helloWrld << {
println "Hello, world!"

}

hel | oWor | d. doLast {
announce. announce("hel | oWorl d conpleted!", "twitter")
announce. announce("hel | oWorl d conpleted!", "local")

The announce method takes two String arguments. The message to be sent, and the notification service to
be used. The following table lists supported notification services and their configuration properties.

Table 36.1. Announce Plugin Notification Services

Notification Operating Configuration Further Information
Service System Properties
twitter Any username,
password
snarl Windows
growl Mac OS X
notify-send Ubuntu Requires the notify-send package to be installed.
Usesudo apt-get install libnotify-bin
toingtall it.
local Windows, Automatically chooses between snarl, growl, and
Mac OS X, notify-send depending on the current operating
Ubuntu system.

36.2. Configuration

Seethe AnnouncePl ugi nExt ensi on classin the APl documentation.

Page 291 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.announce.AnnouncePluginExtension.html

37

The Build Announcements Plugin

The build announcements plugin is currently incubating. Please be aware that the DSL and other
configuration may changein later Gradle versions.

The build announcements plugin uses the announce plugin to send local announcements on important events
in the build.

37.1. Usage

To use the build announcements plugin, include the following in your build script:

Example 37.1. Using the build announcements plugin

bui | d. gradl e

apply plugin: 'build-announcenents'

That's it. If you want to tweak where the announcements go, you can configure the announce plugin to
change the local announcer.

Y ou can aso apply the plugin from an init script:

Example 37.2. Using the build announcements plugin from an init script
init.gradle

root Proj ect {

apply plugin: 'build-announcenents'

}

Page 292 of 561

Part 1V. Extending the build

38

Writing Custom Task Classes

Gradle supports two types of task. One such type is the simple task, where you define the task with an action
closure. We have seen these in Chapter 14, Build Script Basics. For this type of task, the action closure
determines the behaviour of the task. This type of task is good for implementing one-off tasks in your build
script.

The other type of task is the enhanced task, where the behaviour is built into the task, and the task provides
some properties which you can use to configure the behaviour. We have seen these in Chapter 17, More
about Tasks. Most Gradle plugins use enhanced tasks. With enhanced tasks, you don't need to implement the
task behaviour as you do with simple tasks. You simply declare the task and configure the task using its
properties. In this way, enhanced tasks let you reuse a piece of behaviour in many different places, possibly
across different builds.

The behaviour and properties of an enhanced task is defined by the task's class. When you declare an
enhanced task, you specify the type, or class of the task.

Implementing your own custom task class in Gradle is easy. You can implement a custom task class in
pretty much any language you like, provided it ends up compiled to bytecode. In our examples, we are going
to use Groovy as the implementation language, but you could use, for example, Java or Scala. In general,
using Groovy isthe easiest option, because the Gradle API is designed to work well with Groovy.

38.1. Packaging atask class

There are several places where you can put the source for the task class.

Build script
You can include the task class directly in the build script. This has the benefit that the task class is
automatically compiled and included in the classpath of the build script without you having to do
anything. However, the task classis not visible outside the build script, and so you cannot reuse the task
class outside the build script it is defined in.

bui | dSr ¢ project
Y ou can put the source for the task classin the r oot Proj ect Di r / bui | dSrc/ src/ mai n/ gr oovy
directory. Gradle will take care of compiling and testing the task class and making it available on the
classpath of the build script. The task classis visible to every build script used by the build. However, it
is not visible outside the build, and so you cannot reuse the task class outside the build it is defined in.
Using the bui | dSr ¢ project approach separates the task declaration - that is, what the task should do -
from the task implementation - that is, how the task doesiit.

Page 294 of 561

See Chapter 41, Organizing Build Logic for more details about the bui | dSr ¢ project.

Standalone proj ect
Y ou can create a separate project for your task class. This project produces and publishes a JAR which
you can then use in multiple builds and share with others. Generally, this JAR might include some
custom plugins, or bundle several related task classesinto a single library. Or some combination of the
two.

In our examples, we will start with the task classin the build script, to keep things simple. Then we will look
at creating a standal one project.

38.2. Writing asimple task class

To implement a custom task class, you extend Def aul t Task.

Example 38.1. Defining a custom task

bui |l d. gradl e

cl ass GreetingTask extends Defaul t Task {

}

This task doesn't do anything useful, so let's add some behaviour. To do so, we add a method to the task and
mark it with the TaskAct i on annotation. Gradle will call the method when the task executes. Y ou don't
have to use a method to define the behaviour for the task. Y ou could, for instance, call doFi r st () or doLast (|
with a closure in the task constructor to add behaviour.

Example 38.2. A helloworld task

bui |l d. gradl e

task hello(type: G eetingTask)

cl ass GreetingTask extends Defaul t Task {
@askAct i on

def greet() {
println "hello from G eeti ngTask'

}

Output of gradl e -q hello

> gradle -q hello
hello from G eeti ngTask

Let's add a property to the task, so we can customize it. Tasks are simply POGOs, and when you declare a
task, you can set the properties or call methods on the task object. Here we add a gr eet i ng property, and
set the value when we declare the gr eet i ng task.

Page 295 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.DefaultTask.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/TaskAction.html

Example 38.3. A customizable hello world task
buil d. gradl e

/'l Use the default greeting
task hello(type: GeetingTask)

/| Custom ze the greeting
task greeting(type: G eetingTask) {
greeting = 'greetings from G eeti ngTask'

}

cl ass GreetingTask extends Defaul t Task {
String greeting = 'hello from G eeti ngTask'

@askActi on
def greet() {
println greeting

}

Output of gradl e -g hell o greeting
> gradle -q hello greeting

hell o from G eetingTask
greetings from G eetingTask

38.3. A standalone project

Now we will move our task to a standalone project, so we can publish it and share it with others. This
project is simply a Groovy project that produces a JAR containing the task class. Here is a simple build
script for the project. It applies the Groovy plugin, and adds the Gradle API as a compile-time dependency.

Example 38.4. A build for a custom task

buil d. gradl e
apply plugin: 'groovy'

dependenci es {

conpi | e gradl eApi ()
conpi | e | ocal G oovy()

Note: The code for this example can be found at sanpl es/ cust onPl ugi n/ pl ugi n in the ‘-al’
distribution of Gradle.

Wejust follow the convention for where the source for the task class should go.

Page 296 of 561

Example 38.5. A custom task
src/ mai n/ groovy/ or g/ gradl e/ G eeti ngTask. groovy

package org.gradle

i mport org.gradl e. api . Def aul t Task
i mport org.gradl e.api.tasks. TaskActi on

cl ass GreetingTask extends Defaul t Task {
String greeting = 'hello from G eeti ngTask'

@askActi on
def greet() {
println greeting

}

38.3.1. Using your task class in another project

To use atask classin abuild script, you need to add the class to the build script's classpath. To do this, you
useabuil dscript { } block, as described in ???. The following example shows how you might do
this when the JAR containing the task class has been published to alocal repository:

Example 38.6. Using a custom task in another project

bui |l d. gradl e

bui I dscript {
repositories {
maven {
url wuri('../repo")
}
}

dependenci es {
cl asspath group: 'org.gradl e, nanme: 'custonPlugin',
version: '1.0- SNAPSHOT'

}

task greeting(type: org.gradle.GeetingTask) ({
greeting = ' howdy!"'

}

38.3.2. Writing tests for your task class

You can use the Pr oj ect Bui | der class to create Pr oj ect instances to use when you test your task
class.

Page 297 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/testfixtures/ProjectBuilder.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html

Example 38.7. Testing a custom task
src/test/groovy/org/gradl e/ GeetingTaskTest. groovy

cl ass GreetingTaskTest {
@est
public void canAddTaskToProject() {
Proj ect project = ProjectBuilder.builder().build()

def task = project.task('greeting' , type: G eetingTask)
assert True(task instanceof G eetingTask)

38.4. Incremental tasks

Incremental tasks are an incubating feature.

Since the introduction of the implementation described above (early in the Gradle 1.6 release cycle),
discussions within the Gradle community have produced superior ideas for exposing the information
about changes to task implementors to what is described below. As such, the API for this feature will
almost certainly change in upcoming releases. However, please do experiment with the current
implementation and share your experiences with the Gradle community.

The feature incubation process, which is part of the Gradle feature lifecycle (see Appendix C, The
Feature Lifecycle), exists for this purpose of ensuring high quality final implementations through
incorporation of early user feedback.

With Gradle, it's very simple to implement a task that gets skipped when all of it's inputs and outputs are up
to date (see Section 17.9, “ Skipping tasks that are up-to-date”). However, there are times when only a few
input files have changed since the last execution, and you'd like to avoid reprocessing al of the unchanged
inputs. This can be particularly useful for a transformer task, that converts input files to output fileson a 1:1
basis.

If you'd like to optimise your build so that only out-of-date inputs are processed, you can do so with an
incremental task.

38.4.1. Implementing an incremental task

For atask to process inputs incrementally, that task must contain an incremental task action. Thisis a task
action method that contains a single | ncr enent al Taskl nput s parameter, which indicates to Gradle
that the action will process the changed inputs only.

The incremental task action may supply an
I ncr enent al Taskl nput s. out Of Dat e(or g. gradl e. api . Acti on) action for processing any
input file that is out-of-date, and a

I ncr enent al Taskl nput s. renoved(org. gradl e. api . Acti on) action that executes for any
input file that has been removed since the previous execution.

Page 298 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

Example 38.8. Defining an incremental task action
buil d. gradl e

cl ass I ncrenent al Rever seTask extends Defaul t Task {
@nputDirectory
def File inputDir

@ut put Di rectory
def File outputDir

@ nput
def inputProperty

@askActi on
voi d execut e(l ncrenent al Taskl nputs i nputs) {
println inputs.increnental ? "CHANGED inputs considered out of date"
“ALL inputs considered out of date"
if (!inputs.increnental)
project.delete(outputDir.listFiles())

i nputs. out Of Date { change ->
println "out of date: ${change.file.nane}"
def targetFile = new File(outputDir, change.file.nane)
targetFile.text = change.file.text.reverse()

}

i nputs. renmoved { change ->
println "renoved: ${change.file.nane}"
def targetFile = new File(outputDir, change.file.nane)
targetFil e. del ete()

Note: The code for this example can be found at sanpl es/ user gui de/ t asks/ i ncr ement al Task
inthe‘-al’ distribution of Gradle.

If for some reason the task is not run incremental, e.g. by running with --rerun-tasks, only the outOfDate
action is executed, even if there where deleted input files. Y ou should consider handling this case at the
beginning, asis donein the example above.

For a simple transformer task like this, the task action simply needs to generate output files for any
out-of-date inputs, and delete output files for any removed inputs.

A task may only contain a single incremental task action.

Page 299 of 561

38.4.2. Which inputs are considered out of date?

When Gradle has history of a previous task execution, and the only changes to the task execution context
since that execution are to input files, then Gradle is able to determine which input files need to be

reprocessed by the task. In this case, the
I ncr enent al Taskl nput s. out O Dat e(or g. gradl e. api . Acti on) action will be executed for
any input file that was added or modified, and the

I ncr enent al Taskl nput s. renoved(or g. gradl e. api . Action) action will be executed for
any removed input file.

However, there are many cases where Gradle is unable to determine which input files need to be
reprocessed. Examplesinclude:

® Thereisno history available from a previous execution.

® You are building with a different version of Gradle. Currently, Gradle does not use task history from a
different version.

®* AnupToDat eWhen criteria added to the task returnsf al se.

* Aninput property has changed since the previous execution.

® One or more output files have changed since the previous execution.

In any of these cases, Gradle will consider all of the input files to be out Of Date. The

I ncr enent al Taskl nput s. out O Dat e(or g. gradl e. api . Acti on) action will be executed for
every input file, and the | ncrement al Taskl nputs. renpved(org. gradl e. api . Acti on)
action will not be executed at all.

You can check if Gradle was able to determine the incremental changes to input files with
I ncrenent al Taskl nputs.islncrenental ().

38.4.3. An incremental task in action

Given the incremental task implementation above, we can explore the various change scenarios by example.
Note that the various mutation tasks (‘updatel nputs, ‘removelnput’, etc) are only present for demonstration
purposes. these would not normally be part of your build script.

First, consider the | ncr enment al Rever seTask executed against a set of inputs for the first time. In this
case, al inputswill be considered “out of date”:

Page 300 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:incremental
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:incremental

Example 38.9. Running the incremental task for thefirst time

bui | d. gradl e

task increnental Reverse(type: Increnental ReverseTask) {
inputDir = file('inputs")
outputDir = file("$buildDir/outputs")

i nput Property = project.properties[’'tasklnputProperty'] ?: "original”

Build layout

i ncr enent al Task/
bui | d. gradl e
i nput s/

1. txt
2.t xt
3. txt

Output of gradl e -q i ncrenent al Rever se

> gradle -q incremental Reverse
ALL inputs considered out of date
out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

Naturally when the task is executed again with no changes, then the entire task is up to date and no files are
reported to the task action:

Example 38.10. Running the incremental task with unchanged inputs

Output of gradl e -qg i ncrenent al Rever se

> gradle -q incremental Reverse

When an input fileis modified in some way or anew input file is added, then re-executing the task resultsin
those files being reported to

I ncr enent al Taskl nput s. out Of Dat e(org. gradl e. api . Action):

Example 38.11. Running the incremental task with updated input files

bui | d. gradl e

task updatel nputs() << {
file('inputs/1.txt").text "Changed content for existing file 1."

file('inputs/4.txt').text "Content for new file 4."

Output of gradl e -qg updat el nputs i ncrenent al Reverse

> gradl e -q updatel nputs increnental Reverse
CHANGED i nput s consi dered out of date

out of date: 1.txt

out of date: 4.txt

Page 301 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)

When an existing input file is removed, then re-executing the task results in that file being reported to
I ncr enent al Taskl nputs. renoved(org. gradl e. api . Acti on):

Example 38.12. Running the incremental task with an input file removed

bui | d. gradl e

task renmovel nput () << {

file('"inputs/3.txt').delete()
}

Output of gr adl e -qg renovel nput increnental Reverse

> gradle -qg renovel nput increnental Reverse
CHANGED i nput s considered out of date
renoved: 3.txt

When an output file is deleted (or modified), then Gradle is unable to determine which input files are out of
date. In this case, all input files are reported to the
I ncr enent al Taskl nput s. out Of Dat e(org. gradl e. api . Acti on) action, and no input files
arereported to the | ncr enent al Taskl nput s. renpoved(or g. gradl e. api . Acti on) action:

Example 38.13. Running the incremental task with an output fileremoved

bui |l d. gradl e

task removeCQut put () << {
file("S$buildDir/outputs/1.txt").delete()

}

Output of gradl e -qg renpveQut put increnental Reverse

> gradle -q removeQut put increnental Reverse
ALL inputs considered out of date

out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

When a task input property is modified, Gradle is unable to determine how this property impacted the task
outputs, so al input files are assumed to be out of date. So similar to the changed output file example, all
input files are reported to the

I ncr enent al Taskl nput s. out Of Dat e(org. gradl e. api . Acti on) action, and no input files
arereported tothe | ncr ement al Taskl nput s. renoved(org. gradl e. api . Acti on) action:

Example 38.14. Running the incremental task with an input property changed

Output of gr adl e -qg - Pt askl nput Property=changed i ncrenent al Rever se

> gradl e -q -Ptaskl nput Property=changed i ncrenent al Reverse
ALL inputs considered out of date

out of date: 1.txt

out of date: 2.txt

out of date: 3.txt

Page 302 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)

39

WTriting Custom Plugins

A Gradle plugin packages up reusable pieces of build logic, which can be used across many different
projects and builds. Gradle allows you to implement your own custom plugins, so you can reuse your build
logic, and share it with others.

You can implement a custom plugin in any language you like, provided the implementation ends up
compiled as bytecode. For the examples here, we are going to use Groovy as the implementation language.
You could use Java or Scalainstead, if you want.

39.1. Packaging a plugin
There are several places where you can put the source for the plugin.

Build script
Y ou can include the source for the plugin directly in the build script. This has the benefit that the plugin
is automatically compiled and included in the classpath of the build script without you having to do
anything. However, the plugin is not visible outside the build script, and so you cannot reuse the plugin
outside the build script it is defined in.

bui | dSr ¢ project
You can put the source for the plugin in the r oot Proj ect Di r / bui | dSrc/ src/ mai n/ gr oovy
directory. Gradle will take care of compiling and testing the plugin and making it available on the
classpath of the build script. The plugin is visible to every build script used by the build. However, it is
not visible outside the build, and so you cannot reuse the plugin outside the build it is defined in.

See Chapter 41, Organizing Build Logic for more details about the bui | dSr ¢ project.

Standalone proj ect
Y ou can create a separate project for your plugin. This project produces and publishes a JAR which you
can then use in multiple builds and share with others. Generaly, this JAR might include some custom
plugins, or bundle several related task classesinto asingle library. Or some combination of the two.

In our examples, we will start with the plugin in the build script, to keep things simple. Then we will look at
creating a standalone project.

Page 303 of 561

39.2. Writing asimple plugin

To create a custom plugin, you need to write an implementation of Pl ugi n. Gradle instantiates the plugin
and calls the plugin instance's Pl ugi n. appl y(T) method when the plugin is used with a project. The
project object is passed as a parameter, which the plugin can use to configure the project however it needs
to. The following sample contains a greeting plugin, which addsa hel | o task to the project.

Example 39.1. A custom plugin
bui |l d. gradl e
apply plugin: GeetingPlugin

cl ass GreetingPlugin inplements Plugin<Project> {
voi d appl y(Project project) {

project.task('hello") << {
println "Hello fromthe G eetingPlugin"

Outputof gradl e -q hello

> gradle -q hello
Hello fromthe G eetingPlugin

One thing to note is that a new instance of a given plugin is created for each project it is applied to. Also
note that the Pl ugi n class is a generic type. This example has it receiving the Pr 0j ect type as atype
parameter. It's possible to write unusual custom plugins that take different type parameters, but this will be
unlikely (until someone figures out more creative thingsto do here).

39.3. Getting input from the build

Most plugins need to obtain some configuration from the build script. One method for doing thisis to use

extension objects. The Gradle Pr 0j ect has an associated Ext ensi onCont ai ner object that helps
keep track of all the settings and properties being passed to plugins. You can capture user input by telling
the extension container about your plugin. To capture input, ssimply add a Java Bean compliant class into the
extension container's list of extensions. Groovy is a good language choice for a plugin because plain old
Groovy objects contain all the getter and setter methods that a Java Bean requires.

Let's add a simple extension object to the project. Here we add a gr eet i ng extension object to the project,
which alows you to configure the greeting.

Page 304 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/Plugin.html#apply(T)
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/plugins/ExtensionContainer.html

Example 39.2. A custom plugin extension

bui | d. gradl e
apply plugin: GeetingPlugin
greeting. nessage = 'H from G adl e

cl ass GreetingPlugin inplenments Plugi n<Project> {
voi d appl y(Project project) {
/] Add the 'greeting' extension object
proj ect. ext ensi ons. create("greeting”, G eetingPlugi nExtension)
/1 Add a task that uses the configuration
proj ect.task('hello') << {
println project.greeting. mressage

}
}

cl ass G eetingPl ugi nExt ensi on {
def String nessage = 'Hello from G eetingPl ugi n'

}

Output of gradl e -q hello

> gradle -q hello
H from G adle

Inthisexample, Gr eet i ngPl ugi nExt ensi on isaplain old Groovy object with afield called nessage
. The extension object is added to the plugin list with the name gr eet i ng. This object then becomes
available as a project property with the same name as the extension object.

Oftentimes, you have several related properties you need to specify on a single plugin. Gradle adds a
configuration closure block for each extension object, so you can group settings together. The following
exampl e shows you how this works.

Page 305 of 561

Example 39.3. A custom plugin with configuration closure
bui | d. gradl e
apply plugin: GeetingPlugin

greeting {
nessage
greeter

}

cl ass GreetingPlugin inplenments Plugin<Project> {
voi d appl y(Project project) {
proj ect . extensions.create("greeting”, G eetingPluginExtension)
project.task('hello") << {
println "${project.greeting. nessage} from ${project.greeting.greetern

cl ass GreetingPl ugi nExt ensi on {
String nmessage
String greeter

Outputof gradl e -q hello

> gradle -q hello
H from Gadle

In this example, several settings can be grouped together within the gr eet i ng closure. The name of the
closure block in the build script (gr eet i ng) needs to match the extension object name. Then, when the
closure is executed, the fields on the extension object will be mapped to the variables within the closure
based on the standard Groovy closure delegate feature.

39.4. Working with files in custom tasks and
plugins

When developing custom tasks and plugins, it's a good idea to be very flexible when accepting input
configuration for file locations. To do this, you can leverage the
Project.file(java.lang. Obj ect) method to resolve valuesto files as late as possible.

Page 306 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Example 39.4. Evaluating file propertieslazily
buil d. gradl e

cl ass GreetingToFil eTask extends Defaul t Task {
def destination

File getDestination() {
project.file(destination)

}

@askActi on

def greet() {
def file = getDestination()
file.parentFile.nkdirs()
file.wite "Hellol"

}

task greet (type: GeetingToFil eTask) {
destination = { project.greetingFile }

}

task sayGeeting(dependsOn: greet) << {
println file(greetingFile).text

}

ext.greetingFile = "$buildDir/hello.txt"

Output of gradl e -q sayG eeting

> gradle -q sayGreeting
Hel | o!

In this example, we configure the gr eet task dest i nati on property as a closure, which is evaluated
with the Proj ect . fil e(j ava. | ang. Obj ect) method to turn the return value of the closure into a
file object at the last minute. You will notice that in the example above we specify the gr eeti ngFi | e
property value after we have configured to use it for the task. This kind of lazy evaluation is a key benefit of
accepting any value when setting a file property, then resolving that value when reading the property.

39.5. A standalone project

Now we will move our plugin to a standalone project, so we can publish it and share it with others. This
project is simply a Groovy project that produces a JAR containing the plugin classes. Here is a simple build
script for the project. It applies the Groovy plugin, and adds the Gradle API as a compile-time dependency.

Page 307 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Example 39.5. A build for a custom plugin
buil d. gradl e
apply plugin: 'groovy'

dependenci es {

conpi | e gradl eApi ()
conpi | e | ocal G oovy()

Note: The code for this example can be found at sanpl es/ cust onPl ugi n/ pl ugi n in the ‘-all’
distribution of Gradle.

So how does Gradle find the Pl ugi n implementation? The answer is you need to provide a properties file
inthejar's META- | NF/ gr adl e- pl ugi ns directory that matches the id of your plugin.

Example 39.6. Wiring for a custom plugin

src/ mai n/ resour ces/ META- | NF/ gr adl e- pl ugi ns/ org. sanpl es. greeting. properties

i mpl enent ati on-cl ass=or g. gradl e. G eeti ngPl ugi n

Notice that the properties filename matches the plugin id and is placed in the resources folder, and that the i npl e
property identifiesthe Pl ugi n implementation class.

39.5.1. Creating aplugin id

Plugin ids are fully qualified in a manner similar to Java packages (i.e. a reverse domain name). This helps
to avoid collisions and provides away to group plugins with similar ownership.

Your plugin id should be a combination of components that reflect namespace (a reasonable pointer to you
or your organization) and the name of the plugin it provides. For example if you had a Github account
named “foo” and your plugin was named “bar”, a suitable plugin id might be com gi t hub. f 0o. bar.
Similarly, if the plugin was developed at the baz organization, the plugin id might be or g. baz. bar .

Plugin ids should conform to the following:

® May contain any aphanumeric character, *.", and '-".

® Must contain at least one".' character separating the namespace from the name of the plugin.
¢ Conventionally use alowercase reverse domain name convention for the namespace.

® Conventionally use only lowercase characters in the name.

® org.gradl e andcom gr adl ewar e namespaces may not be used.

® Cannot start or end with a".' character.

® Cannot contain consecutive'.' characters (i.e. '..").

Although there are conventional similarities between plugin ids and package names, package names are
generally more detailed than is necessary for a plugin id. For instance, it might seem reasonable to add

Page 308 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/Plugin.html

“gradle” as a component of your plugin id, but since plugin ids are only used for Gradle plugins, this would
be superfluous. Generally, a namespace that identifies ownership and a name are all that are needed for a
good plugin id.

39.5.2. Publishing your plugin

If you are publishing your plugin internally for use within your organization, you can publish it like any
other code artifact. See the ivy and maven chapters on publishing artifacts.

If you are interested in publishing your plugin to be used by the wider Gradle community, you can publish it
to the Gradle plugin portal. This site provides the ability to search for and gather information about plugins
contributed by the Gradle community. See the instructions here on how to make your plugin available on
thissite.

39.5.3. Using your plugin in another project

Touseapluginin abuild script, you need to add the plugin classes to the build script's classpath. To do this,
you use a “bui | dscri pt { }” block, as described in Section 25.5.3.2, “Applying plugins with the
buildscript block”. The following example shows how you might do this when the JAR containing the
plugin has been published to alocal repository:

Example 39.7. Using a custom plugin in another project
buil d. gradl e

bui | dscript {
repositories {
maven {
url uri('../repo")

}

}

dependenci es {
cl asspath group: 'org.gradl e, nanme: 'custonPlugin',
version: '1.0- SNAPSHOT'
}

}
apply plugin: 'org.sanples.greeting

Alternatively, if your plugin is published to the plugin portal, you can use the incubating plugins DSL (see
Section 25.5.2, “ Applying plugins with the plugins DSL") to apply the plugin:
Example 39.8. Applying a community plugin with the plugins DSL

bui | d. gradl e

pl ugi ns {
id "comjfrog. bintray" version "0.4. 1"

}

39.5.4. Writing tests for your plugin

You can use the Pr oj ect Bui | der classto create Pr oj ect instances to use when you test your plugin
implementation.

Page 309 of 561

http://plugins.gradle.org
http://plugins.gradle.org/docs/submit
http://www.gradle.org/docs/3.0/javadoc/org/gradle/testfixtures/ProjectBuilder.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html

Example 39.9. Testing a custom plugin

src/test/groovy/org/ gradl e/ Greeti ngPl ugi nTest . gr oovy

cl ass GreetingPl ugi nTest {

@est
public void greeterPlugi nAddsG eeti ngTaskToProj ect () {

Proj ect project = ProjectBuilder.builder().build()

proj ect. pl ugi nManager . apply 'org. sanpl es. greeti ng'

assert True(proj ect.tasks. hell o i nstanceof G eetingTask)

39.5.5. Using the Java Gradle Plugin development plugin

You can use the incubating Java Gradle Plugin development plugin to eliminate some of the boilerplate
declarations in your build script and provide some basic validations of plugin metadata. This plugin will
automatically apply the Java plugin, add the gr adl eApi () dependency to the compile configuration, and
perform plugin metadata validations as part of the j ar task execution.

Example 39.10. Using the Java Gradle Plugin Development plugin

bui | d. gradl e

pl ugi ns {
id "java-gradl e-pl ugin"

}

When publishing plugins to custom plugin repositories using the ivy or maven publish plugins, the Java Gradle Pl
will also generate plugin marker artifacts named based on the plugin id which depend on the plugin's
implementation artifact.

39.6. Maintaining multiple domain objects

Gradle provides some utility classes for maintaining collections of objects, which work well with the Gradle
build language.

Page 310 of 561

Example 39.11. Managing domain objects
bui | d. gradl e
apply plugin: DocunentationPl ugin

books {
qui ckStart {
sourceFile = file('src/docs/quick-start')

}
user Gui de {

}
devel oper Gui de {

}
}

task books << {
books. each { book ->
println "$book. nane -> $book. sourceFil e"
}
}

cl ass Docunent ati onPl ugi n i npl enents Pl ugi n<Proj ect > {
voi d appl y(Project project) {
def books = project.container (Book)
books. al | {
sourceFile = project.file("src/docs/ $nane")

}

proj ect . ext ensi ons. books = books

}

cl ass Book {
final String nane
File sourceFile

Book(String nane) ({
t hi s. name = nane

}

Output of gr adl e - g books

> gradl e -q books

devel oper Gui de -> /hone/ user/ gradl e/ sanpl es/ user gui de/ or gani zeBui | dLogi ¢/ cust onPl ug
qui ckStart -> /hone/ user/ gradl e/ sanpl es/ user gui de/ or gani zeBui | dLogi ¢/ cust onPl ugi nW t
user Gui de -> /hone/ user/gradl e/ sanpl es/ user gui de/ or gani zeBui | dLogi ¢/ cust onPl ugi nWt h

The Project.container(java.lang. Cl ass) methods create instances of
NamedDonmai nObj ect Cont ai ner, that have many useful methods for managing and configuring the
objects. In order to use a type with any of the proj ect. cont ai ner methods, it MUST expose a
property named “nane” asthe unique, and constant, name for the object. The pr oj ect . cont ai ner (C ass)
variant of the container method creates new instances by attempting to invoke the constructor of the class

that takes a single string argument, which is the desired name of the object. See the above link for pr oj ect . con
method variants that allow custom instantiation strategies.

Page 311 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:container(java.lang.Class)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.NamedDomainObjectContainer.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.NamedDomainObjectContainer.html

40

The Java Gradle Plugin Development
Plugin

The Java Gradle plugin development plugin is currently incubating. Please be aware that the DSL and
other configuration may changein later Gradle versions.

The Java Gradle Plugin development plugin can be used to assist in the development of Gradle plugins. It
automatically applies the Java plugin, adds the gr adl eApi () dependency to the compile configuration
and performs validation of plugin metadataduring j ar task execution.

The plugin aso integrates with TestKit, a library that aids in writing and executing functional tests for
plugin code. It automatically adds the gr adl eTest Ki t () dependency to the test compile configuration
and generates a plugin classpath manifest file consumed by a Gr adl eRunner instance if found. Please
refer to Section 43.2.1.2, “Automatic injection with the Java Gradle Plugin Development plugin” for more
on its usage, configuration options and samples.

40.1. Usage

To use the Java Gradle Plugin Development plugin, include the following in your build script:

Example 40.1. Using the Java Gradle Plugin Development plugin

bui |l d. gradl e

pl ugi ns {
id "java-gradl e-pl ugi n"

}

Applying the plugin automatically applies the Java plugin and adds the gr adl eApi () dependency to the
compile configuration. It also adds some validations to the build.

The following validations are performed:

® Thereisaplugin descriptor defined for the plugin.

® The plugin descriptor containsan i npl enent at i on- cl ass property.

®* Thei npl enent at i on- cl ass property references avalid classfilein the jar.

® Each property getter or the corresponding field must be annotated with a property annotation like @ nput Fi |

Page 312 of 561

and @out put Di r ect ory. Properties that don't participate in up-to-date checks should be annotated
with @ nt er nal .

Any failed validations will result in awarning message.
For each plugin you are developing, add an entry to the gr adl ePl ugi n {} script block:

Example 40.2. Using the gradlePlugin {} block.
bui |l d. gradl e

gradl ePl ugi n {
pl ugi ns {
si npl ePl ugi n {
id = "org. gradl e. sanpl e. si npl e- pl ugi n"

i npl ement ati onCl ass = "org. gradl e. sanpl e. Si npl ePl ugi n"

The gradl ePl ugi n {} block defines the plugins being built by the project including the i d and
i mpl ement ati onCl ass of the plugin. From this data about the plugins being developed, Gradle can
automatically:

® Generate the plugin descriptor inthej ar file's META- | NF directory.
® Configure the Maven or lvy publishing plugins to publish a Plugin Marker Artifact for each plugin.

Page 313 of 561

41

Organizing Build Logic

Gradle offers avariety of ways to organize your build logic. First of al you can put your build logic directly
in the action closure of atask. If a couple of tasks share the same logic you can extract this logic into a
method. If multiple projects of a multi-project build share some logic you can define this method in the
parent project. If the build logic gets too complex for being properly modeled by methods then you likely
should implement your logic with classes to encapsulate your logic. [20] Gradle makes this very easy. Just
drop your classes in a certain directory and Gradle automatically compiles them and puts them in the
classpath of your build script.

Here isa summary of the ways you can organise your build logic:

®* POGOs. You can declare and use plain old Groovy objects (POGOs) directly in your build script. The
build script is written in Groovy, after all, and Groovy provides you with lots of excellent ways to
organize code.

® |nherited properties and methods. In a multi-project build, sub-projects inherit the properties and
methods of their parent project.

® Configuration injection. In a multi-project build, a project (usually the root project) can inject properties
and methods into another project.

® buil dSrc project. Drop the source for your build classes into a certain directory and Gradle
automatically compiles them and includes them in the classpath of your build script.

¢ Shared scripts. Define common configuration in an external build, and apply the script to multiple
projects, possibly across different builds.

¢ Custom tasks. Put your build logic into a custom task, and reuse that task in multiple places.

® Custom plugins. Put your build logic into a custom plugin, and apply that plugin to multiple projects.
The plugin must be in the classpath of your build script. You can achieve this either by using bui | d sour ce
or by adding an external library that contains the plugin.

® Execute an external build. Execute another Gradle build from the current build.

* External libraries. Use external libraries directly in your build file.

41.1. Inherited properties and methods

Any method or property defined in a project build script is also visible to al the sub-projects. You can use
this to define common configurations, and to extract build logic into methods which can be reused by the
sub-projects.

Page 314 of 561

Example 41.1. Using inherited propertiesand methods

bui | d. gradl e

/| Define an extra property
ext.srcDirNane = 'src/java'

/1 Define a nethod
def getSrcDir(project) {
return project.file(srcD rNane)

}

child/build.gradle

task show << {
/'l Use inherited property
println 'srchDirNane: * + srcDirNanme

/'l Use inherited nethod
File srcDir = getSrcDir(project)
println "srcDir: ' + rootProject.relativePath(srcDir)

Output of gradl e -gq show

> gradle -q show
srcDi rNane: src/java
srcDir: child/src/java

41.2. Injected configuration

You can use the configuration injection technique discussed in Section 24.1, “Cross project configuration”
and Section 24.2, “ Subproject configuration” to inject properties and methods into various projects. Thisis
generally a better option than inheritance, for a number of reasons: The injection is explicit in the build
script, You can inject different logic into different projects, And you can inject any kind of configuration
such as repositories, plug-ins, tasks, and so on. The following sample shows how this works.

Page 315 of 561

Example 41.2. Using injected properties and methods
bui | d. gradl e
subproj ects {
/| Define a new property

ext.srcDirName = 'src/java'

/'l Define a nethod using a closure as the nmethod body
ext.srcDir = { file(srcDi rName) }

/] Define a task
task show << {
println '"project: ' + project.path

println 'srcDirNane: ' + srcDirName
File srcDir = srcDir()
println "srcDir: ' + rootProject.relativePath(srcDir)

}

/'l 1 nject special case configuration into a particular project
project(':child2") {
ext.srcDirNane = "$srcDir Nane/ | egacy"”

}

chil d1l/buil d. gradle

/]l Use injected property and nethod. Here, we override the injected val ue

srcDirNane = 'java'
def dir = srcDir()

Output of gradl e -gq show

> gradle -q show

project: :childl

srcDi r Nane: java

srcDir: childl/java

project: :child2

srcDi r Nane: src/javal/l egacy
srcDir: child2/src/javall egacy

41.3. Configuring the project using an external
build script

You can configure the current project using an external build script. All of the Gradle build language is
available in the external script. Y ou can even apply other scripts from the external script.

Page 316 of 561

Example 41.3. Configuring the project using an external build script

bui | d. gradl e

apply from 'other.gradle'

ot her. gradl e

println "configuring $project"”
task hello << {

println "hello from other script'

}

Outputof gradl e -q hello
> gradle -q hello

configuring root project 'configureProjectUsingScript’
hell o from ot her script

41.4. Build sourcesin the bui | dSr ¢ project

When you run Gradle, it checks for the existence of a directory called buil dSrc. Gradle then
automatically compiles and tests this code and puts it in the classpath of your build script. Y ou don't need to
provide any further instruction. This can be agood place to add your custom tasks and plugins.

For multi-project builds there can be only one bui | dSr ¢ directory, which has to be in the root project
directory.

Listed below is the default build script that Gradle appliesto the bui | dSr ¢ project:
Figure41.1. Default buildSrc build script

apply plugin: 'groovy'
dependenci es {
conpi | e gradl eApi ()

conpi | e | ocal G oovy()

This means that you can just put your build source code in this directory and stick to the layout convention
for aJava/Groovy project (see Table 45.4, “ Java plugin - default project layout™).

If you need more flexibility, you can provide your own bui | d. gr adl e. Gradle applies the default build
script regardless of whether there is one specified. This means you only need to declare the extra things you
need. Below is an example. Notice that this example does not need to declare a dependency on the Gradle
API, asthisis done by the default build script:

Page 317 of 561

Example 41.4. Custom buildSrc build script
bui |l dSrc/ buil d. gradl e

repositories {
mavenCent ral ()

}

dependenci es {
testConpile "junit:junit:4. 12
}

The bui | dSrc project can be a multi-project build, just like any other regular multi-project build.
However, all of the projects that should be on the classpath of the actual build must be runti me
dependencies of the root project in bui | dSr c. You can do this by adding this to the configuration of each
project you wish to export:

Example 41.5. Adding subprojectsto theroot buildSrc project
bui | dSrc/ buil d. gradl e

r oot Proj ect . dependenci es {
runti me project(path)

}

Note: The code for this example can be found at sanpl es/ nul ti Proj ect Bui | dSr c inthe‘-al’
distribution of Gradle.

41.5. Running another Gradle build from a build

You can use the Gr adl eBui | d task. You can use either of thedi r or bui | dFi | e properties to specify
which build to execute, and the t asks property to specify which tasks to execute.

Example 41.6. Running another build from a build

bui |l d. gradl e

task build(type: G adleBuild) {
bui l dFile = 'other.gradl e’

tasks = ['hello']

ot her. gradl e

task hello << {
println "hello fromthe other build."

}

Output of gradl e -qg build

> gradle -q build
hello fromthe other build.

Page 318 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.GradleBuild.html

41.6. External dependencies for the build script

If your build script needs to use external libraries, you can add them to the script's classpath in the build
script itself. You do thisusing the bui | dscri pt () method, passing in a closure which declares the build
script classpath.

Example 41.7. Declaring external dependenciesfor the build script
buil d. gradl e
bui | dscript {

repositories {
mavenCentral ()

}

dependenci es {
cl asspath group: 'commons-codec’', nanme: 'conmons-codec', version: '1.2

}

The closure passed tothe bui | dscri pt () method configuresa Scri pt Handl er instance. You declare
the build script classpath by adding dependencies to the cl asspat h configuration. This is the same way
you declare, for example, the Java compilation classpath. You can use any of the dependency types
described in Section 23.4, “How to declare your dependencies’, except project dependencies.

Having declared the build script classpath, you can use the classes in your build script as you would any
other classes on the classpath. The following example adds to the previous example, and uses classes from
the build script classpath.

Example 41.8. A build script with external dependencies
buil d. gradl e

i mport org.apache. commons. codec. bi nary. Base64

bui | dscript {
repositories {
mavenCentral ()
}
dependenci es {
cl asspath group: 'commons-codec', nanme: 'conmons-codec', version: '1.2'
}
}

task encode << {
def byte[] encodedString = new Base64().encode(' hello worl d\n'.getBytes())
println new String(encodedStri ng)

Output of gradl e -q encode

> gradle -q encode
aGVsbG8gd29ybGK

For multi-project builds, the dependencies declared with aproject's bui | dscri pt () method are available

Page 319 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

to the build scripts of all its sub-projects.

Build script dependencies may be Gradle plugins. Please consult Chapter 25, Gradle Plugins for more
information on Gradle plugins.

Every project automatically has a buil dEnvironnent task of type
Bui | dEnvi r onnment Report Task that can be invoked to report on the resolution of the build script
dependencies.

41.7. Ant optional dependencies

For reasons we don't fully understand yet, external dependencies are not picked up by Ant's optional tasks.
But you can easily do it in another way. [21]

Example 41.9. Ant optional dependencies
bui |l d. gradl e

configurations {
f t pAnt Task

}

dependenci es {
f t pAnt Task(" or g. apache. ant : ant - conmons-net: 1. 9. 6") {
nmodul e(" conmons- net : conmons-net: 1. 4. 1") {
dependenci es "oro:oro:2.0.8:jar"

task ftp << {
ant {
t askdef (nane: 'ftp',
cl assname: 'org.apache.tool s. ant.taskdefs. optional . net. FTP',
cl asspat h: configurations. ft pAnt Task. asPat h)
ftp(server: "ftp.apache.org", userid: "anonynous", password: "ne@rmyorg.d
fileset(dir: "htdocs/ manual ")

This is also a good example for the usage of client modules. The POM file in Maven Central for the
ant-commons-net task does not provide the right information for this use case.

41.8. Summary

Gradle offers you a variety of ways of organizing your build logic. You can choose what is right for your
domain and find the right balance between unnecessary indirections, and avoiding redundancy and a hard to
maintain code base. It is our experience that even very complex custom build logic is rarely shared between
different builds. Other build tools enforce a separation of this build logic into a separate project. Gradle
spares you this unnecessary overhead and indirection.

Page 320 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.diagnostics.BuildEnvironmentReportTask.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.diagnostics.BuildEnvironmentReportTask.html

[20] Which might range from a single class to something very complex.

[21] In fact, we think thisis a better solution. Only if your buildscript and Ant's optional task need the same
library would you have to define it twice. In such a case it would be nice if Ant's optional task would
automatically pick up the classpath defined in the“gr adl e. set ti ngs” file.

Page 321 of 561

42

Initialization Scripts

Gradle provides a powerful mechanism to alow customizing the build based on the current environment.
This mechanism also supports tools that wish to integrate with Gradle.

Note that this is completely different from the “i ni t " task provided by the “bui | d-i ni t” incubating
plugin (see Chapter 15, Build Init Plugin).

42.1. Basic usage

Initialization scripts (a.k.a. init scripts) are similar to other scriptsin Gradle. These scripts, however, are run
before the build starts. Here are several possible uses:

® Set up enterprise-wide configuration, such as where to find custom plugins.

® Set up properties based on the current environment, such as a developer's machine vs. a continuous
integration server.

* Supply personal information about the user that is required by the build, such as repository or database
authentication credentials.

* Define machine specific details, such as where JDKs are installed.

® Register build listeners. External tools that wish to listen to Gradle events might find this useful.

® Register build loggers. Y ou might wish to customize how Gradle logs the events that it generates.

One main limitation of init scripts is that they cannot access classes in the bui | dSr ¢ project (see
Section 41.4, “Build sourcesin the bui | dSr ¢ project” for details of this feature).

42.2. Using an init script

There are several waysto use an init script:

® Specify afile on the command line. The command line optionis-1 or--init-scri pt followed by
the path to the script. The command line option can appear more than once, each time adding another
init script.

* Putafilecaledi nit.gradl einthe USER HOVE/ . gr adl e/ directory.

* Put afilethat endswith . gr adl e inthe USER_HOVE/ . gradl e/ i ni t. d/ directory.

* Put a file that ends with . gradl e in the GRADLE_HOME/ i ni t. d/ directory, in the Gradle
distribution. This alows you to package up a custom Gradle distribution containing some custom build
logic and plugins. You can combine this with the Gradle wrapper as a way to make custom logic
available to all buildsin your enterprise.

Page 322 of 561

If more than one init script is found they will all be executed, in the order specified above. Scriptsin agiven
directory are executed in alphabetical order. This alows, for example, atool to specify an init script on the
command line and the user to put one in their home directory for defining the environment and both scripts
will run when Gradle is executed.

42.3. Writing an init script

Similar to a Gradle build script, an init script is a Groovy script. Each init script has a Gr adl e instance
associated with it. Any property reference and method call in the init script will delegate to this Gr adl e
instance.

Each init script also implementsthe Scr i pt interface.

42.3.1. Configuring projects from an init script

You can use an init script to configure the projects in the build. This works in a similar way to configuring
projects in a multi-project build. The following sample shows how to perform extra configuration from an
init script before the projects are evaluated. This sample uses this feature to configure an extra repository to
be used only for certain environments.

Example 42.1. Using init script to perform extra configuration before projects are evaluated
bui |l d. gradl e

repositories {
mavenCentral ()

}

t ask showRepos << {
println "All repos:”
println repositories.collect { it.name }

init.gradle

al | projects {
repositories {
mavenLocal ()

}

Outputof gradl e --init-script init.gradle -g showRepos
> gradle --init-script init.gradle -g showRepos

Al'l repos:
[MavenLocal , MavenRepo]

42.4. External dependencies for the init script

In ??? it was explained how to add external dependencies to a build script. Init scripts can also declare
dependencies. You do thiswith thei ni t scri pt () method, passing in a closure which declares the init
script classpath.

Page 323 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.invocation.Gradle.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Script.html

Example 42.2. Declaring external dependenciesfor an init script
init.gradle
initscript {

repositories {
mavenCentral ()

}

dependenci es {
cl asspath group: 'org.apache.conmons', nanme: 'comons-math', version:

}

The closure passed to the i ni t scri pt () method configuresa Scri pt Handl er instance. You declare
the init script classpath by adding dependenciesto the cl asspat h configuration. Thisis the same way you
declare, for example, the Java compilation classpath. Y ou can use any of the dependency types described in
Section 23.4, “How to declare your dependencies’, except project dependencies.

Having declared the init script classpath, you can use the classes in your init script as you would any other
classes on the classpath. The following example adds to the previous example, and uses classes from the init
script classpath.

Example 42.3. An init script with external dependencies
init.gradle

i nport org. apache. commons. mat h. fracti on. Fracti on

initscript {
repositories {
mavenCent ral ()
}
dependenci es {
cl asspath group: 'org.apache.conmons', nane: 'commons-nath', version:

}
}

println Fraction. ONE_FI FTH. mul ti pl y(2)

Outputof gradl e --init-script init.gradle -q doNothing

> gradle --init-script init.gradle -q doNothing
2/ 5

42.5. Init script plugins

Similar to a Gradle build script or a Gradle settings file, plugins can be applied on init scripts.

Page 324 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

Example 42.4. Using pluginsin init scripts

init.gradle

apply pl ugin: EnterpriseRepositoryPl ugin

cl ass EnterpriseRepositoryPlugin inplenents Plugi n<G adl e> {

private static String ENTERPRI SE_REPOSI TORY_URL = "https://repo.gradle.orgl/d

voi d apply(G adle gradle) {
/1 ONLY USE ENTERPRI SE REPO FOR DEPENDENCI ES
gradl e. al | proj ects{ project ->
project.repositories {

/'l Renove all repositories not pointing to the enterprise reposi
all { ArtifactRepository repo ->
if (!(repo instanceof MavenArtifactRepository) ||
repo.url.toString() != ENTERPRI SE_REPOSI TORY_URL) ({
proj ect.l ogger.lifecycle "Repository ${repo.url} renoved
renove repo

}

/1 add the enterprise repository
maven {
name " STANDARD ENTERPRI SE REPO'
ur| ENTERPRI SE_REPCS| TORY_URL

bui | d. gradl e

reposi tories{
mavenCent ral ()

}

task showRepositories << {
reposi tories. each{
println "repository: ${it.name} ("${it.url}")"

}
Outputof gradle -g -1 init.gradle showRepositories
> gradle -q -1 init.gradl e showRepositories

repository: STANDARD ENTERPRI SE_REPO (' https://repo.gradle.org/gradle/repo')

The plugin in the init script ensures that only a specified repository is used when running the build.

When applying plugins within the init script, Gradle instantiates the plugin and calls the plugin instance's
Pl ugi n. appl y(T) method. The gr adl e object is passed as a parameter, which can be used to
configure all aspects of a build. Of course, the applied plugin can be resolved as an external dependency as
described in Section 42.4, “External dependencies for theinit script”

Page 325 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/Plugin.html#apply(T)
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/Plugin.html#apply(T)

43

The Gradle TestK it

The Gradle TestKit is currently incubating. Please be aware that its APl and other characteristics may
changein later Gradle versions.

The Gradle TestKit (ak.a. just TestKit) is a library that aids in testing Gradle plugins and build logic
generally. At thistime, it is focused on functional testing. That is, testing build logic by exercising it as part
of a programmatically executed build. Over time, the TestKit will likely expand to facilitate other kinds of
tests.

43.1. Usage

To use the TestKit, include the following in your plugin's build:

Example 43.1. Declaring the TestKit dependency
buil d. gradl e

dependenci es {
test Conpi |l e gradl eTestKit()

}

Thegradl eTest Ki t () encompasses the classes of the TestKit, as well as the Gradle Tooling API client.
It does not include a version of JUnit, TestNG, or any other test execution framework. Such a dependency
must be explicitly declared.

Example 43.2. Declaring the JUnit dependency

bui | d. gradl e

dependenci es {
testConpile "junit:junit:4. 12

}

43.2. Functional testing with the Gradle runner

The Gr adl eRunner facilitates programmatically executing Gradle builds, and inspecting the result.

A contrived build can be created (e.g. programmatically, or from a template) that exercises the “logic under

Page 326 of 561

http://junit.org
http://testng.org
http://www.gradle.org/docs/3.0/javadoc/org/gradle/testkit/runner/GradleRunner.html

test”. The build can then be executed, potentially in a variety of ways (e.g. different combinations of tasks
and arguments). The correctness of the logic can then be verified by asserting the following, potentially in
combination:

® The build's output;
® The build'slogging (i.e. console output);
® The set of tasks executed by the build and their results (e.g. FAILED, UP-TO-DATE etc.).

After creating and configuring a runner instance, the build can be executed via the
Gradl eRunner. buil d() or G adl eRunner. bui |l dAndFai |l () methods depending on the
anticipated outcome.

The following demonstrates the usage of Gradle runner in a Java JUnit test:

Page 327 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/testkit/runner/GradleRunner.html#build()
http://www.gradle.org/docs/3.0/javadoc/org/gradle/testkit/runner/GradleRunner.html#build()
http://www.gradle.org/docs/3.0/javadoc/org/gradle/testkit/runner/GradleRunner.html#buildAndFail()

Example 43.3. Using GradleRunner with JUnit

Bui | dLogi cFuncti onal Test . j ava

i nport org.gradle.testkit.runner. Buil dResul t;
inport org.gradle.testkit.runner.G adl eRunner;
i mport org.junit.Before;

i mport org.junit.Rule;

i nport org.junit. Test;

i nmport org.junit.rules. TenporaryFol der;

i mport java.io.BufferedWiter;
inport java.io.File;

inport java.io.FileWiter;

i mport java.io.| CException;

i mport java.util.Collections;

inport static org.junit.Assert.assertEqual s;
import static org.junit.Assert.assertTrue;

i nport static org.gradle.testkit.runner. TaskQutcone. *;

public class Buil dLogi cFuncti onal Test {
@rul e public final TenporaryFol der testProjectDir = new TenporaryFol der();
private File buil dFile;

@ef ore
public void setup() throws | COException {
buil dFile = testProjectDir.newrile("build. gradle");

}

@rest
public void testHell oWwrl dTask() throws | CException {

String buil dFil eContent = "task helloWrld {" +
doLast {" +

println "Hello world!"" +
P+

B

witeFile(buildFile, buildFileContent);

Bui | dResult result = Gradl eRunner. create()
.withProjectDir(testProjectDir.getRoot())
W t hArgurment s(" hel | oWor | d")
Lbuild();

assert True(result.getQutput().contains("Hello world!"));
assert Equal s(resul t.task(": hel | oWorl d"). get Qut cone(), SUCCESS);

}

private void witeFile(File destination, String content) throws |OException
Buf feredWiter output = null;
try {
out put = new BufferedWiter(new FileWiter(destination));
output.write(content);
} finally {
if (output !'= null) {
out put . cl ose();

Page 328 of 561

Any test execution framework can be used.

As Gradle build scripts are written in the Groovy programming language, and as many plugins are
implemented in Groovy, it is often a productive choice to write Gradle functional tests in Groovy.
Furthermore, it is recommended to use the (Groovy based) Spock test execution framework asit offers many
compelling features over the use of JUnit.

The following demonstrates the usage of Gradle runner in a Groovy Spock test:

Example 43.4. Using GradleRunner with Spock
Bui | dLogi cFuncti onal Test. gr oovy

i nport org.gradle.testkit.runner.G adl eRunner

i mport static org.gradle.testkit.runner. TaskQutcomne. *
i mport org.junit.Rule

i nport org.junit.rul es. TenporaryFol der

i nport spock. | ang. Speci fi cati on

cl ass Buil dLogi cFuncti onal Test extends Specification {
@rul e final TenporaryFol der testProjectDir = new TenporaryFol der ()
File buildFile

def setup() {
buildFile = testProjectDir.newri |l e(' build.gradle")

}

def "hello world task prints hello world"() {
gi ven:
buildFile << """
task hell oWorl d {
doLast {
println "Hello world!

}

when:

def result = G adl eRunner. create()
.withProjectDir(testProjectDir.root)
. Wi t hArgument s(' hel | oWor | d")
. bui I'd()

t hen:
resul t.out put.contains('Hello world!")
result.task(": hell oWorl d"). out cone == SUCCESS

It is a common practice to implement any custom build logic (like plugins and task types) that is more
complex in nature as external classes in a standalone project. The main driver behind this approach is bundle
the compiled code into a JAR file, publish it to a binary repository and reuse it across various projects.

Page 329 of 561

https://code.google.com/p/spock/

43.2.1. Getting the plugin-under-test into the test build

The GradleRunner uses the Tooling API to execute builds. An implication of this is that the builds are
executed in a separate process (i.e. not the same process executing the tests). Therefore, the test build does
not share the same classpath or classloaders as the test process and the code under test is not implicitly
available to the test build.

Starting with version 2.13, Gradle provides a conventional mechanism to inject the code under test into the test bui

For earlier versions of Gradle (before 2.13), it is possible to manually make the code under test available via
some extra configuration. The following example demonstrates having the build generate a file containing
the implementation classpath of the code under test, and making it available at test runtime.

Example 43.5. Making the code under test classpath availableto the tests

bui |l d. gradl e

/[l Wite the plugin's classpath to a file to share with the tests
task created asspat hMani fest {
def outputDir = file("$buildDir/$nane")

inputs.files sourceSets.main.runtineC asspath
outputs.dir outputDr

doLast {
out put Di r. nkdi rs()
file("$outputDir/plugin-classpath.txt").text = sourceSets. main.runtimed

}

/1 Add the classpath file to the test runtinme classpath
dependenci es {
testRuntime fil es(createC asspat hivani f est)

}

Note: The code for this example can be found at sanpl es/ t est Ki t/ gr adl eRunner/ manual C assg
inthe *-all’ distribution of Gradle.

The tests can then read this value, and inject the classpath into the test build by using the method
G adl eRunner . wi t hPl ugi nCl asspat h(j ava. | ang. I terabl e). This classpath is then
available to use to locate plugins in a test build via the plugins DSL (see Chapter 25, Gradle Plugins).
Applying plugins with the plugins DSL requires the definition of a plugin identifier. The following is an
example (in Groovy) of doing this from within a Spock Framework set up() method, which is analogous
to aJUnit @ef or e method.

This approach works well when executing the functional tests as part of the Gradle build. When executing
the functional tests from an IDE, there are extra considerations. Namely, the classpath manifest file points to
the classfiles etc. generated by Gradle and not the IDE. This means that after making a change to the source

Page 330 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath(java.lang.Iterable)
http://www.gradle.org/docs/3.0/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath(java.lang.Iterable)

of the code under test, the source must be recompiled by Gradle. Similarly, if the effective classpath of the
code under test changes, the manifest must be regenerated. In either case, executing the t est Cl asses
task of the build will ensure that things are up to date.

43.2.1.1. Working with Gradle versions prior to 2.8

The Gradl eRunner. w t hPl ugi nCl asspat h(j ava. |l ang. | terabl e) method will not work
when executing the build with a Gradle version earlier than 2.8 (see: Section 43.2.3, “The Gradle version
used to test”), as this feature is not supported on such Gradle versions.

Instead, the code must be injected via the build script itself. The following sample demonstrates how this
can be done.

Example 43.6. Injecting the code under test classesinto test builds
src/test/groovy/org/gradl e/ sanpl e/ Bui | dLogi cFuncti onal Test. groovy

Li st <Fi | e> pl ugi nC asspat h

def setup() {
buil dFile = testProjectDir.newFile('build.gradle")

def pl ugi nCl asspat hResource = get C ass(). cl assLoader. fi ndResour ce("pl ugi n-cl
i f (plugind asspat hResource == null) {
throw new ||| egal St at eException("Did not find plugin classpath resource,

}

pl ugi nCl asspat h = pl ugi nCl asspat hResour ce. readLi nes().collect { new File(it)

"hello world task prints hello world"() {
gi ven:
buildFile << """
pl ugi ns {
id 'org.gradle.sanple. hel | owor| d'

}

when:

def result = G adl eRunner. create()
.withProjectDir(testProjectDir.root)
W thArgument s(' hel | oWorl d")
.wi t hPl ugi nCl asspat h(pl ugi nC asspat h)
. bui I'd()

t hen:
resul t.output.contains('Hello world!")
result.task(": hell oWorl d"). out cone == SUCCESS

Note: The code for this example can be found at sanpl es/ t est Ki t / gr adl eRunner / manual Cllassy
inthe ‘-al’ distribution of Gradle.

src/test/groovy/org/gradl e/ sanpl e/ Bui | dLogi cFuncti onal Test. groovy

Page 331 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath(java.lang.Iterable)

Li st<Fi | e> pl ugi nC asspat h

def setup() {
buildFile = testProjectDir.newri |l e(' build.gradle")

def plugi nd asspat hResource = getd ass().cl assLoader. fi ndResource(" pl ugi n-cl
i f (plugind asspat hResource == null) {
throw new Il egal St at eException("Did not find plugin classpath resource,

}

pl ugi nC asspat h = pl ugi nCl asspat hResour ce. readLi nes().collect { new File(it)

"hello world task prints hello world with pre Gadle 2.8"() {

gi ven:

def classpathString = pl ugi nCl asspat h
.collect { it.absolutePath.replace('\\', "\\\\") } // escape backsl ashes
.collect { ""$it'" }
.join(", ")

buildFile << """
bui |l dscript {
dependenci es {
cl asspath files($classpathString)
}
}

apply plugin: "org.gradl e. sanpl e. hel | owor | d"

when:

def result = G adl eRunner. create()
.withProjectDir(testProjectDir.root)
W t hArgurment s(' hel | oWor | d")
.w thG adl eVersion("2.7")
L buil d()

t hen:
resul t.out put.contains('Hello world!")
resul t.task(": hell oWorl d").outcome == SUCCESS

Note: The code for this example can be found at sanpl es/ t est Ki t / gr adl eRunner / manual Cllassy
inthe‘-al’ distribution of Gradle.

43.2.1.2. Automatic injection with the Java Gradle Plugin Development plugin

The Java Gradle Plugin development plugin can be used to assist in the development of Gradle plugins.
Starting with Gradle version 2.13, the plugin provides a direct integration with TestKit. When applied to a
project, the plugin automatically adds the gr adl eTestKit () dependency to the test compile
configuration. Furthermore, it automatically generates the classpath for the code under test and injectsit via
Gradl eRunner . wi t hPl ugi nd asspat h() for any G- adl eRunner instance created by the user. If
the target Gradle version is prior to 2.8, automatic plugin classpath injection is not performed.

The plugin uses the following conventions for applying the TestKit dependency and injecting the classpath:

Page 332 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath()
http://www.gradle.org/docs/3.0/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath()

® Source set containing code under test: sour ceSet s. mai n
® Source set used for injecting the plugin classpath: sour ceSet s. t est

Any of these conventions can be reconfigured with the help of the class
G adl ePl ugi nDevel opnent Ext ensi on.

The following Groovy-based sample demonstrates how to automatically inject the plugin classpath by using
the standard conventions applied by the Java Gradle Plugin Development plugin.
Example 43.7. Using the Java Gradle Development plugin for generating the plugin metadata

bui |l d. gradl e

apply plugin: 'groovy'
apply plugin: "java-gradle-plugin'

dependenci es {

t est Conpi | e(*' or g. spockf r amewor k: spock-core: 1. 0- groovy-2.4") {
excl ude nodul e: ' groovy-all’

}

Note: The code for this example can be found at sanpl es/ t est Ki t / gr adl eRunner/ aut omatijcCl ¢
inthe‘-al’ distribution of Gradle.

Example 43.8. Automatically injecting the code under test classesinto test builds
src/test/groovy/org/gradl e/ sanpl e/ Bui | dLogi cFuncti onal Test. groovy

def "hello world task prints hello world"() {
gi ven:
buildFile << """
pl ugi ns {
id"'org.gradle.sanple. helloworld'

}

when:

def result = G adl eRunner. create()
.withProjectDir(testProjectDir.root)
.w t hArgument s(' hel | oWor | d")
.wi t hPl ugi nCl asspat h()
. buil d()

t hen:
resul t.out put.contains('Hello world!")
result.task(": hell oWorl d"). outcone == SUCCESS

Note: The code for this example can be found at sanpl es/ t est Ki t / gr adl eRunner/ aut omatijcCl ¢
inthe ‘-all’ distribution of Gradle.

Page 333 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/plugin/devel/GradlePluginDevelopmentExtension.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/plugin/devel/GradlePluginDevelopmentExtension.html

The following build script demonstrates how to reconfigure the conventions provided by the Java Gradle
Plugin Development plugin for a project that uses a custom Test source set.

Example 43.9. Reconfiguring the classpath generation conventions of the Java Gradle Development plugin

bui | d. gradl e

apply plugin: 'groovy'
apply plugin: 'java-gradl e-plugin

sourceSets {
functional Test {
groovy ({
srchDir file('src/functional Test/groovy')

}

resources {
srcDir file('src/functional Test/resources')

}
conpi | eCl asspath += sourceSets. mai n. out put + configurations.testRuntine
runti med asspath += out put + conpil eC asspath

}

task functional Test(type: Test) {
test Cl assesDir = sourceSets.functional Test. out put.cl assesDir
cl asspath = sourceSets. functional Test.runti med asspath

}

check. dependsOn functi onal Test

gradl ePl ugi n {
t est Sour ceSet s sourceSets. functi onal Test

}

dependenci es {
functi onal Test Conpi | e(' or g. spockf ramewor k: spock-core: 1. 0- groovy-2.4") {
excl ude nodul e: ' groovy-all'

}

Note: The code for this example can be found at sanpl es/t est Ki t/ gr adl eRunner/ aut omati cCl ¢
inthe ‘-all’ distribution of Gradle.

43.2.2. Controlling the build environment

The runner executes the test buildsin an isolated environment by specifying a dedicated "working directory”

in a directory inside the JVM's temp directory (i.e. the location specified by thej ava. i o. t npdi r system
property, typically / t np). Any configuration in the default Gradle user home directory (e.g. ~/ . gr adl e/ gr adl
) is not used for test execution. The TestKit does not expose a mechanism for fine grained control of
environment variables etc. Future versions of the TestKit will provide improved configuration options.

The TestKit uses dedicated daemon processes that are automatically shut down after test execution.

Page 334 of 561

43.2.3. The Gradle version used to test

The Gradle runner requires a Gradle distribution in order to execute the build. The TestKit does not depend
on al of Gradle'simplementation.

By default, the runner will attempt to find a Gradle distribution based on where the Gr adl eRunner class
was loaded from. That is, it is expected that the class was loaded from a Gradle distribution, as is the case
when using thegr adl eTest Ki t () dependency declaration.

When using the runner as part of tests being executed by Gradle (e.g. executing the t est task of a plugin
project), the same distribution used to execute the tests will be used by the runner. When using the runner as
part of tests being executed by an IDE, the same distribution of Gradle that was used when importing the
project will be used. This means that the plugin will effectively be tested with the same version of Gradle
that it is being built with.

Alternatively, a different and specific version of Gradle to use can be specified by the any of the following G- adl
methods:

® G adl eRunner. wi t hGradl eVersi on(j ava. |l ang. Stri ng)
® Gradl eRunner.withG adl el nstallation(java.io.File)
® G adl eRunner. wi thGradl ebDi stribution(java.net.URl)

This can potentially be used to test build logic across Gradle versions. The following demonstrates a
cross-version compatibility test written as Groovy Spock test:

Page 335 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleVersion(java.lang.String)
http://www.gradle.org/docs/3.0/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleInstallation(java.io.File)
http://www.gradle.org/docs/3.0/javadoc/org/gradle/testkit/runner/GradleRunner.html#withGradleDistribution(java.net.URI)

Example 43.10. Specifying a Gradle version for test execution

Bui | dLogi cFuncti onal Test. gr oovy

i nport org.gradle.testkit.runner. G adl eRunner

inport static org.gradle.testkit.runner. TaskQutcone. *
i mport org.junit.Rule

i mport org.junit.rul es. TenporaryFol der

i nport spock. | ang. Speci fication

i nport spock. | ang. Unr ol

cl ass Buil dLogi cFuncti onal Test extends Specification {
@rul e final TenporaryFol der testProjectDir = new TenporaryFol der ()
File buildFile

def setup() {
buildFile = testProjectDir.newri |l e(' build.gradle")

}
@nr ol

def "can execute hello world task with G adl e version #gradl eVersion"() {
gi ven:
buildFile << """
task hell oWorl d {
doLast {
| ogger.quiet 'Hello world!

}

when:

def result = G adl eRunner.create()
.wi t hGradl eVer si on(gradl eVer si on)
.withProjectDir(testProjectDir.root)
.w t hArgurment s(' hel | oWor |l d")
.buil d()

t hen:
result.output.contains('Hello world!")
result.task(": hell oWorl d"). out cone == SUCCESS

wher e
gradl eVersion << ['2.6', '2.7']

43.2.3.1. Feature support when testing with different Gradle versions

It is possible to use the GradleRunner to execute builds with Gradle 1.0 and later. However, some runner
features are not supported on earlier versions. In such cases, the runner will throw an exception when
attempting to use the feature.

The following table lists the features that are sensitive to the Gradle version being used.

Page 336 of 561

Table43.1. Gradle version compatibility

Feature Minimum Description
Version
Inspecting executed tasks 25 Inspecting the executed tasks, using Bui | dResul t . ¢

similar methods.

Plugin classpath injection 2.8 Injecting the code under test via
Gradl eRunner . wi t hPl ugi nCl asspat h(j ava

Inspecting build output in debug mode 2.9 Inspecting the build's text output when run in debug mc
Bui | dResul t. get Qut put () .

Automatic plugin classpath injection 213 Injecting the code under test automatically via
G adl eRunner . wi t hPl ugi nCl asspat h() by
Gradle Plugin Development plugin.

43.2.4. Debugging build logic

The runner uses the Tooling API to execute builds. An implication of thisis that the builds are executed in a
separate process (i.e. not the same process executing the tests). Therefore, executing your tests in debug
mode does not allow you to debug your build logic as you may expect. Any breakpoints set in your IDE will
be not be tripped by the code being exercised by the test build.

The TestKit provides two different ways to enable the debug mode:

® Setting“org. gradl e. testkit. debug” system property tot r ue for the VM using the Gr adl eRunnge
(i.e. not the build being executed with the runner);
® Cadlingthe Gr adl eRunner . wi t hDebug(bool ean) method.

The system property approach can be used when it is desirable to enable debugging support without making
an adhoc change to the runner configuration. Most IDEs offer the capability to set VM system properties
for test execution, and such afeature can be used to set this system property.

Page 337 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/testkit/runner/BuildResult.html#getTasks()
http://www.gradle.org/docs/3.0/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath(java.lang.Iterable)
http://www.gradle.org/docs/3.0/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath(java.lang.Iterable)
http://www.gradle.org/docs/3.0/javadoc/org/gradle/testkit/runner/BuildResult.html#getOutput()
http://www.gradle.org/docs/3.0/javadoc/org/gradle/testkit/runner/BuildResult.html#getOutput()
http://www.gradle.org/docs/3.0/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath()
http://www.gradle.org/docs/3.0/javadoc/org/gradle/testkit/runner/GradleRunner.html#withPluginClasspath()
http://www.gradle.org/docs/3.0/javadoc/org/gradle/testkit/runner/GradleRunner.html#withDebug(boolean)

Part V. Building JVM
pr o] ects

44

Java Quickstart

44.1. The Java plugin

As we have seen, Gradle is a general-purpose build tool. It can build pretty much anything you care to
implement in your build script. Out-of-the-box, however, it doesn't build anything unless you add code to
your build script to do so.

Most Java projects are pretty similar as far as the basics go: you need to compile your Java source files, run
some unit tests, and create a JAR file containing your classes. It would be nice if you didn't have to code all
this up for every project. Luckily, you don't have to. Gradle solves this problem through the use of plugins.
A plugin is an extension to Gradle which configures your project in some way, typically by adding some
pre-configured tasks which together do something useful. Gradle ships with a number of plugins, and you
can easily write your own and share them with others. One such plugin is the Java plugin. This plugin adds
some tasks to your project which will compile and unit test your Java source code, and bundle it into aJJAR
file.

The Java plugin is convention based. This means that the plugin defines default values for many aspects of
the project, such as where the Java source files are located. If you follow the convention in your project, you
generally don't need to do much in your build script to get a useful build. Gradle allows you to customize
your project if you don't want to or cannot follow the convention in some way. In fact, because support for
Java projectsisimplemented as a plugin, you don't have to use the plugin at al to build a Java project, if you
don't want to.

We have in-depth coverage with many examples about the Java plugin, dependency management and
multi-project builds in later chapters. In this chapter we want to give you an initia idea of how to use the
Java plugin to build a Java project.

44.2. A basic Java project

Let'slook at asimple example. To use the Java plugin, add the following to your build file:

Page 339 of 561

Example 44.1. Using the Java plugin

bui | d. gradl e

apply plugin: 'java

Note: The code for this example can be found at sanpl es/j ava/ qui ckstart in the ‘-al’
distribution of Gradle.

Thisis all you need to define a Java project. This will apply the Java plugin to your project, which adds a
number of tasks to your project.

Gradle expects to find your production source code under sr ¢/ mai n/ j ava

and y9ur test source code_under src/test/ J_ava. _In addltlo_n, What tasks are

any files under sr c/ mai n/ r esour ces will be included in available?

the JAR file as resources, and any filesunder src/ t est/ resour ces

will be included in the classpath used to run the tests. All output You can use gradl e tasks

files are created under the bui | d directory, with the JAR file to list the tasks of a project. This

endingup inthebui | d/ |i bs directory. will let you see the tasks that the
Java plugin has added to your

44.2.1. Building the project project.

The Java plugin adds quite a few tasks to your project. However,

there are only a handful of tasks that you will need to use to

build the project. The most commonly used task is the bui | d task, which does a full build of the project.
When you run gr adl e bui | d, Gradle will compile and test your code, and create a JAR file containing
your main classes and resources:

Example 44.2. Building a Java proj ect
Output of gr adl e bui I d

> gradle build
:conpi | eJava

. processResour ces
:cl asses

vjar

:assenbl e
:conpi | eTest Java
: processTest Resour ces
:testC asses
‘test

: check

tbuild

BU LD SUCCESSFUL

Total tinme: 1 secs

Some other useful tasks are:

clean

Page 340 of 561

Deletesthe bui | d directory, removing all built files.

assemble
Compiles and jars your code, but does not run the unit tests. Other plugins add more artifacts to this task.
For example, if you use the War plugin, this task will also build the WAR file for your project.

check

Compiles and tests your code. Other plugins add more checksto thistask. For example, if you use the checks

plugin, this task will also run Checkstyle against your source code.

44.2.2. External dependencies

Usually, a Java project will have some dependencies on external JAR files. To reference these JAR filesin
the project, you need to tell Gradle where to find them. In Gradle, artifacts such as JAR files, arelocated in a
repository. A repository can be used for fetching the dependencies of a project, or for publishing the
artifacts of aproject, or both. For this example, we will use the public Maven repository:

Example 44.3. Adding Maven repository

bui | d. gradl e

repositories {

mavenCentral ()

}

Let's add some dependencies. Here, we will declare that our production classes have a compile-time
dependency on commons collections, and that our test classes have a compile-time dependency on junit:
Example 44.4. Adding dependencies

buil d. gradl e

dependenci es {
conpi |l e group: 'comons-col | ections', name: 'comons-col |l ections', version:

testConpile group: 'junit', nane: 'junit', version: '4.+

Y ou can find out more in Chapter 7, Dependency Management Basics.

44.2.3. Customizing the project

The Java plugin adds a number of properties to your project. These properties have default values which are
usualy sufficient to get started. It's easy to change these values if they don't suit. Let's look at this for our
sample. Here we will specify the version number for our Java project, along with the Java version our source
iswritten in. We also add some attributes to the JAR manifest.

Page 341 of 561

Example 44.5. Customization of MANIFEST.MF

bui | d. gradl e

sourceConpatibility
version = '1. 0
jar {

mani f est {

attributes 'Inplenentation-Title': 'Gadl e Quickstart',
"1 npl enent ati on-Version': version

The tasks which the Java plugin adds are regular tasks, exactly
the same as if they were declared in the build file. This means
you can use any of the mechanisms shown in earlier chapters to

What properties are

customize these tasks. For example, you can set the properties of available?

a task, add behaviour to a task, change the dependencies of a Youcanusegradl e properties
task, or replace atask entirely. In our sample, we will configure to list the properties of a project.

thet est task, which is of type Test , to add a system property This will allow you to see the
when the tests are executed: properties added by the Java

plugin, and their default values.
Example 44.6. Adding a test system property

buil d. gradl e

test {
systenProperties 'property': 'val ue'

}

44.2.4. Publishing the JAR file

Usually the JAR file needs to be published somewhere. To do this, you need to tell Gradle where to publish
the JAR file. In Gradle, artifacts such as JAR files are published to repositories. In our sample, we will
publish to alocal directory. Y ou can aso publish to aremote location, or multiple locations.

Example 44.7. Publishing the JAR file
bui | d. gradl e
upl oadAr chi ves {

repositories {
flatDir {

dirs 'repos'

To publish the JAR file, run gr adl e upl oadAr chi ves.

Page 342 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.testing.Test.html

44.2.5. Creating an Eclipse project

To create the Eclipse-specific descriptor files, like . pr oj ect , you need to add another plugin to your build

file:

Example 44.8. Eclipse plugin

bui |l d. gradl e

apply plugin: 'eclipse'

Now execute gr adl e ecl i pse command to generate Eclipse project files. More information about the ecl i p:

task can be found in Chapter 63, The Eclipse Plugins.

44.2.6. Summary

Here's the complete build file for our sample:

Example 44.9. Java example - complete build file

bui | d. gradl e

apply plugin: 'java'
apply plugin: '"eclipse'

sourceConpatibility = 1.7
version = '1.0'
jar {

mani f est {

attributes 'Inplenentation-Title':
"I npl enent at i on- Ver si on' :

}

repositories {
mavenCent ral ()

}

dependenci es {
conpi | e group: 'comons-col | ections',

nane:

"G adle Quickstart',
ver si on

test Conmpile group: 'junit', nanme: 'junit', version: '4.+

}

test {
systenProperties 'property': 'val ue'

}

upl oadAr chi ves {
repositories {
flatDir {
dirs 'repos'

' commons-col | ections',

ver si on:

Page 343 of 561

44.3. Multi-project Javabuild

Now let'slook at atypical multi-project build. Below is the layout for the project:

Example 44.10. Multi-project build - hierarchical layout

Build layout

mul ti proj ect/
api /

servi ces/ webservi ce/
shar ed/
servi ces/ shar ed/

Note: The code for this example can be found at sanpl es/j ava/ nul ti proj ect in the ‘-al’
distribution of Gradle.

Here we have four projects. Project api produces a JAR file which is shipped to the client to provide them
aJavaclient for your XML webservice. Project webser vi ce isawebapp which returns XML. Project shar ed
contains code used both by api and webser vi ce. Project ser vi ces/ shar ed has code that depends

on the shar ed project.

44.3.1. Defining a multi-project build

To define a multi-project build, you need to create a seftingsfile. The settings file lives in the root directory
of the source tree, and specifies which projects to include in the build. It must be called set t i ngs. gr adl e
. For this example, we are using a simple hierarchical layout. Here is the corresponding settings file:

Example 44.11. Multi-project build - settings.gradlefile

settings.gradle

i ncl ude "shared", "api", "services:webservice", "services:shared"

Y ou can find out more about the settings file in Chapter 24, Multi-project Builds.

44.3.2. Common configuration

For most multi-project builds, there is some configuration which is common to al projects. In our sample,
we will define this common configuration in the root project, using a technique called configuration
injection. Here, the root project is like a container and the subpr oj ect s method iterates over the
elements of this container - the projects in this instance - and injects the specified configuration. This way
we can easily define the manifest content for all archives, and some common dependencies:

Page 344 of 561

Example 44.12. M ulti-project build - common configuration
buil d. gradl e
subproj ects {
apply plugin: 'java
apply plugin: '"eclipse-wp'

repositories {
mavenCentral ()

}

dependenci es {
testConpile "junit:junit:4. 12
}

version = '1.0'

jar {
mani fest. attri butes provider: 'gradle

}

Notice that our sample applies the Java plugin to each subproject. This means the tasks and configuration
properties we have seen in the previous section are available in each subproject. So, you can compile, test,
and JAR al the projects by running gr adl e bui | d from the root project directory.

Also note that these plugins are only applied within the subpr oj ect s section, not at the root level, so the
root build will not expect to find Java source files in the root project, only in the subprojects.

44.3.3. Dependencies between projects

You can add dependencies between projects in the same build, so that, for example, the JAR file of one
project is used to compile another project. In the api build file we will add a dependency on the shar ed
project. Due to this dependency, Gradle will ensure that project shar ed always gets built before project api

Example 44.13. M ulti-project build - dependencies between projects
api/build.gradle

dependenci es {
conpil e project(':shared")

}

See Section 24.7.1, “ Disabling the build of dependency projects’ for how to disable this functionality.

44.3.4. Creating a distribution

We also add a distribution, that gets shipped to the client:

Page 345 of 561

Example 44.14. M ulti-project build - distribution file

api/build. gradle

task dist(type: Zip) {
dependsOn spi Jar
from'src/dist
into('libs") {
from spi Jar. ar chi vePat h
from configurations. runtine

}

artifacts {
ar chi ves di st

}

44.4. \Where to next?

In this chapter, you have seen how to do some of the things you commonly need to build a Java based
project. This chapter is not exhaustive, and there are many other things you can do with Java projects in
Gradle. Y ou can find out more about the Java plugin in Chapter 45, The Java Plugin, and you can find more
sample Java projectsin the sanpl es/ j ava directory in the Gradle distribution.

Otherwise, continue on to Chapter 7, Dependency Management Basics.

Page 346 of 561

45

The Java Plugin

The Java plugin adds Java compilation along with testing and bundling capabilities to a project. It serves as
the basis for many of the other Gradle plugins.

45.1. Usage

To use the Java plugin, include the following in your build script:

Example45.1. Using the Java plugin

bui | d. gradl e

apply plugin: 'java'

45.2. Source Ssets

The Java plugin introduces the concept of a source set. A source set is simply a group of source files which
are compiled and executed together. These source files may include Java source files and resource files.
Other plugins add the ability to include Groovy and Scala source files in a source set. A source set has an
associated compile classpath, and runtime classpath.

One use for source sets is to group source files into logical groups which describe their purpose. For
example, you might use a source set to define an integration test suite, or you might use separate source sets
to define the APl and implementation classes of your project.

The Java plugin defines two standard source sets, called nmai n and t est . The mai n source set contains
your production source code, which is compiled and assembled into a JAR file. The t est source set
contains your test source code, which is compiled and executed using JUnit or TestNG. These can be unit
tests, integration tests, acceptance tests, or any combination that is useful to you.

45.3. Tasks

The Java plugin adds a number of tasks to your project, as shown below.

Table45.1. Java plugin - tasks

Task name Depends on Type Description

Page 347 of 561

conpi | eJava

pr ocessResour ces

cl asses

conpi | eTest Java

processTest Resources

t est Cl asses

j ar

j avadoc

t est

All tasks which produce the
compile classpath. This
includesthej ar task for
project dependencies
included intheconpi | e
configuration.

Theconpi | eJava task and
thepr ocessResour ces
task. Some plugins add
additional compilation tasks.

conpi | e, plusall tasks
which produce the test
compile classpath.

conpi | eTest Java task

and pr ocessTest Resour ces

task. Some plugins add
additional test compilation
tasks.

compil e

conpile

compi | e,compi | eTest,
plus all tasks which produce
the test runtime classpath.

JavaConpil e

Copy

Task

JavaConpi |l e

Copy

Task

Jar

Javadoc

Test

Compiles
production Java
sourcefiles
using javac.

Copies
production
resources into
the production
resources
directory.

Assembles the
production
classes and
resources
directories.

Compilestest
Java source
filesusing
javac.

Copiestest
resources into
the test
resources
directory.

Assembles the
test classes and
resources
directories.

Assembles the
JAR file

Generates API
documentation
for the
production Java
source, using
Javadoc

Runs the unit
testsusing
JUnit or
TestNG.

Page 348 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.testing.Test.html

upl oadAr chi ves

cl ean

cl eanTaskNanme

The tasks which produce the
artifactsinthear chi ves

configuration, includingj ar .

Upl oad

Del et e

Del et e

Uploads
artifactsinthear chi v
configuration,
including the

JAR file.

Deletesthe
project build
directory.

Deletesfiles

created by

specified task. cl eanJ
will delete the

JAR file created

by thej ar

task, and cl eanTest
will delete the

test results

created by thet est
task.

For each source set you add to the project, the Java plugin adds the following compilation tasks:

Page 349 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Upload.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Delete.html

Table 45.2. Java plugin - sour ce set tasks

Task name Dependson Type Description

conpi | eSour cRlBegsBawdich produce the source set's compile JavaConpil e Compiles
classpath. the given
source set's
Java source
filesusing
javac.

pr ocessSour ceSet Resour ces Copy Copiesthe
given
source set's
resources
into the
resources
directory.

sour ceSet Cl ableesonpi | eSour ceSet Java task and the pr oceBxs3our ceSet Re dsaamlaes

task. Some plugins add additional compilation the given

tasks for the source set. source set's
classes and
resources
directories.

The Java plugin also adds a number of tasks which form alifecycle for the project:

Page 350 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html

Table 45.3. Java plugin - lifecycle tasks

Task name

assenbl e

check

buil d

bui | dNeeded

bui | dDependent s

bui | dConfi gName

upl oadConf i gNane

Dependson Type
All archivetasksin the project, Task
including j ar . Some plugins

add additional archive tasksto

the project.

All verification tasksin the Task
project, including t est . Some

plugins add additional

verification tasks to the project.

check and assenbl e Task
bui | d and bui | dNeeded Task

tasksin al project lib
dependencies of thet est Runt i e
configuration.

bui | d and bui | dDependents Task
tasksin al projectswith a

project lib dependency on this
projectinat est Runti ne

configuration.

The tasks which produce the Task
artifactsin configuration

Conf i gNarre.

The tasks which uploads the
artifactsin configuration
Conf i gNane.

The following diagram shows the relationships between these tasks.

Upl oad

Description

Assembles dll the archives
in the project.

Performs all verification
tasksin the project.

Performs afull build of the
project.

Performs afull build of the
project and all projectsit
depends on.

Performs afull build of the
project and all projects
which depend on it.

Assembles the artifactsin
the specified configuration.
Thetask is added by the
Base plugin whichis
implicitly applied by the
Java plugin.

Assembles and uploads the
artifacts in the specified
configuration. Thetask is
added by the Base plugin
which isimplicitly applied
by the Java plugin.

Page 351 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Upload.html

Figure45.1. Java plugin - tasks

testClasses

processResources

clean

45.4. Project layout

The Java plugin assumes the project layout shown below. None of these directories need exist or have
anything in them. The Java plugin will compile whatever it finds, and handles anything which is missing.

Table45.4. Java plugin - default project layout

Directory Meaning

src/ main/java Production Java source

src/ mai n/ resour ces Production resources
src/test/java Test Java source
src/test/resources Test resources

src/ sourceSet/java Java source for the given source set
src/ sourceSet/resources Resources for the given source set

45.4.1. Changing the project layout

Y ou configure the project layout by configuring the appropriate source set. Thisis discussed in more detail
in the following sections. Here is a brief example which changes the main Java and resource source
directories.

Example 45.2. Custom Java sour ce layout
buil d. gradl e

sourceSets {
mai n {
IEVER]
srcDirs ['src/java']

}

resources {
srcDirs ['"src/resources']

Page 352 of 561

45.5. Dependency management

The Java plugin adds a number of dependency configurations to your project, as shown below. It assigns
those configurationsto tasks such asconpi | eJava andt est .

Table 45.5. Java plugin - dependency configurations

Name
compile

compileOnly

compileClasspath

runtime

testCompile

testCompileOnly

testCompileClasspath

testRuntime

archives

default

Extends

compile

compileOnly

compile

compile

testCompile

testCompileOnly

runtime,
testCompile

runtime

Used by tasks

compileJava

compileTestJava

test

uploadArchives

Figure45.2. Java plugin - dependency configurations

’_,d—adﬂ-s-jzr'/
S
T atds dan

default

compileOnly
V

testCompileOnly
A

testCompileClasspath

M eaning
Compile time dependencies

Compile time only dependencies,
not used at runtime

Compile classpath, used when
compiling source

Runtime dependencies

Additional dependencies for
compiling tests

Additional dependencies only for
compiling tests, not used at runtime

Test compile classpath, used when
compiling test sources

Additional dependencies for running
tests only

Artifacts (e.g. jars) produced by this
project

The default configuration used by a
project dependency on this project.
Contains the artifacts and
dependencies required by this
project at runtime.

compileCl th

used by

compileJava task

used by

I I

P compileTestJava task

For each source set you add to the project, the Java plugins adds the following dependency configurations:

Page 353 of 561

Table 45.6. Java plugin - sour ce set dependency configurations

Name Extends Used by M eaning
tasks

sour ceSet Conpile - - Compile time dependencies for the
given source set

sour ceSet Conpi | eOnl gour ceSet Conpid e Compile time only dependencies for
the given source set, not used at
runtime

sour ceSet Conpi | ed aseyrat éSet Conpi ¢ @@il lye Sour cESapieclasspath, used when
compiling source

sour ceSet Runti me sour ceSet Conpid e Runtime dependencies for the given
source set

45.6. Convention properties

The Java plugin adds a number of convention properties to the project, shown below. Y ou can use these
properties in your build script as though they were properties of the project object.

Table 45.7. Java plugin - directory properties

Property name Type Default value Description

report sDi r Nane String reports The name of
the directory to
generate
reports into,
relative to the
build directory.

reportsDir File bui | dDi r/reportsbDi r Name Thedirectory
(read-only) to generate
reports into.

t est Resul t sDi r Nane String test-results The name of
the directory to
generate test
result .xml
filesinto,
relative to the
build directory.

testResultsDir File bui | dDi r/ t est Resul t sDi r Nahtee directory
(read-only) to generate test
result .xml
filesinto.

Page 354 of 561

t est Report Di r Nare

test ReportDir

| i bsDi r Nane

libsDir

di st sDi r Nane

distsDir

docsDi r Nane

docsDi r

String

File
(read-only)

String

File
(read-only)

String

File
(read-only)

String

File
(read-only)

tests

The name of
the directory to
generate the
test report into,
relative to the
reports
directory.

reportsDir/test Report Di r Nemedirectory

l'ibs

buil dDir/1i bsDi r Name

di stributions

bui | dDi r/ di st sDi r Nane

docs

bui | dDi r/ docsDi r Nanme

to generate the
test report into.

The name of
the directory to
generate
librariesinto,
relative to the
build directory.

The directory
to generate
librariesinto.

The name of
the directory to
generate
distributions
into, relative to
the build
directory.

The directory
to generate
distributions
into.

The name of
the directory to
generate
documentation
into, relative to
the build
directory.

The directory
to generate
documentation
into.

Page 355 of 561

dependencyCacheDirName String dependency- cache The name of
the directory to

use to cache
source
dependency
information,
relative to the
build directory.
dependencyCacheDi r File bui | dDi r/ dependency Cache Dl meNdiraetory
(read-only) to useto cache
source
dependency
information.
Table 45.8. Java plugin - other properties
Property name Type Default value Description
sour ceSet s Sour ceSet Cont ai ner Not null Containsthe
(read-only) project's
source sets.
sourceConpatibility JavaVersion.Canaso versionof the current VM Javaversion
set using a String or a inuse compatibility
Number,eg.' 1.5 orl1.5 to use when
compiling
Java source.

targetConpatibility JavaVersion.Canaso sourceConpatibility Javaversion
set using a String or to generate
Number,eg.' 1.5" orl1.5 classesfor.

ar chi vesBaseNane String proj ect Nane The
basename to
use for
archives,
such as JAR
or ZIPfiles.

mani f est Mani f est an empty manifest The manifest
toincludein
all JARfiles.

These properties are provided by convention objects of type JavaPl ugi nConventi on, and
BasePl ugi nConventi on.

Page 356 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/SourceSetContainer.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.JavaPluginConvention.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.BasePluginConvention.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.BasePluginConvention.html

45.7. Working with source sets

You can access the source sets of a project using the sour ceSet s property. This is a container for the
project's source sets, of type Sour ceSet Cont ai ner. Thereisaso asourceSets { } script block,
which you can pass a closure to configure the source set container. The source set container works pretty
much the same way as other containers, such ast asks.

Example 45.3. Accessing a sour ce set
bui |l d. gradl e

/] Various ways to access the main source set
println sourceSets. nmai n. out put.classesDir
println sourceSets[' nain'].output.classesDir
sourceSets {

println main. out put.cl assesDir

}
sourceSets {
mai n {

println output.classesDr
}
}

/[l lterate over the source sets
sourceSets. all {
println name

}

To configure an existing source set, you simply use one of the above access methods to set the properties of
the source set. The properties are described below. Here is an example which configures the main Java and
resources directories:

Example 45.4. Configuring the sour ce directories of a sour ce set
buil d. gradl e

sourceSets {
mai n {
IEVER]
srcDirs ['src/java']

}

resources {
srcDirs ['"src/resources']

45.7.1. Source set properties

The following table lists some of the important properties of a source set. You can find more details in the
API documentation for Sour ceSet .

Table 45.9. Java plugin - source set properties

Page 357 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/SourceSetContainer.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.SourceSet.html

Property name Type Default value Description

nane St ri ng (read-only) Not null The name of
the source
set, used to
identify it.

out put Sour ceSet Qut put Not null The output
(read-only) files of the
source set,
containing
its compiled
classes and
resources.

out put . cl assesDi r File bui | dDi r/ cl asses/ nahfe
directory to
generate the
classes of
this source
set into.

out put . resourcesDi r File bui | dDi r/ r esour ces/ Haare
directory to
generate the
resources of
this source
set into.

conpi | eCl asspath Fil eCol |l ection conpi | eSour ceSet The
configuration. classpath to
use when
compiling
the source
files of this
source set.

runti med asspat h Fi l eCol | ection out put +runti meSour TeSet
configuration. classpath to
use when
executing
the classes of
this source
Set.

Page 358 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.SourceSetOutput.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/FileCollection.html

j ava Sour ceDi r ect or ySet Not null The Java
(read-only) sourcefiles

of this
source set.
Contains
only.java
filesfound in
the Java
source
directories,
and excludes
al other
files.

java.srcDirs Set <Fi | e>. Can set [proj ect Di r/ sr c/ nantitg souede
using anything described directories
in Section 18.5, containing
“Specifying a set of input the Java
files”. source files
of this
source set.

resources Sour ceDi r ect or ySet Not null The
(read-only) resources of

this source
set. Contains
only
resources,
and excludes
any . j ava
filesfound in
the resource
source
directories.
Other
plugins, such
asthe
Groovy
plugin,
exclude
additional
types of files
from this
collection.

Page 359 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/SourceDirectorySet.html

resources.srchirs Set <Fi | e>. Can set [proj ect Di r/ src/ nanthe ssimer ces]
using anything described directories
in Section 18.5, containing
“Specifying a set of input the resources
files. of this
source set.

al | Java Sour ceDi r ect or ySet j ava All . java
(read-only) files of this

source Set.
Some
plugins, such
asthe
Groovy
plugin, add
additional
Java source
filesto this
collection.

al | Source Sour ceDi r ect or ySet resources + java All source
(read-only) files of this

source set.
Thisinclude
all resource
filesand al
Java source
files. Some
plugins, such
asthe
Groovy
plugin, add
additional
source files
to this
collection.

45.7.2. Defining new source sets

To define anew source set, you simply referenceitinthe sour ceSet s { } block. Here's an example:

Page 360 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/SourceDirectorySet.html

Example 45.5. Defining a sour ce set

bui | d. gradl e

sourceSets {

i nt Test

}

When you define a new source set, the Java plugin adds some dependency configurations for the source set,
as shown in Table 45.6, “Java plugin - source set dependency configurations’. You can use these
configurations to define the compile and runtime dependencies of the source set.

Example 45.6. Defining sour ce set dependencies

bui | d. gradl e

sourceSets {
i nt Test

}

dependenci es {
intTestConpile "junit:junit:4. 12"
int TestRuntinme 'org.ow2.asmasntall: 4.0

The Java plugin also adds a number of tasks which assemble the classes for the source set, as shown in
Table 45.2, “Java plugin - source set tasks’. For example, for a source set called i nt Test , compiling the
classes for this source set isdone by running gr adl e i nt Test C asses.

Example 45.7. Compiling a sour ce set

Output of gr adl e i nt Test d asses

> gradl e intTestd asses
:conpi |l el nt Test Java

: processl nt Test Resour ces
1intTest C asses

BUI LD SUCCESSFUL

Total tinme: 1 secs

45.7.3. Some source set examples

Adding a JAR containing the classes of a source set:

Example 45.8. Assembling a JAR for a sour ce set
bui | d. gradl e

task intTestJar(type: Jar) {
from sourceSets. i nt Test. out put

}

Page 361 of 561

Generating Javadoc for a source set:

Example 45.9. Generating the Javadoc for a sour ce set

bui |l d. gradl e

task intTestJavadoc(type: Javadoc) {
source sourceSets.intTest.allJava

}

Adding atest suite to run the tests in a source set:

Example 45.10. Running testsin a sour ce set
bui |l d. gradl e

task intTest(type: Test) {
test Cl assesDir = sourceSets.intTest.output.classesDr

cl asspath = sourceSets.intTest.runtineC asspath

45.8. Javadoc

Thej avadoc task is an instance of Javadoc. It supports the core Javadoc options and the options of the
standard doclet described in the reference documentation of the Javadoc executable. For a complete list of
supported Javadoc options consult the APl documentation of the following classes:
Cor eJavadocOpt i ons and St andar dJavadocDocl et Opt i ons.

Table 45.10. Java plugin - Javadoc properties

Task Property Type Default Value
cl asspath Fil eCol |l ection sourceSet s. mai n. out put +sourceSet s. mai
source Fi | eTr ee. Can set using sourceSets. main. al | Java

anything described in
Section 18.5, “ Specifying a

set of input files’.
destinationDir File docsDir/javadoc
title String The name and version of the project

45.9. Clean

Thecl ean task isan instance of Del et e. It smply removes the directory denoted by itsdi r property.

Table45.11. Java plugin - Clean properties

Task Property Type Default Value

dir File bui | dDi r

Page 362 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://download.oracle.com/javase/1.5.0/docs/tooldocs/windows/javadoc.html#referenceguide
http://www.gradle.org/docs/3.0/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/external/javadoc/StandardJavadocDocletOptions.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Delete.html

45.10. Resources

The Java plugin uses the Copy task for resource handling. It adds an instance for each source set in the
project. You can find out more about the copy task in Section 18.6, “Copying files’.

Table 45.12. Java plugin - ProcessResour ces properties

Task Property Type Default Value
srcDirs hj ect . Can set using anything described sourceSet . resources
in Section 18.5, “ Specifying a set of input
files'.
destinationDir Fi | e. Can set using anything described in sour ceSet . out put . resour ce:

Section 18.1, “Locating files’.

45.11. CompileJava

The Java plugin adds a JavaConpi | e instance for each source set in the project. Some of the most
common configuration options are shown below.

Table 45.13. Java plugin - Compile properties

Task Property Type Default Value
cl asspath Fil eCol |l ection sour ceSet . conpi | eC assp:
source Fi | eTr ee. Can set using anything described sourceSet . java

in Section 18.5, “ Specifying a set of input files’.

destinationDir File. sour ceSet . out put . cl asse:

By default, the Java compiler runs in the Gradle process. Setting opti ons. fork to true causes
compilation to occur in a separate process. In the case of the Ant javac task, this means that a new process
will be forked for each compile task, which can slow down compilation. Conversely, Gradle's direct
compiler integration (see above) will reuse the same compiler process as much as possible. In both cases, all
fork options specified with opt i ons. f or kOpt i ons will be honored.

45.12. Incremental Java compilation

Starting with Gradle 2.1, it is possible to compile Java incrementally. This feature is still incubating. See the
JavaConpi | e task for information on how to enableiit.

Main goals for incremental compilations are:

* Avoid wasting time compiling source classes that don't have to be compiled. This means faster builds,
especially when a change to a source class or ajar does not incur recompilation of many source classes
that depend on the changed input.

Page 363 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.compile.JavaCompile.html

® Change as few output classes as possible. Classes that don't need to be recompiled remain unchanged in
the output directory. An example scenario when thisisreally useful isusing JRebel - the fewer output
classes are changed the quicker the jvm can use refreshed classes.

Theincremental compilation at ahigh level:

® The detection of the correct set of stale classesis reliable at some expense of speed. The algorithm uses
bytecode analysis and deal s gracefully with compiler optimizations (inlining of non-private constants),
transitive class dependencies, etc. Example: When a class with a public constant changes, we eagerly
compile everything to avoid problems with constants inlined by the compiler. Down the road we will
tune the algorithm and caching so that incremental Java compilation can be a default setting for every
compile task.

® To makeincremental compilation fast, we cache class analysis results and jar snapshots. The initial
incremental compilation can be slower due to the cold caches.

45.13. Test

The t est task is an instance of Test . It automatically detects and executes all unit tests in the t est
source set. It also generates a report once test execution is complete. JUnit and TestNG are both supported.
Have alook a Test for the complete API.

45.13.1. Test execution

Tests are executed in a separate VM, isolated from the main build process. The Test task's APl allowsyou
some control over how this happens.

There are a number of properties which control how the test process is launched. This includes things such
as system properties, VM arguments, and the Java executable to use.

You can specify whether or not to execute your tests in parallel. Gradle provides parallel test execution by
running multiple test processes concurrently. Each test process executes only a single test at atime, so you
generally don't need to do anything special to your teststo take advantage of this. The maxPar al | el For ks
property specifies the maximum number of test processes to run at any given time. The default is 1, that is,
do not execute the testsin parallel.

Thetest process setsthe or g. gr adl e. t est . wor ker system property to a unique identifier for that test
process, which you can use, for example, in files names or other resource identifiers.

Y ou can specify that test processes should be restarted after it has executed a certain number of test classes.
This can be a useful alternative to giving your test process a very large heap. The f or kEvery property
specifies the maximum number of test classes to execute in a test process. The default is to execute an
unlimited number of testsin each test process.

Thetask hasani gnor eFai | ur es property to control the behavior when testsfail. The Test task always
executes every test that it detects. It stops the build afterwards if i gnor eFai | ur es isfalse and there are
failing tests. The default value of i gnor eFai | ur es isfalse.

Page 364 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.testing.Test.html

Thet est Loggi ng property alows you to configure which test events are going to be logged and at which
detail level. By default, a concise message will be logged for every failed test. See
Test Loggi ngCont ai ner for how to tune test logging to your preferences.

45.13.2. Debugging

Thetest task providesa Test . get Debug() property that can be set to launch to make the VM wait for a
debugger to attach to port 5005 before proceeding with test execution.

This can also be enabled at invocation time viathe - - debug- j vmtask option (since Gradle 1.12).

45.13.3. Test filtering

Starting with Gradle 1.10, it is possible to include only specific tests, based on the test name pattern.
Filtering is a different mechanism than test class inclusion / exclusion that will be described in the next few
paragraphs (- Dt est . si ngl e,t est . i ncl ude and friends). The latter is based on files, e.g. the physical
location of the test implementation class. File-level test selection does not support many interesting
scenarios that are possible with test-level filtering. Some of them Gradle handles now and some will be
satisfied in future releases:

® Filtering at the level of specific test methods; executing a single test method

® Filtering based on custom annotations (future)

* Filtering based on test hierarchy; executing all tests that extend a certain base class (future)

* Filtering based on some custom runtime rule, e.g. particular value of a system property or some static
state (future)

Test filtering feature has following characteristic:

* Fully quaified class name or fully qualified method name is supported, e.g. “org.gradle.SomeTest”,
“org.gradle.SomeT est.someM ethod”

® Wildcard *' is supported for matching any characters

® Command line option “--tests” is provided to conveniently set the test filter. Especially useful for the
classic 'single test method execution' use case. When the command line option is used, the inclusion
filters declared in the build script are ignored. It is possible to supply multiple “--tests” options and tests
matching any of those patterns will be included.

* Gradletriesto filter the tests given the limitations of the test framework API. Some advanced, synthetic
tests may not be fully compatible with filtering. However, the vast mgjority of tests and use cases should
be handled neatly.

® Test filtering supersedes the file-based test selection. The latter may be completely replaced in future.
We will grow the the test filtering api and add more kinds of filters.

Page 365 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.testing.logging.TestLoggingContainer.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.testing.logging.TestLoggingContainer.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:debug

Example 45.11. Filtering testsin the build script
buil d. gradl e

test {
filter {
/linclude specific nethod in any of the tests
i ncl udeTest sMat chi ng " * U Check"

/linclude all tests from package

i ncl udeTest sMat ching "org.gradle.internal .*"

//include all integration tests
i ncl udeTest svat ching "*I ntegTest"

For more details and examples please seethe Test Fi | t er reference.

Some exampl es of using the command line option:

® gradle test --tests org.gradl e. SoneTest. soneSpeci fi cFeat ure
® gradle test --tests *SoneTest.sonmeSpecifi cFeature

® gradle test --tests *SoneSpecificTest

® gradle test --tests *SoneSpecificTestSuite

® gradle test --tests all.in.specific.package*
® gradle test --tests *IntegTest

® gradle test --tests *IntegTest*ui*

® gradle test --tests "com exanple. MyTest Suite”

® gradle test --tests "com exanpl e. Paraneteri zedTest"

® gradle test --tests "*ParaneterizedTest.foo*"
® gradle test --tests "*ParaneterizedTest.*[2]"

® gradl e soneTest Task --tests *Ui Test someQt her Test Task --tests *WebTest *ui

45.13.4. Single test execution via System Properties

This mechanism has been superseded by "Test Filtering', described above.

Setting a system property of t askNane. singl e = t est NanePat t ern will only execute tests that

match the specified test NanePattern. The taskNane can be a full multi-project path like
“:subl:sub2:test” or just the task name. The t est NanePat t er n will be used to form an include pattern
of “**/testNamePattern* .class’;. If no tests with this pattern can be found an exception is thrown. Thisisto
shield you from false security. If tests of more than one subproject are executed, the pattern is applied to
each subproject. An exception is thrown if no tests can be found for a particular subproject. In such a case
you can use the path notation of the pattern, so that the pattern is applied only to the test task of a specific
subproject. Alternatively you can specify the fully qualified task hame to be executed. Y ou can aso specify

multiple patterns. Examples:

® gradl e -Dtest.single=Thi sUni quel yNanedTest test

Page 366 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/testing/TestFilter.html

® gradle -Dtest.single=alb/ test

® gradle -DintegTest.single=*IntegrationTest integTest
® gradle -Dtest.single=:projl:test: Custonmer build

® gradle -DintegTest.single=c/d/ :projl:integTest

45.13.5. Test detection

The Test task detects which classes are test classes by inspecting the compiled test classes. By default it
scans al . cl ass files. You can set custom includes / excludes, only those classes will be scanned.
Depending on the test framework used (JUnit / TestNG) the test class detection uses different criteria

When using JUnit, we scan for both JUnit 3 and 4 test classes. If any of the following criteria match, the
classis considered to be a JUnit test class:

® Classor asuper class extends Test Case or G oovyTest Case
® Classor asuper classis annotated with @RrunW t h
® Class or asuper class contain a method annotated with @est

When using TestNG, we scan for methods annotated with @est .

Note that abstract classes are not executed. Gradle also scans up the inheritance tree into jar files on the test
classpath.

If you don't want to use test class detection, you can disable it by setting scanFor Test Cl asses tofalse.

This will make the test task only use includes/ excludes to find test classes. If scanFor Test Cl asses is
false and no include/ exclude patterns are specified, the defaultsare“**/ * Test s. cl ass”, “**/ *Test . cl as
"and“**/ Abstract *. cl ass” for include and exclude, respectively.

45.13.6. Test grouping

JUnit and TestNG allows sophisticated groupings of test methods.

For grouping JUnit test classes and methods JUnit 4.8 introduces the concept of categories. [22] The t est
task allows the specification of the JUnit categories you want to include and exclude.

Example 45.12. JUnit Categories

bui |l d. gradl e

test {
useJUnit {
i ncl udeCat egories 'org.gradle.junit.CategoryA

excl udeCat egories 'org.gradle.junit.CategoryB

The TestNG framework has a quite similar concept. In TestNG you can specify different test groups. (23]
The test groups that should be included or excluded from the test execution can be configured in the test
task.

Page 367 of 561

Example 45.13. Grouping TestNG tests
buil d. gradl e

test {
useTest NG {
excl udeGroups 'integrationTests'

i ncl udeG oups 'unitTests'

45.13.7. Test execution order in TestNG

TestNG alows explicit control of the execution order of tests.

The preser veOr der property controls whether tests are executed in deterministic order. Preserving the
order guarantees that the complete test (including @ef or e XXX and @A\f t er XXX) is run in a test thread
before the next test is run. While preserving the order of tests is the default behavior when directly working
with t est ng. xnl files, the TestNG AP, that is used for running tests programmatically, as well as
Gradle's TestNG integration execute tests in unpredictable order by default. (24] Preserving the order of tests
was introduced with TestNG version 5.14.5. Setting the pr eser veOr der property tot r ue for an older
TestNG version will cause the build to fail.

Example 45.14. Preserving order of TestNG tests

bui | d. gradl e

test {
useTest NG {
preserveOrder true

}

The gr oupByl nst ance property controls whether tests should be grouped by instances. Grouping by
instances will result in resolving test method dependencies for each instance instead of running the
dependees of all instances before running the dependants. The default behavior is not to group tests by
instances. [2°] Grouping tests by instances was introduced with TestNG version 6.1. Setting the gr oupBy| nst ar
property tot r ue for an older TestNG version will cause the build to fail.

Example 45.15. Grouping TestNG tests by instances

bui |l d. gradl e

test {
useTest NG {
gr oupByl nst ances true

}

45.13.8. Test reporting

The Test task generates the following results by default.

Page 368 of 561

http://testng.org/javadocs/org/testng/TestNG.html

® AnHTML test report.

® Theresultsin an XML format that is compatible with the Ant JUnit report task. This format is supported
by many other tools, such as Cl servers.

® Resultsin an efficient binary format. The task generates the other results from these binary results.

There is aso a stand-alone Test Report task type which can generate the HTML test report from the
binary results generated by one or more Test task instances. To use thistask type, you need to defineadest i ne
and the test results to include in the report. Here is a sample which generates a combined report for the unit

tests from subprojects:

Example 45.16. Creating a unit test report for subprojects
buil d. gradl e

subproj ects {
apply plugin: 'java'

/'l Disable the test report for the individual test task
test {
reports. htm .enabl ed = fal se
}
}

task testReport(type: TestReport) ({
destinationDir = file("$buildDir/reports/all Tests")
/1 Include the results fromthe “test task in all subprojects
report On subproj ects*.test

You should note that the Test Report type combines the results from multiple test tasks and needs to
aggregate the results of individual test classes. This means that if a given test class is executed by multiple
test tasks, then the test report will include executions of that class, but it can be hard to distinguish individual
executions of that class and their output.

45.13.8.1. TestNG parameterized methods and reporting

TestNG supports parameterizing test methods, allowing a particular test method to be executed multiple
times with different inputs. Gradle includes the parameter values in its reporting of the test method
execution.

Given a parameterized test method named aTest Met hod that takes two parameters, it will be reported
with the name: aTest Met hod(t oStri ngVal ueX Paraml, toStringVal ueO Paran®). This
makes identifying the parameter values for a particular iteration easy.

Page 369 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.testing.TestReport.html
http://testng.org/doc/documentation-main.html#parameters

45.13.9. Convention values

Table 45.14. Java plugin - test properties

Task Property Type Default Value

testCl assesDir File sourceSets. test.output.classesDr
cl asspath FileCollection sourceSets.test.runtinmed asspath
testResultsDir File testResul tsDir

test ReportDir File test ReportDir

45.14. Jar

The j ar task creates a JAR file containing the class files and resources of the project. The JAR file is
declared as an artifact in the ar chi ves dependency configuration. This means that the JAR is available in
the classpath of a dependent project. If you upload your project into a repository, this JAR is declared as part
of the dependency descriptor. You can learn more about how to work with archives in Section 18.8,
“Creating archives’ and artifact configurationsin Chapter 30, Publishing artifacts.

45.14.1. Manifest

Each jar or war object hasamani f est property with a separate instance of Mani f est . When the archive
is generated, a corresponding MANI FEST. M- file is written into the archive.
Example 45.17. Customization of MANIFEST.MF
buil d. gradl e
jar {

mani f est {
attributes("Inplenentation-Title": "G adle",

"1 npl enent ati on- Versi on": version)

You can create stand alone instances of a Mani f est . You can use that for example, to share manifest
information between jars.

Page 370 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/java/archives/Manifest.html

Example 45.18. Creating a manifest object.
buil d. gradl e

ext . shar edMvani fest = manifest {
attributes("Inplementation-Title": "G adle",
"1 npl enent ati on- Ver si on": version)

}

task fooJdar(type: Jar) {
mani fest = project. mani fest {
from shar edMani f est

}

You can merge other manifests into any Mani f est object. The other manifests might be either described
by afile path or, like in the example above, by areference to another Mani f est object.

Manifests are merged in the order they are declared by the f r om statement. If the base manifest and the
merged manifest both define values for the same key, the merged manifest wins by default. Y ou can fully
customize the merge behavior by adding eachEntry actions in which you have access to a

Mani f est Mer geDet ai | s instance for each entry of the resulting manifest. The merge is not
immediately triggered by the from statement. It is done lazily, either when generating the jar, or by calingwri t e
oref fectiveMani f est

You can easily write a manifest to disk.

Example 45.19. Separate MANIFEST.MF for a particular archive
bui |l d. gradl e

task barJar(type: Jar) {
mani fest {
attributes keyl: 'val uel
from sharedMani fest, 'src/config/ basemanifest.txt’
from('src/config/javabasenani fest.txt',
"src/config/libbasemani fest.txt') {
eachEntry { details ->
if (details.baseValue != details.nergeVal ue) {
det ai | s. val ue = baseVal ue
}
if (details.key == "foo') {
det ai | s. excl ude()

}

bui | d. gradl e

jar.mani fest.witeTo("$buil dDir/ mymanifest.nf")

Page 371 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html

45.15. Uploading

How to upload your archives is described in Chapter 30, Publishing artifacts.

45.16. Compiling and testing for Java 6

Gradle can only run on Java version 7 or higher. Gradle 3.x still supports compiling, testing, generating
Javadoc and executing applications for Java 6. Java 5 is not supported.

To use Java 6 the following tasks need to be configured:

® JavaConpi | e task to fork and use the correct j avac executable
* Javadoc task to usethe correct j avadoc executable
* Test andthe JavaExec task to use the correct j ava executable.

The following sample shows how the bui | d. gr adl e needsto be adjusted. In order to be able to make the
build machine-independent, the location of the Java 6 home should be configured in GRADLE_USER_HOME/ gr a
[26] jn the users home di rectory on each developer machine, as shown in the example.

Example 45.20. Configure Java 6 build

gradl e. properties

in $HOWE . gradl e/ gradl e. properties

j ava6Hone=/ Li br ary/ Java/ JavaVi rt ual Machi nes/ 1. 6. 0. j dk/ Cont ent s/ Hone

bui |l d. gradl e
sourceConpatibility = 1.6

assert hasProperty('java6Hone') : "Set the property 'java6Hone' in your your gr
def javaExecut abl esPath = new Fil e(j ava6Hone, 'bin')
def javaExecutables = [:].withDefault { execName ->
def executable = new Fil e(j avaExecut abl esPath, execNane)
assert executable.exists() : "There is no ${execNane} executable in ${javaE;
execut abl e
}
tasks. wi t hType(Abst ract Conpil e) {
options.with {
fork = true
for kOpti ons. execut abl e = j avaExecut abl es. j avac
}

}
tasks. wi t hType(Javadoc) {

execut abl e = j avaExecut abl es. j avadoc

}
tasks. wi t hType(Test) {

execut abl e = javaExecut abl es. j ava

}
tasks. w t hType(JavaExec) {
execut abl e = j avaExecut abl es. j ava

}

Page 372 of 561

[22] The JUnit wiki contains a detailed description on how to work with JUnit categories:
https://github.com/junit-team/junit/wiki/Categories.

[23] The TestNG documentation contains more details about test groups:
http://testng.org/doc/documentati on-main.html#test-groups.

[24] The TestNG documentation contains more details about test ordering when working with t est ng. xm
files: http://testng.org/doc/documentation-main.html#testng-xml.

[25] The TestNG documentation contains more details about grouping tests by instances:
http://testng.org/doc/documentati on-main.htmi#dependenci es-with-annotations.

[26] For more details on gr adl e. properti es see Section 11.1, “Configuring the build environment via
gradle.properties’

Page 373 of 561

https://github.com/junit-team/junit/wiki/Categories
http://testng.org/doc/documentation-main.html#test-groups
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#dependencies-with-annotations

46

Web Application Quickstart

This chapter isawork in progress.

This chapter introduces the Gradle support for web applications. Gradle provides two plugins for web
application development: the War plugin and the Jetty plugin. The War plugin extends the Java plugin to
build aWAR file for your project. The Jetty plugin extends the War plugin to allow you to deploy your web
application to an embedded Jetty web container.

46.1. Building aWAR file

To build aWAR file, you apply the War plugin to your project:

Example 46.1. War plugin

bui |l d. gradl e

apply plugin: "war'

Note: The code for this example can be found at sanpl es/ webAppl i cati on/ qui ckstart in
the“-al’ distribution of Gradle.

This also applies the Java plugin to your project. Running gr adl e bui | d will compile, test and WAR
your project. Gradle will look for the source files to include in the WAR filein sr ¢/ mai n/ webapp. Your
compiled classes and their runtime dependencies are also included in the WAR file, in the VEB- | NF/ cl asses
and VIEB- | NF/ | i b directories, respectively.

: Groovy web
46.2. Running your web TG
application -
You can combine multiple
To run your web application, you apply the Jetty plugin to your plugins in a single project, so
project: you can use the War and

Groovy plugins together to
build a Groovy based web
application. The appropriate

Page 374 of 561

Example 46.2. Running web application with Jetty plugin Groovy libraries will be added
bui | d. gr adl e to the WAR file for you.

apply plugin: "jetty'

This aso applies the War plugin to your project. Running gradl e jettyRun will run your web
application in an embedded Jetty web container. Running gr adl e j et t yRunWar will build the WAR
file, and then run it in an embedded web container.

TODO: which url, configure port, uses source files in place and can edit your files and reload.

46.3. Summary

You can find out more about the War plugin in Chapter 47, The War Plugin and the Jetty plugin in
Chapter 49, The Jetty Plugin. Y ou can find more sample Java projectsin the sanpl es/ webAppl i cati on
directory in the Gradle distribution.

Page 375 of 561

47

TheWar Plugin

The War plugin extends the Java plugin to add support for assembling web application WAR files. It
disables the default JAR archive generation of the Java plugin and adds a default WAR archive task.

47.1. Usage

To use the War plugin, include the following in your build script:

Example 47.1. Using the War plugin

bui | d. gradl e

apply plugin: "war'

47.2. Tasks

The War plugin adds the following tasks to the project.

Table47.1. War plugin - tasks

Task name Dependson Type Description

war conpil e War Assembles the application WAR file.

The War plugin adds the following dependencies to tasks added by the Java plugin.

Table47.2. War plugin - additional task dependencies

Task name Depends on

assemble war

Figure47.1. War plugin - tasks

classes]4—[war H

assemble

Page 376 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.War.html

47.3. Project layout

Table47.3. War plugin - project layout
Directory M eaning

src/ mai n/ webapp Web application sources

47.4. Dependency management

The War plugin adds two dependency configurations named pr ovi dedConpi | e and pr ovi dedRunt i e

. Those two configurations have the same scope as the respective conpi | e and r unt i me configurations,
except that they are not added to the WAR archive. It is important to note that those provi ded
configurations work transitively. Let's say you add conmons- ht t pcl i ent : commons-httpclient: 3.0
to any of the provided configurations. This dependency has a dependency on conmons- codec. Because
thisisa“provided” configuration, this means that neither of these dependencies will be added to your WAR,
even if the commons- codec library is an explicit dependency of your conpi | e configuration. If you
don't want this transitive behavior, smply declare your pr ovi ded dependencieslike commons- ht t pcl i ent:

47.5. Convention properties

Table47.4. War plugin - directory properties

Property name Type Default value Description

webAppDirNanme String src/ mai n/ webapp The name of the web application
source directory, relative to the project
directory.

webAppDi r File pr oj ect Di r/ webAppDImeNae®application source directory.
(read-only)

These properties are provided by aWar Pl ugi nConvent i on convention object.

47.6. War

The default behavior of the War task is to copy the content of src/ mai n/ webapp to the root of the
archive. Your webapp directory may of course contain a WEB- | NF sub-directory, which may contain aweb. xmi
file. Y our compiled classes are compiled to WEB- | NF/ ¢l asses. All the dependencies of the r unt i ne |

27] configuration are copied to WEB- | NF/ | i b.

TheWar classin the APl documentation has additional useful information.

Page 377 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.WarPluginConvention.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.War.html

47.7. Customizing

Here is an example with the most important customization options:

Example 47.2. Customization of war plugin
bui |l d. gradl e

configurations {
nor eLi bs

}

repositories {
flatDir { dirs "lib" }
mavenCent ral ()

}

dependenci es {

conpi |l e nmodul e(": conpile:1.0") {
dependency ":conpile-transitive-1.0@ ar"
dependency ": provi dedConpile-transitive:1.0@ar"

}

provi dedConpi |l e "j avax. servl et: servl et -api: 2.5"

provi dedConpi | e nodul e(": provi dedConpi [e: 1. 0") {
dependency ": provi dedConpile-transitive:1.0@ar"

}

runtime ":runtine:1.0"

provi dedRuntine ":provi dedRuntine: 1. 0@ ar"

testConmpile "junit:junit:4. 12"

norelLi bs ":otherlLib:1.0"

{

from'src/rootContent' // adds a file-set to the root of the archive
weblnf { from'src/additional Wbinf' } // adds a file-set to the WEB-INF dir
classpath fileTree(' additional Libs') // adds a file-set to the WEB-INF/lib d
cl asspath configurations.moreLibs // adds a configuration to the VEB-INF/IiQ
webXm = file('src/someWeb.xm ') // copies a file to VEB-|NF/ web. xm

Of course one can configure the different file-sets with a closure to define excludes and includes.

[27] Ther unt i me configuration extends the conpi | e configuration.

Page 378 of 561

43

The Ear Plugin

The Ear plugin adds support for assembling web application EAR files. It adds a default EAR archive task.
It doesn't require the Java plugin, but for projects that also use the Java plugin it disables the default JAR
archive generation.

48.1. Usage

To use the Ear plugin, include the following in your build script:

Example 48.1. Using the Ear plugin

buil d. gradl e

apply plugin: 'ear’

48.2. Tasks

The Ear plugin adds the following tasks to the project.

Table48.1. Ear plugin - tasks

Task Depends on Type Description

name

ear conpi | e (only if the Javapluginisaso Ear Assembles the application EAR
applied) file.

The Ear plugin adds the following dependencies to tasks added by the base plugin.

Table 48.2. Ear plugin - additional task dependencies

Task name Depends on

assemble ear

Page 379 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ear.Ear.html

48.3. Project layout

Table 48.3. Ear plugin - project layout
Directory Meaning

src/ mai n/ application Earresources, such asaMETA-INF directory

48.4. Dependency management

The Ear plugin adds two dependency configurations: depl oy and ear | i b. All dependenciesin the depl oy
configuration are placed in the root of the EAR archive, and are not transitive. All dependenciesintheear| i b
configuration are placed in the 'lib' directory in the EAR archive and are transitive.

48.5. Convention properties

Table 48.4. Ear plugin - directory properties

Property name Type Default value Descriptic
appDi r Nane String src/ mai n/application Thename
directory, |

directory.

i bDi r Name String lib The name
the genera

depl oyment Descri pt or org. gradl e. pl ugi ns. A deployment descriptor with Metadatat
ear. descriptor. sensible defaults named appl i ¢ alesaiptorr

Depl oynent Descri pt or . If thisfile

then the ex

be used an

configurati

will beign

These properties are provided by a Ear Pl ugi nConvent i on convention object.

48.6. Ear

The default behavior of the Ear task isto copy the content of sr ¢/ mai n/ appl i cat i on to theroot of the
archive. If your appl i cat i on directory doesn't contain a META- | NF/ appl i cati on. xm deployment
descriptor then one will be generated for you.

The Ear classin the APl documentation has additional useful information.

Page 380 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ear.EarPluginConvention.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ear.Ear.html

48.7. Customizing

Here is an example with the most important customization options:

Example 48.2. Customization of ear plugin

bui | d. gradl e

apply plugin: 'ear’
apply plugin: 'java'

repositories { mavenCentral () }

dependenci es {
/'l The follow ng dependencies will be the ear nodul es and
/[l will be placed in the ear root
depl oy project(':war')

/'l The follow ng dependencies will becone ear libs and will
/'l be placed in a dir configured via the |ibDi rNane property
earlib group: 'log4j', name: 'log4]', version: '1.2.15", ext: 'jar'

{

appDi r Name 'src/main/app' [// use application netadata found in this folder
/1 put dependent libraries into APP-INF/lib inside the generated EAR
['i bDi r Nane ' APP-1 NF/|i b’
depl oynent Descriptor { // customentries for application.xm:
fileName = "application.xm ™ // same as the default val ue
version = "6" [// same as the default val ue
appl i cati onNane = "custonear"
initializelnOder = true
di spl ayName = "Custom Ear" // defaults to project.nanme
/| defaults to project.description if not set
description = "My custom zed EAR for the G adl e docunmentation"
libraryDirectory = "APP-INF/Iib" // not needed, above |ibDi rNanme setti
nodul e("my.jar", "java") [/ won't deploy as my.jar isn't depl oy dependd
webModul e("nmy.war", "/") // won't deploy as ny.war isn't depl oy dependd
securityRol e "adm n"
securityRol e "superadm n"
withXm { provider -> // add a custom node to the XM
provi der. asNode() . appendNode(" dat a- source", "ny/datal/source")

Y ou can also use customization options that the Ear task provides, such asf r omand net al nf .

48.8. Using custom descriptor file

You may already have appropriate settingsin a appl i cati on. xm file and want to use that instead of
configuring the ear . depl oynent Descri pt or section of the build script. To accommodate that goal,
place the META- | NF/ appl i cati on. xm intheright place inside your source folders (see the appDi r Nane
property). The file contents will be used and the explicit configuration in the ear . depl oynent Descri pt or
will beignored.

Page 381 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ear.Ear.html

49

The Jetty Plugin

This plugin is deprecated and will be removed in Gradle 4.0. Consider using the more feature-rich

Gretty plugin instead.

The Jetty plugin extends the War plugin to add tasks which allow you to deploy your web application to a
Jetty web container embedded in the build.

49.1. Usage

To use the Jetty plugin, include the following in your build script:

Example 49.1. Using the Jetty plugin

bui | d. gradl e

apply plugin: "jetty'

49.2. Tasks

The Jetty plugin defines the following tasks:

Table 49.1. Jetty plugin - tasks

Task name Depends
on
jettyRun conpile

jettyRunVar war

jettyStop -

Type

JettyRun

Jet t yRunWar

JettyStop

Description

Starts a Jetty instance and deploys the exploded
web application to it.

Starts a Jetty instance and deploys the WAR to
it.

Stops the Jetty instance.

Page 382 of 561

https://github.com/akhikhl/gretty
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.jetty.JettyRun.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.jetty.JettyRunWar.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.jetty.JettyStop.html

Figure 49.1. Jetty plugin - tasks

jettyFun]

[classes

War]‘ jettyRunWar

[jettyStop]

49.3. Project layout

The Jetty plugin uses the same layout as the War plugin.

49.4. Dependency management

The Jetty plugin does not define any dependency configurations.

49.5. Convention properties

The Jetty plugin defines the following convention properties:

Table 49.2. Jetty plugin - properties

Property name Type Default value Description

contextPath String WAR file base The application deployment location within the

name Jetty container.
ht t pPor t I nt eger 8080 The TCP port which Jetty should listen for HTTP
requests on.
st opPor t I nt eger nul | The TCP port which Jetty should listen for admin
requests on.
st opKey String nul | The key to passto Jetty when requesting it to
stop.

These properties are provided by aJet t yPlI ugi nConvent i on convention object.

Page 383 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.jetty.JettyPluginConvention.html

50

The Application Plugin

The Application plugin facilitates creating an executable VM application. It makes it easy to start the
application locally during development, and to package the application as a TAR and/or ZIP including
operating system specific start scripts.

Applying the Application plugin aso implicitly applies the Java plugin. The mai n source set is effectively
the “application”.

Applying the Application plugin also implicitly applies the Distribution plugin. A mai n distribution is
created that packages up the application, including code dependencies and generated start scripts.

50.1. Usage

To use the application plugin, include the following in your build script:

Example 50.1. Using the application plugin

bui |l d. gradl e
apply plugin: "application'

The only mandatory configuration for the plugin is the specification of the main class (i.e. entry point) of the
application.

Example 50.2. Configure the application main class

bui |l d. gradl e

mai nCl assNane = "org. gradl e. sanpl e. Mai n"

You can run the application by executing the r un task (type: JavaExec). This will compile the main
source set, and launch anew JVM with its classes (along with all runtime dependencies) as the classpath and
using the specified main class. Y ou can launch the application in debug mode with gr adl e run --debug-jv
(see JavaExec. set Debug(bool ean)).

If your application requires a specific set of VM settings or system properties, you can configure the appl i cat i
property. These VM arguments are applied to the r un task and also considered in the generated start
scripts of your distribution.

Page 384 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.JavaExec.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/JavaExec.html#setDebug(boolean)

Example 50.3. Configure default JVM settings

bui | d. gradl e

appl i cati onDefaul t JvmArgs = ["-Dgreeting. | anguage=en"]

50.1.1. The distribution

A distribution of the application can be created, by way of the Distribution plugin (which is automatically
applied). A mai n distribution is created with the following content:

Table 50.1. Distribution content

Location Content
(rootdir) src/dist
lib All runtime dependencies and main source set classfiles.

bi n Start scripts (generated by cr eat eSt art Scri pt s task).

Static files to be added to the distribution can be simply added to sr ¢/ di st . More advanced customization
can be done by configuring the Copy Spec exposed by the main distribution.

Example 50.4. Include output from other tasksin the application distribution
bui |l d. gradl e

task createDocs {
def docs = file("$buil dDir/docs")
out puts.dir docs
doLast {
docs. nkdi rs()
new Fi | e(docs, "readne.txt").wite("Read ne!")

}

di stributions {
mai n {
contents {
from(creat eDocs) {
into "docs"

By specifying that the distribution should include the task's output files (see Section 17.9.1, “Declaring a
task's inputs and outputs’), Gradle knows that the task that produces the files must be invoked before the
distribution can be assembled and will take care of thisfor you.

Page 385 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/CopySpec.html

Example 50.5. Automatically creating filesfor distribution
Output of gradl e di stZip

> gradle distzip

:creat eDocs

:conpi | eJava

: processResources UP- TO DATE
1 cl asses

vjar

:startScripts

cdistZip

BUI LD SUCCESSFUL

Total tinme: 1 secs

Youcanrungradl e i nstal |l Di st to create animage of the applicationinbui | d/ i nstal | / proj ect Na
. You can run gr adl e di st Zi p to create a ZIP containing the distribution, gr adl e di st Tar to
create an application TAR or gr adl e assenbl e to build both.

50.1.2. Customizing start script generation

The application plugin can generate Unix (suitable for Linux, Mac OS X etc.) and Windows start scripts out
of the box. The start scripts launch a VM with the specified settings defined as part of the original build and
runtime environment (e.g. JAVA_OPTS env var). The default script templates are based on the same scripts
used to launch Gradleitself, that ship as part of a Gradle distribution.

The start scripts are completely customizable. Please refer to the documentation of
CreateStart Scri pts for more details and customization examples.

50.2. Tasks

The Application plugin adds the following tasks to the project.

Page 386 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.jvm.application.tasks.CreateStartScripts.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.jvm.application.tasks.CreateStartScripts.html

Table50.2. Application plugin - tasks

Task name Dependson Type Description

run cl asses JavaExec Starts the application.

startScripts jar CreateStartScripts CreatesOS specific scriptsto
run the project asa VM
application.

install Di st jar,startScriptSync Installs the application into a
specified directory.

distzZip jar,startScriptap Creates afull distribution

ZIP archiveincluding
runtime libraries and OS
specific scripts.

di st Tar jar,startScri pt$ar Creates afull distribution
TAR archive including
runtime libraries and OS
specific scripts.

50.3. Convention properties

The application plugin adds some properties to the project, which you can use to configure its behaviour.
Seethe Pr oj ect classinthe APl documentation.

Page 387 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.JavaExec.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/application/CreateStartScripts.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html

51

TheJava Library Distribution Plugin

The Java library distribution plugin is currently incubating. Please be aware that the DSL and other
configuration may changein later Gradle versions.

The Java library distribution plugin adds support for building a distribution ZIP for a Java library. The
distribution contains the JAR file for the library and its dependencies.

51.1. Usage

To use the Javalibrary distribution plugin, include the following in your build script:

Example51.1. Using the Java library distribution plugin

bui | d. gradl e

apply plugin: 'java-library-distribution'

To define the name for the distribution you have to set the baseNane property as shown below:

Example 51.2. Configure the distribution name
bui |l d. gradl e
di stributions {

mai n{
baseNane = ' ny- nane'

}

The plugin builds a distribution for your library. The distribution will package up the runtime dependencies
of thelibrary. All filesstored in sr ¢/ nai n/ di st will be added to the root of the archive distribution. Y ou
canrun“gradl e di st Zi p” to create a ZIP file containing the distribution.

51.2. Tasks

The Javalibrary distribution plugin adds the following tasks to the project.

Page 388 of 561

Table51.1. Javalibrary distribution plugin - tasks

Task Depends Type Description

name on

distzZip jar Zip Creates afull distribution ZIP archive including runtime
libraries.

51.3. Including other resources in the distribution

All of the files from the sr c/ di st directory are copied. To include any static files in the distribution,
simply arrangetheminthe src/ di st directory, or add them to the content of the distribution.

Example 51.3. Includefilesin the distribution
buil d. gradl e
di stributions {
mai n {

baseNane = ' nmy- nang'
contents {

from{ 'src/dist' }

Page 389 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Zip.html

52

Groovy Quickstart

To build a Groovy project, you use the Groovy plugin. This plugin extends the Java plugin to add Groovy
compilation capabilities to your project. Your project can contain Groovy source code, Java source code, or
a mix of the two. In every other respect, a Groovy project is identical to a Java project, which we have
already seen in Chapter 44, Java Quickstart.

52.1. A basic Groovy project

Let'slook at an example. To use the Groovy plugin, add the following to your build file:

Example 52.1. Groovy plugin

bui | d. gradl e

apply plugin: 'groovy'

Note: The code for this example can be found at sanpl es/ gr oovy/ qui ckstart in the ‘-al’
distribution of Gradle.

This will also apply the Java plugin to the project, if it has not already been applied. The Groovy plugin
extends the conpi | e task to look for sourcefilesin directory sr ¢/ mai n/ gr oovy, and the conpi | eTest
task to look for test source filesin directory src/ t est/ gr oovy. The compile tasks use joint compilation
for these directories, which means they can contain a mixture of Java and Groovy source files.

To use the Groovy compilation tasks, you must also declare the Groovy version to use and where to find the
Groovy libraries. You do this by adding a dependency to the gr oovy configuration. The conpi |l e
configuration inherits this dependency, so the Groovy libraries will be included in classpath when compiling
Groovy and Java source. For our sample, we will use Groovy 2.2.0 from the public Maven repository:

Example 52.2. Dependency on Groovy

bui |l d. gradl e

repositories {
mavenCentral ()

}

dependenci es {
conpi l e ' org. codehaus. groovy: groovy-all:2.4.7

}

Page 390 of 561

Here is our complete build file:

Example 52.3. Groovy example - complete build file
bui |l d. gradl e

apply plugin: "eclipse'
apply plugin: 'groovy'

repositories {
mavenCent ral ()

}

dependenci es {
conpi |l e ' org. codehaus. groovy: groovy-all:2.4. 7'
testConpile "junit:junit:4.12'

Running gr adl e bui | d will compile, test and JAR your project.

52.2. Summary

This chapter describes a very simple Groovy project. Usualy, a real project will require more than this.
Because a Groovy project is a Java project, whatever you can do with a Java project, you can also do with a
Groovy project.

Y ou can find out more about the Groovy plugin in Chapter 53, The Groovy Plugin, and you can find more
sample Groovy projectsin the sanpl es/ gr oovy directory in the Gradle distribution.

Page 391 of 561

53

The Groovy Plugin

The Groovy plugin extends the Java plugin to add support for Groovy projects. It can deal with Groovy
code, mixed Groovy and Java code, and even pure Java code (although we don't necessarily recommend to
use it for the latter). The plugin supports joint compilation, which allows you to freely mix and match
Groovy and Java code, with dependencies in both directions. For example, a Groovy class can extend a Java
class that in turn extends a Groovy class. This makes it possible to use the best language for the job, and to

rewrite any classin the other language if needed.

53.1. Usage

To use the Groovy plugin, include the following in your build script:

Example 53.1. Using the Groovy plugin

bui | d. gradl e

apply plugin: 'groovy'

53.2. Tasks

The Groovy plugin adds the following tasks to the project.

Table 53.1. Groovy plugin - tasks

Task name Dependson Type

conpi | eG oovy conpi | eJava G oovyConpi |l e
conpi | eTest G oovy conpileTestJava G oovyConpile

conpi | eSour ceSet G- ooxynpi | eSour ceSet Ja@aoovyConpi | e

gr oovydoc - G oovydoc

Description

Compiles production
Groovy source files.

Compilestest Groovy
source files.

Compilesthe given
source set's Groovy
sourcefiles.

Generates API
documentation for the
production Groovy
sourcefiles.

Page 392 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html

The Groovy plugin adds the following dependencies to tasks added by the Java plugin.

Table 53.2. Groovy plugin - additional task dependencies

Task name Dependson
classes compileGroovy
testClasses compileTestGroovy

sour ceSet Classes compileSour ceSet Groovy

Figure53.1. Groovy plugin - tasks

compileGroovy

processTestResources

Compile TestGroovy l'

tesiClasses

classes

compileTestJava

53.3. Project layout

The Groovy plugin assumes the project layout shown in Table 53.3, “Groovy plugin - project layout”. All
the Groovy source directories can contain Groovy and Java code. The Java source directories may only
contain Java source code. [28] None of these directories need to exist or have anything in them; the Groovy
plugin will simply compile whatever it finds.

Table 53.3. Groovy plugin - project layout

Directory Meaning

src/ mai n/java Production Java source

src/ mai n/ resour ces Production resources

src/ mai n/ gr oovy Production Groovy sources. May aso contain Java sources for joint
compilation.

src/test/java Test Java source

src/test/resources Test resources

src/test/groovy Test Groovy sources. May also contain Java sources for joint
compilation.

src/ sourceSet/java Java source for the given source set

src/ sour ceSet/resour ces Resourcesfor the given source set

src/ sour ceSet/ groovy Groovy sources for the given source set. May also contain Java
sources for joint compilation.

Page 393 of 561

53.3.1. Changing the project layout

Just like the Java plugin, the Groovy plugin allows you to configure custom locations for Groovy production
and test sources.

Example 53.2. Custom Groovy sour ce layout
bui |l d. gradl e

sourceSets {
mai n {
groovy {
srcDirs ["src/groovy']

}

}

test {

groovy ({
srcDirs ['test/groovy']

53.4. Dependency management

Because Gradle's build language is based on Groovy, and parts of Gradle are implemented in Groovy,
Gradle aready ships with a Groovy library (2.4.7 as of Gradle 3.0). Nevertheless, Groovy projects need to
explicitly declare a Groovy dependency. This dependency will then be used on compile and runtime class
paths. It will also be used to get hold of the Groovy compiler and Groovydoc tool, respectively.

If Groovy is used for production code, the Groovy dependency should be added to the conpil e
configuration:

Example 53.3. Configuration of Groovy dependency

bui |l d. gradl e

repositories {
mavenCentral ()

}

dependenci es {
conpi |l e ' org. codehaus. groovy: groovy-all:2.4.7'

}

If Groovy is only used for test code, the Groovy dependency should be added to the t est Conpi | e
configuration:

Page 394 of 561

Example 53.4. Configuration of Groovy test dependency
buil d. gradl e

dependenci es {
t est Conpi |l e "or g. codehaus. groovy: groovy: 2. 4. 7"

}

To use the Groovy library that ships with Gradle, declare a | ocal Gr oovy() dependency. Note that
different Gradle versions ship with different Groovy versions; as such, using | ocal G oovy() isless safe
then declaring aregular Groovy dependency.

Example 53.5. Configuration of bundled Groovy dependency

bui |l d. gradl e

dependenci es {

conpi | e | ocal G oovy()
}

The Groovy library doesn't necessarily have to come from a remote repository. It could also come from a
local | i b directory, perhaps checked in to source control:

Example 53.6. Configuration of Groovy file dependency
bui |l d. gradl e
repositories {

flatDir { dirs "lib" }
}
dependenci es {

conpi | e modul e(' or g. codehaus. groovy: groovy: 2.4. 7') {
dependency(' org. ow2. asm asmal | : 5. 0. 3")

dependency('antlr:antlr:2.7.7")
dependency(' commons-cli:comons-cli:1.2")
nmodul e(' org. apache. ant:ant:1.9.4") {
dependenci es(' org. apache. ant:ant-junit:1.9.4@ar"',
'org. apache. ant: ant -l auncher: 1. 9. 4")

The “modul e” reference may be new to you. See Chapter 23, Dependency Management for more
information about this and other information about dependency management.

53.5. Automatic configuration of groovyClasspath

The Gr oovyConpi | e and Gr oovydoc tasks consume Groovy code in two ways: on their cl asspat h,
and on their gr oovyd asspat h. The former is used to locate classes referenced by the source code, and
will typically contain the Groovy library along with other libraries. The latter is used to load and execute the
Groovy compiler and Groovydoc tool, respectively, and should only contain the Groovy library and its
dependencies.

Page 395 of 561

Unless atask's gr oovyCl asspat h is configured explicitly, the Groovy (base) plugin will try to infer it
fromthetask'scl asspat h. Thisis done as follows:

® |fagroovy-all (-indy) Jarisfoundoncl asspat h, that jar will be added to gr oovyCl asspat h

* [fagroovy(-indy) jarisfoundoncl asspat h, and the project has at least one repository declared,
acorresponding gr oovy(- i ndy) repository dependency will be added to gr oovyCl asspat h.

® Otherwise, execution of the task will fail with amessage saying that gr oovyC asspat h could not be
inferred.

Note that the “- i ndy” variation of each jar refersto the version with i nvokedynanmi ¢ support.

53.6. Convention properties

The Groovy plugin does not add any convention properties to the project.

53.7. Source set properties

The Groovy plugin adds the following convention properties to each source set in the project. Y ou can use
these properties in your build script as though they were properties of the source set object.

Table 53.4. Groovy plugin - source set properties

Property name Type Default value Description
gr oovy Sour ceDi r ect or ySet Not null The Groovy source files of
(read-only) this source set. Containsall . gr oovy

and. j ava filesfound in the
Groovy source directories,
and excludes all other types

of files.
groovy.srcDirs Set<Fil e>. Can set [proj ect Di r/ sTle svane/direotovigd
using anything described containing the Groovy source
in Section 18.5, files of this source set. May
“Specifying a set of input also contain Java source files
files'. for joint compilation.
al | G oovy Fi | eTr ee (read-only) Not null All Groovy sourcefiles of

this source set. Contains only
the. gr oovy filesfoundin
the Groovy source
directories.

These properties are provided by a convention object of type G oovy Sour ceSet .

The Groovy plugin also modifies some source set properties:

Page 396 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.GroovySourceSet.html

Table53.5. Groovy plugin - source set properties

Property name
al | Java

al | Source

Change

53.8. GroovyCompile

The Groovy plugin adds a Gr oovy Conpi | e task for each source set in the project. The task type extends
the JavaConpi | e task (see Section 45.11, “CompileJava’). The G- oovyConpi | e task supports most
configuration options of the official Groovy compiler.

Table 53.6. Groovy plugin - GroovyCompile properties

Task Property
cl asspath

source

destinationDir

groovyd asspat h

Type
Fil eCol |l ection

Fi | eTr ee. Can set using anything
described in Section 18.5, “ Specifying
aset of input files’.

Fil e.

Fil eCol | ection

Addsall . j ava filesfound in the Groovy source directories.

Adds al source files found in the Groovy source directories.

Default Value
sour ceSet . conpi | eCl asspath

sour ceSet . gr oovy

sour ceSet . out put . cl assesDi r

gr oovy configuration if
non-empty; Groovy library found
on cl asspat h otherwise

53.9. Compiling and testing for Java 6

The Groovy compiler will always be executed with the same version of Java that was used to start Gradle.
You should set sour ceConpati bility andtarget Conpatibilitytol.6.If youalso have Java
sources, you can follow the same steps as for the Java plugin to ensure the correct Java compiler is used.

Page 397 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/FileCollection.html

Example 53.7. Configure Java 6 build for Groovy

gradl e. properties

in $HOVE/ . gradl e/ gradl e. properties

j avabHome=/ Li br ary/ Java/ JavaVi r t ual Machi nes/ 1. 6. 0. j dk/ Cont ent s/ Honme

bui | d. gradl e

sourceConpatibility =
target Conpatibility

assert hasProperty('java6bHone') : "Set the property 'java6Home' in your your gr
def javaExecutabl esPath = new Fil e(j avabHome, 'bin')
def javaExecutables = [:].withDefault { execName ->
def executable = new Fil e(j avaExecut abl esPat h, execNane)
assert executable.exists() : "There is no ${execNane} executable in ${javaFE;
execut abl e
}
t asks. wi t hType(Abstract Conpi |l e) {
options.with {
fork = true
forkOptions. execut abl e = j avaExecut abl es. j avac

}

}
tasks. w t hType(Javadoc) {

execut abl e = j avaExecut abl es. j avadoc

}
tasks. w t hType(Test) {

execut abl e = j avaExecut abl es. j ava
}
tasks. wi t hType(JavaExec) {

execut abl e = j avaExecut abl es. j ava

}

[28] We are using the same conventions as introduced by Russel Winder's Gant tool (https://gant.github.io/).

Page 398 of 561

https://gant.github.io/

54

The Scala Plugin

The Scala plugin extends the Java plugin to add support for Scala projects. It can deal with Scala code,
mixed Scala and Java code, and even pure Java code (although we don't necessarily recommend to use it for
the latter). The plugin supports joint compilation, which allows you to freely mix and match Scala and Java
code, with dependencies in both directions. For example, a Scala class can extend a Java class that in turn
extends a Scala class. This makes it possible to use the best language for the job, and to rewrite any classin
the other language if needed.

54.1. Usage

To use the Scala plugin, include the following in your build script:

Example 54.1. Using the Scala plugin

bui |l d. gradl e

apply plugin: 'scala'

54.2. Tasks

The Scala plugin adds the following tasks to the project.

Table54.1. Scala plugin - tasks

Task name Dependson Type Description
conpi | eScal a conpi | eJava Scal aConpi | e Compiles production Scala
sourcefiles.

conpi | eTest Scal a conpi |l eTest Java Scal aConpil e Compilestest Scalasource
files.

conpi | eSour ceSet Scat@mpi | eSour ceSet Jas@al aConmpi | e Compiles the given source
set's Scala source files.

scal adoc - Scal aDoc Generates AP
documentation for the
production Scala source
files.

Page 399 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.scala.ScalaDoc.html

The Scala plugin adds the following dependencies to tasks added by the Java plugin.

Table54.2. Scala plugin - additional task dependencies

Task name Depends on
cl asses compi | eScal a
test Cl asses conpi | eTest Scal a

sourceSet Cl asses conpi | eSour ceSet Scal a

Figure54.1. Scala plugin - tasks

[processResources
compileScala

scaladoc

processTestResources

compileTestScala I'

testClasses

classes

compileTestJava

54.3. Project layout

The Scala plugin assumes the project layout shown below. All the Scala source directories can contain Scala
and Java code. The Java source directories may only contain Java source code. None of these directories
need to exist or have anything in them; the Scala plugin will simply compile whatever it finds.

Table 54.3. Scala plugin - project layout

Directory Meaning

src/ main/java Production Java source

src/ mai n/ resour ces Production resources

src/ mai n/ scal a Production Scala sources. May also contain Java sources for joint
compilation.

src/test/java Test Java source

src/test/resources Test resources

src/test/scal a Test Scala sources. May also contain Java sources for joint
compilation.

src/ sourceSet/java Java source for the given source set

src/ sour ceSet/resour ces Resourcesfor the given source set

src/ sourceSet/scal a Scala sources for the given source set. May also contain Java sources
for joint compilation.

Page 400 of 561

54.3.1. Changing the project layout

Just like the Java plugin, the Scala plugin allows you to configure custom locations for Scala production and
test sources.

Example 54.2. Custom Scala sour ce layout

bui |l d. gradl e

sourceSets {
mai n {
scal a {
srcDirs ["src/scala']

}

}
test {

scal a {
srcDirs ["test/scal a']

54.4. Dependency management

Scala projects need to declare a scal a- | i br ary dependency. This dependency will then be used on
compile and runtime class paths. It will also be used to get hold of the Scala compiler and Scaladoc tool,
respectively. [29

If Scalais used for production code, the scal a- | i br ary dependency should be added to the conpi | e
configuration:

Example 54.3. Declaring a Scala dependency for production code

bui |l d. gradl e

repositories {
mavenCentral ()

}

dependenci es {
conpile 'org.scal a-1ang: scal a-library:2.11. 1

}

If Scalaisonly used for test code, thescal a- | i br ary dependency should be added to thet est Conpi | e
configuration:

Page 401 of 561

Example 54.4. Declaring a Scala dependency for test code

bui | d. gradl e

dependenci es {
test Conpil e "org. scal a-1 ang: scal a-li brary: 2. 11. 1"

}

54.5. Automatic configuration of scalaClasspath

The Scal aConpi | e and Scal aDoc tasks consume Scala code in two ways: on their cl asspat h, and
on their scal aCl asspat h. The former is used to locate classes referenced by the source code, and will
typically contain scal a- | i brary aong with other libraries. The latter is used to load and execute the
Scala compiler and Scaladoc tool, respectively, and should only contain the scal a- conpi | er library and
its dependencies.

Unlessatask's scal aCl asspat h is configured explicitly, the Scala (base) plugin will try to infer it from
thetask'scl asspat h. Thisisdone asfollows:

® |[fascal a-1i brary jarisfoundoncl asspat h, and the project has at least one repository declared,
acorresponding scal a- conpi | er repository dependency will be added to scal aCl asspat h.

® Otherwise, execution of the task will fail with amessage saying that scal aCl asspat h could not be
inferred.

54.6. Configuring the Zinc compiler

The Scala plugin uses a configuration named zi nc to resolve the Zinc compiler and its dependencies.
Gradle will provide a default version of Zinc, but if you need to use a particular Zinc version, you can add
an explicit dependency like“ com t ypesaf e. zi nc: zi nc: 0. 3. 6” tothezi nc configuration. Gradle
supports version 0.3.0 of Zinc and above; however, due to a regression in the Zinc compiler, versions 0.3.2
through 0.3.5.2 cannot be used.

Example 54.5. Declaring a version of the Zinc compiler to use

bui | d. gradl e

dependenci es {
zinc 'comtypesafe.zinc:zinc:0.3.9'

}

It is important to take care when declaring your scal a- | i br ary dependency. The Zinc compiler
itself needs a compatible version of scal a-|i brary that may be different from the version
required by your application. Gradle takes care of adding a compatible version of scal a-1i brary
for you, but over-broad dependency resolution rules could force an incompatible version to be used
instead.

Page 402 of 561

For example, using confi gurati ons. al | to force a particular version of scal a-1i brary
would also override the version used by the Zinc compiler:

Example 54.6. Forcing a scala-library dependency for all configurations

bui | d. gradl e

configurations.all {
resol utionStrategy.force "org.scal a-l ang: scal a-library: 2. 11. 7"

}

The best way to avoid this problem is to be more selective when configuring the scal a-1 i brary
dependency (such as not using a confi gurati on. al | rule or using a conditional to prevent the
rule from being applied to the zi nc configuration). Sometimes this rule may come from a plugin or
other code that you do not have control over. In such a case, you can force a correct version of the
library on the zi nc configuration only:

Example 54.7. Forcing a scala-library dependency for the zinc configuration

bui | d. gradl e

configurations. zinc {
resol utionStrategy.force "org.scal a-l ang: scal a-1ibrary: 2. 10. 5"

}

Y ou can diagnose problems with the version of the Zinc compiler selected by running dependencylnsight
for the zi nc configuration.

54.7. Convention properties

The Scala plugin does not add any convention properties to the project.

54.8. Source set properties

The Scala plugin adds the following convention properties to each source set in the project. You can use
these properties in your build script as though they were properties of the source set object.

Page 403 of 561

Table 54.4. Scala plugin - sour ce set properties

Property name Type
scal a Sour ceDi r ect or ySet
(read-only)

scala.srcDirs Set<Fil e>. Canset
using anything described
in Section 18.5,
“Specifying a set of input
files”.

al | Scal a Fi | eTr ee (read-only)

Default value

Not null

Description

The Scala source files of this
source set. Containsall . scal a
and . j ava filesfound in the
Scala source directories, and
excludes all other types of

files.

[proj ect Di r/ sThe svane/dsieatioa s

Not null

containing the Scala source
files of this source set. May
also contain Java source files
for joint compilation.

All Scala source files of this

source set. Containsonly the . scal a
filesfound in the Scala source
directories.

These convention properties are provided by a convention object of type Scal aSour ceSet .

The Scala plugin also modifies some source set properties:

Table 54.5. Scala plugin - sour ce set properties

Property name Change

al | Java Addsal . j ava filesfound in the Scala source directories.

al | Source Adds all source files found in the Scala source directories.

54.9. Compiling in external process

Scala compilation takes place in an external process.

Memory settings for the external process default to the defaults of the VM. To adjust memory settings,
configurethe scal aConpi | eOpt i ons. f or kOpt i ons property as needed:

Example 54.8. Adjusting memory settings
bui |l d. gradl e

t asks. wi t hType(Scal aConpi |l) {

confi gure(scal aConpi | eOpti ons. f orkOpti ons) {

nmenor yMaxi nunSi ze = ' 19'

jvmArgs = ['-XX: MaxPernfi ze=512m]

Page 404 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.ScalaSourceSet.html

54.10. Incremental compilation

By compiling only classes whose source code has changed since the previous compilation, and classes
affected by these changes, incremental compilation can significantly reduce Scala compilation time. It is
particularly effective when frequently compiling small code increments, as is often done at development
time.

The Scala plugin defaults to incremental compilation by integrating with Zinc, a standalone version of sht's
incremental Scala compiler. If you want to disable the incremental compilation, set f orce = true in
your build file:

Example 54.9. Forcing all code to be compiled

bui | d. gradl e

t asks. wi t hType(Scal aConpi |l) {
scal aConpi | eOptions.with {

force = true

}

Note: Thiswill only cause all classes to be recompiled if at least one input source file has changed. If there
are no changes to the source files, the conpi | eScal a task will still be considered UP- TO- DATE as usual.

The Zinc-based Scala Compiler supports joint compilation of Java and Scala code. By default, all Java and
Scalacode under sr ¢/ mai n/ scal a will participate in joint compilation. Even Java code will be compiled
incrementally.

Incremental compilation requires dependency analysis of the source code. The results of this analysis are
stored in the file designated by scal aConpi | eOpti ons. i ncrenent al Opti ons. anal ysi sFile
(which has a sensible default). In a multi-project build, analysis files are passed on to downstream Scal aConpi |
tasks to enable incremental compilation across project boundaries. For Scal aConpi | e tasks added by the
Scala plugin, no configuration is necessary to make this work. For other Scal aConpi | e tasks that you
might add, the property scal aConpi | eOpti ons. i ncr enent al Opti ons. publ i shedCode needs

to be configured to point to the classes folder or Jar archive by which the code is passed on to compile class
paths of downstream Scal aConpi | e tasks. Note that if publ i shedCode is not set correctly,
downstream tasks may not recompile code affected by upstream changes, leading to incorrect compilation
results.

Note that Zinc's Nailgun based daemon mode is not supported. Instead, we plan to enhance Gradl€'s own
compiler daemon to stay alive across Gradle invocations, reusing the same Scala compiler. Thisis expected
to yield another significant speedup for Scala compilation.

Page 405 of 561

https://github.com/typesafehub/zinc
https://github.com/harrah/xsbt

54.11. Compiling and testing for Java 6

The Scala compiler ignores Gradle's t ar get Conpat i bi l ity and sour ceConpati bil ity settings.
In Scala 2.11, the Scala compiler always compiles to Java 6 compatible bytecode. In Scala 2.12, the Scala
compiler always compiles to Java 8 compatible bytecode. If you also have Java sources, you can follow the

same steps as for the Java plugin to ensure the correct Java compiler is used.

Example 54.10. Configure Java 6 build for Scala

gradl e. properties

in $HOVE/ . gradl e/ gradl e. properties

j avabHome=/ Li br ary/ Java/ JavaVi r t ual Machi nes/ 1. 6. 0. j dk/ Cont ent s/ Honme

bui | d. gradl e

sour ceConpatibility =

assert hasProperty('java6Hone') : "Set the property 'java6Hone'

def javaExecutabl esPath = new Fil e(j avabHonme, 'bin')
def javaExecutables = [:].withDefault { execName ->
def executable = new Fil e(j avaExecut abl esPat h, execNane)

in your your grg

assert executable.exists() : "There is no ${execNanme} executable in ${] avaEj

execut abl e

}

tasks. w t hType(Abstract Conpi |l e) {
options.with {
fork = true

forkOptions. execut abl e = j avaExecut abl es. j avac

}

}
tasks. wi t hType(Test) {

execut abl e = j avaExecut abl es. j ava
}
tasks. w t hType(JavaExec) {
execut abl e = j avaExecut abl es. j ava
}
tasks. w t hType(Javadoc) {
execut abl e = j avaExecut abl es. j avadoc

}

54.12. Eclipse Integration

When the Eclipse plugin encounters a Scala project, it adds additional configuration to make the project
work with Scala IDE out of the box. Specificaly, the plugin adds a Scala nature and dependency container.

Page 406 of 561

54.13. IntelliJ IDEA Integration

When the IDEA plugin encounters a Scala project, it adds additional configuration to make the project work
with IDEA out of the box. Specifically, the plugin adds a Scala SDK (IntelliJ IDEA 14+) and a Scala
compiler library that matches the Scala version on the project's class path. The Scala plugin is backwards
compatible with earlier versions of IntelliJ IDEA and it is possible to add a Scala facet instead of the default
Scala SDK by configuring t ar get Ver si on on| deaMbdel .

Example 54.11. Explicitly specify a target IntelliJ IDEA version

bui |l d. gradl e

i dea {
target Version = "13"

}

[29] See Section 54.5, “ Automatic configuration of scalaClasspath”.

Page 407 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.idea.model.IdeaModel.html

55

The ANTLR Plugin

The ANTLR plugin extends the Java plugin to add support for generating parsersusing ANTLR.

The ANTLR plugin supports ANTLR version 2, 3 and 4.

22.1. Usage

To usethe ANTLR plugin, include the following in your build script:

Example 55.1. Using the ANTLR plugin

bui | d. gradl e

apply plugin: "antlr'

55.2. Tasks

The ANTLR plugin adds a number of tasks to your project, as shown below.

Table55.1. ANTLR plugin - tasks

Task name Depends Type

on
gener at eG anmar Sour ce - Ant | r Task
gener at eTest G- anmar Sour ce - Ant | r Task
gener at eSour ceSet G ammar Source Ant | r Task

Description

Generates the source filesfor all
production ANTLR grammars.

Generates the source files for all
test ANTLR grammars.

Generates the source files for all
ANTLR grammars for the given
source set.

The ANTLR plugin adds the following dependencies to tasks added by the Java plugin.

Page 408 of 561

http://www.antlr.org/
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.antlr.AntlrTask.html

Table55.2. ANTLR plugin - additional task dependencies

Task name Dependson
compileJava generateGrammarSource
compileTestJava generateTestGrammarSource

compileSour ceSet Java generateSour ceSet GrammarSource

55.3. Project layout

Table55.3. ANTLR plugin - project layout

Directory Meaning

src/ main/antlr Production ANTLR grammar files. If the ANTLR grammar is organized in
packages, the structure in the antlr folder should reflect the package structure.
This ensures that the generated sources end up in the correct target subfolder.

src/test/antlr Test ANTLR grammar files.

src/ sour ceSet / antANTLR grammar files for the given source set.

55.4. Dependency management

The ANTLR plugin adds an ant | r dependency configuration which provides the ANTLR implementation
to use. The following example shows how to use ANTLR version 3.

Example 55.2. Declare ANTLR version

bui |l d. gradl e

repositories {
mavenCentral ()

}

dependenci es {
antlr "org.antlr:antlr:3.5.2" // use ANTLR version 3
/'l antlr "org.antlr:antlr4:4.5" // use ANTLR version 4

If no dependency is declared, antlr:antlr: 2. 7.7 will be used as the default. To use a different
ANTLR version add the appropriate dependency to the ant | r dependency configuration as above.

55.5. Convention properties

The ANTLR plugin does not add any convention properties.

Page 409 of 561

55.6. Source set properties

The ANTLR plugin adds the following properties to each source set in the project.

Table55.4. ANTLR plugin - sour ce set properties

Property name Type Default value Description
antlr Sour ceDi r ect or ySet Not null The ANTLR grammar files of
(read-only) this source set. Containsall . g

or. g4 filesfound in the
ANTLR source directories,
and excludes all other types of

files.
antlr.srcDirs Set<Fil e>. Canset [proj ect Di r/ STt soane/darettoriks
using anything described containing the ANTLR
in Section 18.5, grammar files of this source
“Specifying a set of input Set.

files'.

55.7. Controlling the ANTLR generator process

The ANTLR tool is executed in a forked process. This allows fine grained control over memory settings for
the ANTLR process. To set the heap size of a ANTLR process, the maxHeapSi ze property of

Ant | r Task can be used. To pass additional command-line arguments, append to the ar gunent s
property of Ant | r Task.

Example 55.3. setting custom max heap size and extra argumentsfor ANTLR
bui |l d. gradl e

gener at eG ammar Sour ce {
maxHeapSi ze = " 64nf

argunents += ["-visitor", "-long-nessages"]

Page 410 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.antlr.AntlrTask.html

56

The Checkstyle Plugin

The Checkstyle plugin performs quality checks on your project's Java source files using Checkstyle and
generates reports from these checks.

56.1. Usage

To use the Checkstyle plugin, include the following in your build script:

Example 56.1. Using the Checkstyle plugin

bui | d. gradl e

apply plugin: 'checkstyle'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the
checks by running gr adl e check.

Note that Checkstyle will run with the same Java version used to run Gradle.

56.2. Tasks

The Checkstyle plugin adds the following tasks to the project:

Table56.1. Checkstyle plugin - tasks

Task name Dependson Type Description

checkstyl eMain cl asses Checkstyl e RunsCheckstyle against the production
Java sourcefiles.

checkstyl eTest test Cl asses Checkstyl e RunsCheckstyle against the test Java
sourcefiles.

checkst yl eSour ceSetur ceSet O ass@seckstyl e Runs Checkstyle against the given

source set's Java source files.

The Checkstyle plugin adds the following dependencies to tasks defined by the Java plugin.

Page 411 of 561

http://checkstyle.sourceforge.net/index.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.Checkstyle.html

Table 56.2. Checkstyle plugin - additional task dependencies

Task name Dependson

check All Checkstyletasks, including checkst yl eMai n and checkst yl eTest .

56.3. Project layout

The Checkstyle plugin expects the following project layout:

Table 56.3. Checkstyle plugin - project layout

File Meaning

confi g/ checkstyl e/ checkstyl e. xm Checkstyle configuration file

56.4. Dependency management

The Checkstyle plugin adds the following dependency configurations:

Table 56.4. Checkstyle plugin - dependency configurations

Name Meaning

checkstyl e TheCheckstylelibrariesto use

56.5. Configuration

Seethe Checkst yl eExt ensi on classin the API documentation.

56.6. Customizing the HTML report

The HTML report generated by the Checkst yl e task can be customized using a XSLT stylesheet, for
example to highlight specific errors or change its appearance:

Example 56.2. Customizing the HTML report

bui | d. gradl e

t asks. wi t hType(Checkstyl e) {
reports {
xm . enabl ed fal se
ht ml . enabl ed true

ht m . styl esheet resources.text.fronFile(' config/xsl/checkstyle-custom xg

View a sample Checkstyle stylesheet.

Page 412 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.CheckstyleExtension.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.Checkstyle.html
https://github.com/checkstyle/contribution/tree/master/xsl

S5/

The CodeNarc Plugin

The CodeNarc plugin performs quality checks on your project's Groovy source files using CodeNarc and

generates reports from these checks.

5/7.1. Usage

To use the CodeNarc plugin, include the following in your build script:

Example 57.1. Using the CodeNar ¢ plugin

bui | d. gradl e

apply plugin: 'codenarc'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the

checks by running gr adl e check.

57.2. Tasks

The CodeNarc plugin adds the following tasks to the project:

Table57.1. CodeNar c plugin - tasks

Task name Depends Type

on
codenar cMai n - CodeNar ¢
codenar cTest - CodeNar ¢
codenar cSour ceSet CodeNar c

Description

Runs CodeNarc against the production Groovy
source files.

Runs CodeNarc against the test Groovy source
files.

Runs CodeNarc against the given source set's
Groovy sourcefiles.

The CodeNarc plugin adds the following dependencies to tasks defined by the Groovy plugin.

Page 413 of 561

http://codenarc.sourceforge.net/index.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.CodeNarc.html

Table57.2. CodeNar ¢ plugin - additional task dependencies

Task name Dependson

check All CodeNarc tasks, including codenar cMai n and codenar cTest .

57.3. Project layout

The CodeNarc plugin expects the following project layout:

Table57.3. CodeNar ¢ plugin - project layout

File Meaning

confi g/ codenar c/ codenar c. xm CodeNarc configuration file

57.4. Dependency management

The CodeNarc plugin adds the following dependency configurations:

Table57.4. CodeNar ¢ plugin - dependency configurations

Name Meaning

codenarc The CodeNarc libraries to use

57.5. Configuration

See the CodeNar cExt ensi on classin the APl documentation.

Page 414 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.CodeNarcExtension.html

58

The FindBugs Plugin

The FindBugs plugin performs quality checks on your project's Java source files using FindBugs and
generates reports from these checks.

58.1. Usage

To use the FindBugs plugin, include the following in your build script:

Example 58.1. Using the FindBugs plugin

bui | d. gradl e

apply plugin: 'findbugs'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the
checks by running gr adl e check.

Note that Findbugs will run with the same Java version used to run Gradle.

58.2. Tasks

The FindBugs plugin adds the following tasks to the project:

Table58.1. FindBugs plugin - tasks

Task name Dependson Type Description
fi ndbugsMai n cl asses Fi ndBugs RunsFindBugs against the production Java
source files.

fi ndbugsTest test d asses Fi ndBugs RunsFindBugs against the test Java source
files.
fi ndbugsSour ceSatur ceSet Cl assdd ndBugs Runs FindBugs against the given source

set's Java source files.

The FindBugs plugin adds the following dependencies to tasks defined by the Java plugin.

Page 415 of 561

http://findbugs.sourceforge.net
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.FindBugs.html

Table 58.2. FindBugs plugin - additional task dependencies

Task name Dependson
check All FindBugs tasks, including f i ndbugsMai n andf i ndbugsTest .

58.3. Dependency management

The FindBugs plugin adds the following dependency configurations:

Table 58.3. FindBugs plugin - dependency configurations

Name Meaning

fi ndbugs The FindBugs libraries to use

58.4. Configuration

See the Fi ndBugsExt ensi on classin the APl documentation.

58.5. Customizing the HTML report

The HTML report generated by the Fi ndBugs task can be customized using a XSLT styleshest, for
example to highlight specific errors or change its appearance:

Example 58.2. Customizingthe HTML report

bui |l d. gradl e

t asks. wi t hType(Fi ndBugs) {
reports {
xm . enabl ed fal se

html . enabl ed true
htm . styl esheet resources.text.fronFile(' config/xsl/findbugs-custom xsl|'

View asample FindBugs stylesheet.

Page 416 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.FindBugsExtension.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.FindBugs.html
https://github.com/findbugsproject/findbugs/tree/master/findbugs/src/xsl

59

The JDepend Plugin

The JDepend plugin performs quality checks on your project's source files using JDepend and generates
reports from these checks.

59.1. Usage

To use the IDepend plugin, include the following in your build script:

Example 59.1. Using the JDepend plugin

bui | d. gradl e
apply plugin: 'jdepend'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the
checks by running gr adl e check.

Note that JDepend will run with the same Java version used to run Gradle.

59.2. Tasks

The JDepend plugin adds the following tasks to the project:

Table59.1. JDepend plugin - tasks

Task name Dependson Type Description
j dependMai n cl asses JDepend RunsJDepend against the production Java
source files.

j dependTest test d asses JDepend RunsJDepend against the test Java source
files.

j dependSour ceSesour ceSet G assedDepend Runs JDepend against the given source set's

Java source files.

The JDepend plugin adds the following dependencies to tasks defined by the Java plugin.

Page 417 of 561

http://clarkware.com/software/JDepend.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.JDepend.html

Table 59.2. JDepend plugin - additional task dependencies

Task name Dependson

check All JDepend tasks, including j dependMai n and j dependTest .

59.3. Dependency management

The JDepend plugin adds the following dependency configurations:

Table 59.3. JDepend plugin - dependency configurations

Name M eaning

j depend The JDepend libraries to use

59.4. Configuration

See the JDependExt ensi on classin the APl documentation.

Page 418 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.JDependExtension.html

60

The PMD Plugin

The PMD plugin performs quality checks on your project's Java source files using PMD and generates
reports from these checks.

60.1. Usage

To use the PMD plugin, include the following in your build script:

Example 60.1. Using the PM D plugin

bui | d. gradl e
apply plugin: 'pnd

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the
checks by running gr adl e check.

Note that Findbugs will run with the same Java version used to run Gradle.

60.2. Tasks

The PMD plugin adds the following tasks to the project:

Table60.1. PMD plugin - tasks

Task name Depends Type Description
on
prdMai n - Prrd Runs PMD against the production Java source files.
prdTest - Prd Runs PMD against the test Java source files.
pmdSour ceSet - Prrd Runs PMD against the given source set's Java source
files.

The PMD plugin adds the following dependencies to tasks defined by the Java plugin.

Page 419 of 561

http://pmd.sourceforge.net
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.Pmd.html

Table 60.2. PMD plugin - additional task dependencies

Task name Dependson

check All PMD tasks, including pndMai n and pndTest .

60.3. Dependency management

The PMD plugin adds the following dependency configurations:

Table 60.3. PMD plugin - dependency configurations

Name Meaning

pnd The PMD librariesto use

60.4. Configuration

See the PnrdExt ensi on classin the APl documentation.

Page 420 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.quality.PmdExtension.html

ol

The JaCoCo Plugin

The JaCoCo plugin is currently incubating. Please be aware that the DSL and other configuration may
changein later Gradle versions.

The JaCoCo plugin provides code coverage metrics for Java code viaintegration with JaCoCo.

61.1. Getting Started

To get started, apply the JaCoCo plugin to the project you want to calculate code coverage for.

Example 61.1. Applying the JaCoCo plugin

bui | d. gradl e
apply plugin: "jacoco"

If the Java plugin is also applied to your project, a new task named j acocoTest Report is created that
depends on the t est task. The report is available at $bui | dDi r / reports/jacoco/test. By
default, aHTML report is generated.

61.2. Configuring the JaCoCo Plugin

The JaCoCo plugin adds a project extension named j acoco of type JacocoPl ugi nExt ensi on, which
allows configuring defaults for JaCoCo usage in your build.

Example 61.2. Configuring JaCoCo plugin settings

bui |l d. gradl e

jacoco {
tool Version = "0.7.6.201602180812"

reportsDir = file("$buil dDir/customlacocoReportDir")

Page 421 of 561

http://www.eclemma.org/jacoco/
http://www.gradle.org/docs/3.0/dsl/org.gradle.testing.jacoco.plugins.JacocoPluginExtension.html

Table 61.1. Gradle defaultsfor JaCoCo properties

Property Gradle default

reportsDir “$bui | dDi r /reports/jacoco”

61.3. JaCoCo Report configuration

TheJacocoReport task can be used to generate code coverage reportsin different formats. It implements

the standard Gradle type Reporting and exposes a report container of type
JacocoReport sCont ai ner.

Example 61.3. Configuring test task

bui |l d. gradl e

j acocoTest Report {
reports {
xm . enabl ed fal se
csv. enabl ed fal se

htm . destination "${buildDir}/jacocoH m "

lE:I ""lllf_"l _qqic&::s_rarl:
:1 guickstan
=% quickstart
quickstart
Element Missed Instructions= Cov. - Missed Branches - Cov. . Missed Cxty Missed
4 org.gradle 100% n/a 0 5 0
Total 0of17 100% Oof0 n/a 0 5 1]

61.4. JaCoCo specific task configuration

The JaCoCo plugin adds a JacocoTaskExt ensi on extension to all tasks of type Test . This extension
allows the configuration of the JaCoCo specific properties of the test task.

Page 422 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.reporting.Reporting.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/testing/jacoco/tasks/JacocoReportsContainer.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/testing/jacoco/tasks/JacocoReportsContainer.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.testing.jacoco.plugins.JacocoTaskExtension.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.testing.Test.html

Example 61.4. Configuring test task
buil d. gradl e

test {
jacoco {
append = fal se

destinationFile = file("$buildDir/jacoco/jacocoTest.exec")
classDunpFile = fil e("$buil dDir/jacoco/cl asspat hdunps")

Table61.2. Default values of the JaCoCo Task extension

Property Gradle default
enabled true

destPath $bui | dDi r /jacoco
append true

includes 1

excludes (1

excludeClassl oaders (1

includeNoL ocationClasses false

sessionld aut o- gener at ed
dumpOnExit true

output CQut put . FI LE
address -

port -

classDumpPath -

jmx fal se

While all tasks of type Test are automatically enhanced to provide coverage information when the j ava
plugin has been applied, any task that implements JavaFor kOpt i ons can be enhanced by the JaCoCo
plugin. That is, any task that forks Java processes can be used to generate coverage information.

For example you can configure your build to generate code coverage using the appl i cat i on plugin.

Page 423 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/process/JavaForkOptions.html

Example 61.5. Using application plugin to generate code cover age data

bui | d. gradl e

apply plugin: "application”
apply plugin: "jacoco"

mai nCl assName = "org. gradl e. MyMai n"

jacoco {
appl yTo run

}

task applicati onCodeCover ageReport (type: JacocoReport){
executionData run
sourceSet s sourceSets. main

Note: The code for this example can be found at sanpl es/t esti ng/j acoco/ applicationin
the“-all’ distribution of Gradle.

Example 61.6. Coveragereports generated by applicationCodeCover ageReport
Build layout

appl i cation/
bui | d/
j acoco/

run. exec
reports/jacoco/ appl i cati onCodeCover ageReport/ htm /
i ndex. ht m

61.5. Tasks

For projects that also apply the Java Plugin, The JaCoCo plugin automatically adds the following tasks:

Table 61.3. JaCoCo plugin - tasks

Task name Depends Type Description
on
j acocoTest Report - JacocoReport Generates code coverage report for the
test task.

61.6. Dependency management

The JaCoCo plugin adds the following dependency configurations:

Page 424 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html

Table 61.4. JaCoCo plugin - dependency configurations

Name Meaning
j acocoAnt The JaCoCo Ant library used for running the JacocoReport and JacocoMer ge
tasks.

j acocoAgent The JaCoCo agent library used for instrumenting the code under test.

Page 425 of 561

62

The OSGI Plugin

The OSGi plugin provides a factory method to create an Osgi Mani f est object. Osgi Mani f est
extends Mani f est . To learn more about generic manifest handling, see Section 45.14.1, “Manifest”. If the
Javapluginsis applied, the OSGi plugin replaces the manifest object of the default jar with an Gsgi Mani f est
object. The replaced manifest is merged into the new one.

The OSGi plugin makes heavy use of Peter Kriens BND tool.

62.1. Usage

To use the OSGi plugin, include the following in your build script:

Example 62.1. Using the OSGi plugin

bui | d. gradl e

apply plugin: 'osgi'

62.2. Implicitly applied plugins

Applies the Java base plugin.

62.3. Tasks

This plugin does not add any tasks.

62.4. Dependency management

TBD

62.5. Convention object

The OSGi plugin adds the following convention object: Osgi Pl ugi nConventi on

Page 426 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.aqute.biz/Bnd/Bnd
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.plugins.osgi.OsgiPluginConvention.html

62.5.1. Convention properties

The OSGi plugin does not add any convention properties to the project.

62.5.2. Convention methods

The OSGi plugin adds the following methods. For more details, see the APl documentation of the
convention object.

Table 62.1. OSGi methods

Method Return Type Description
osgiManifest() Gsgi Mani f est Returns an OsgiManifest object.

osgiManifest(Closure Gsgi Mani f est Returns an OsgiManifest object configured by the
cl) closure.

The classes in the classes dir are analyzed regarding their package dependencies and the packages they
expose. Based on this the Import-Package and the Export-Package values of the OSGi Manifest are
calculated. If the classpath contains jars with an OSGi bundle, the bundle information is used to specify
version information for the Import-Package value. Beside the explicit properties of the Osgi Mani f est
object you can add instructions.

Example 62.2. Configuration of OSGi MANIFEST.MF file
bui | d. gradl e

jar {
mani fest { // the manifest of the default jar is of type Osgi Manif est
name = 'overwittenSpeci al Csgi Nane'
instruction 'Privat e-Package',
'org. myconp. packagel',
' org. myconp. package?2'
instruction 'Bundl e-Vendor', ' MyConpany'
instruction 'Bundl e-Description', 'Platforn2: Metrics 2 Measures Franmewd
instruction 'Bundl e-DocURL', 'http://ww. myconpany.coni

}

}
task fooJdar(type: Jar) {

mani f est = osgi Mani fest {
instruction 'Bundl e-Vendor', ' MyConpany'

}

The first argument of the instruction call is the key of the property. The other arguments form the value. To
learn more about the available instructions have alook at the BND toal.

Page 427 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.aqute.biz/Bnd/Bnd

63

The Eclipse Plugins

The Eclipse plugins generate files that are used by the Eclipse IDE, thus making it possible to import the
project into Eclipse (File - Import... - Existing Projects into Workspace).

The ecl i pse-wt p is automatically applied whenever the ecl i pse plugin is applied to a War or Ear
project. For utility projects (i.e. Java projects used by other web projects), you need to apply theecl i pse-wt p
plugin explicitly.

What exactly the ecl i pse plugin generates depends on which other plugins are used:

Table 63.1. Eclipse plugin behavior
Plugin Description
None Generatesminimal . pr oj ect file.
Java Adds Java configuration to . pr oj ect . Generates. cl asspat h and DT settingsfile.
Groovy Adds Groovy configurationto . pr oj ect file.
Scala Adds Scalasupportto . proj ect and. cl asspat h files.
War Adds web application support to . pr oj ect file.

Ear Adds ear application support to . pr oj ect file.

Theecl i pse-wt p plugin generates all WTP settings files and enhancesthe . pr oj ect file. If aJavaor War
isapplied, . cl asspat h will be extended to get a proper packaging structure for this utility library or web
application project.

Both Eclipse plugins are open to customization and provide a standardized set of hooks for adding and
removing content from the generated files.

63.1. Usage

To use either the Eclipse or the Eclipse WTP plugin, include one of the lines in your build script:

Example 63.1. Using the Eclipse plugin

bui | d. gradl e

apply plugin: 'eclipse'

Page 428 of 561

http://eclipse.org

Example 63.2. Using the Eclipse WTP plugin

bui | d. gradl e

apply plugin: '"eclipse-wp'

Note: Internaly, the ecl i pse-wt p plugin aso applies the ecl i pse plugin so you don't need to apply

both.

Both Eclipse plugins add a number of tasks to your projects. The main tasks that you will use arethe ecl i pse

and cl eanEcl i pse tasks.

63.2. Tasks

The Eclipse plugins add the tasks shown below to a project.

Table63.2. Eclipse plugin - tasks

Task name

eclipse

cl eanEcl i pse

cl eanEcl i psePr oj ect
cl eanEcl i pseCl asspath

cl eanEcl i pseJdt

ecl i pseProj ect
ecl i pseC asspath

ecl i pseJdt

Dependson

al Eclipse
configuration
file
generation
tasks

al Eclipse
configuration
file clean
tasks

Type
Task

Del et e

Del et e
Del et e

Del et e

Cener at eEcl i psePr oj ect
Cener at eEcl i pseC asspat h

Gener at eEcl i pseJdt

Description

Generates al Eclips

Removes all Eclips

Removesthe. pro
Removesthe. cl a

Removesthe. set
file.

Generatesthe . pr ¢
Generatesthe. cl ¢

Generatesthe . set
file.

Page 429 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseProject.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseClasspath.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseJdt.html

Table63.3. Eclipse WTP plugin - additional tasks

Task name Depends Type Description
on

cl eanEcl i pseW pConponent - Del et e Removesthe .

cl eanEcl i pseW pFacet - Del et e Removes the .
file

ecl i pseW pConponent - Gener at eEcl i pseW pConponent Generatesthe .

ecl i pseW pFacet - Gener at eEcl i pseW pFacet Generates the .
file

63.3. Configuration
Table 63.4. Configuration of the Eclipse plugins
M odel Reference name Description
Ecl i pseMbdel eclipse Top level element that enables

configuration of the Eclipse plugin
inaDSL-friendly fashion.

Ecl i pseProj ect ecl i pse. proj ect Allows configuring project
information

Ecl i psed asspath eclipse. classpath Allows configuring classpath
information.

Ecl i pseJdt eclipse.jdt Allows configuring jdt information

(sourceftarget Java compatibility).

Ecl i pseW pConponent ecl i pse. w p. conponent Allows configuring wtp component
information only if ecl i pse-wt p
plugin was applied.

Ecl i pseW pFacet eclipse. w p. facet Allows configuring wtp facet
information only if ecl i pse-wt p
plugin was applied.

63.4. Customizing the generated files

The Eclipse plugins allow you to customize the generated metadata files. The plugins provide a DSL for
configuring model objects that model the Eclipse view of the project. These model objects are then merged
with the existing Eclipse XML metadata to ultimately generate new metadata. The model objects provide
lower level hooks for working with domain objects representing the file content before and after merging
with the model configuration. They also provide a very low level hook for working directly with the raw
XML for adjustment before it is persisted, for fine tuning and configuration that the Eclipse and Eclipse
WTP plugins do not model.

Page 430 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpComponent.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpFacet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.eclipse.model.EclipseModel.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html

63.4.1. Merging

Sections of existing Eclipse files that are also the target of generated content will be amended or
overwritten, depending on the particular section. The remaining sections will be left as-is.

63.4.1.1. Disabling merging with a complete rewrite

To completely rewrite existing Eclipse files, execute a clean task together with its corresponding generation
task, like “gradl e cl eanEcl i pse eclipse” (in that order). If you want to make this the default
behavior, add “t asks. ecl i pse. dependsOn(cl eanEcl i pse)” to your build script. This makes it
unnecessary to execute the clean task explicitly.

This strategy can also be used for individual files that the plugins would generate. For instance, this can be
done for the“. cl asspat h” filewith “gr adl e cl eanEcl i psed asspath ecli pseCd asspath

63.4.2. Hooking into the generation lifecycle

The Eclipse plugins provide objects modeling the sections of the Eclipse files that are generated by Gradle.
The generation lifecycleis as follows:

1. Thefileisread; or adefault version provided by Gradleis used if it does not exist

2. Thebef or eMer ged hook is executed with adomain object representing the existing file

3. Theexisting content is merged with the configuration inferred from the Gradle build or defined
explicitly in the eclipse DSL

4. ThewhenMer ged hook is executed with a domain object representing contents of the file to be
persisted

5. Thewi t hXm hook is executed with araw representation of the XML that will be persisted

6. Thefina XML is persisted

The following table lists the domain object used for each of the Eclipse model types:

Table 63.5. Advanced configuration hooks

M odel bef oreMerged { arg ->} whenMerged { arg ->} with
argument type argument type argun

Ecl i pseProj ect Pr oj ect Pr oj ect Xm P

Ecl i psed asspath Cl asspath Cl asspath Xm P

Ecl i pseJdt Jdt Jdt -

Ecl i pseW pConponent W pConponent W pConponent Xm P

Ecl i pseW pFacet W pFacet W pFacet Xm P

Page 431 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/plugins/ide/eclipse/model/Project.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/plugins/ide/eclipse/model/Project.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/XmlProvider.html

63.4.2.1. Partial overwrite of existing content

A complete overwrite causes all existing content to be discarded, thereby losing any changes made directly
in the IDE. Alternatively, the bef or eMer ged hook makes it possible to overwrite just certain parts of the
existing content. The following example removes all existing dependencies from the Cl asspat h domain
object:

Example 63.3. Partial Overwrite for Classpath

bui |l d. gradl e

eclipse.classpath.file {
bef oreMerged { cl asspath ->
cl asspath.entries.renoveAll { entry -> entry.kind == "lib" || entry. ki ng

}

The resulting . cl asspat h file will only contain Gradle-generated dependency entries, but not any other
dependency entries that may have been present in the original file. (In the case of dependency entries, thisis
also the default behavior.) Other sections of the . cl asspat h file will be either left as-is or merged. The
same could be done for the naturesin the . pr oj ect file:

Example 63.4. Partial Overwritefor Project

buil d. gradl e

eclipse.project.file.beforeMerged { project ->
proj ect. natures. cl ear ()

}

63.4.2.2. Modifying the fully popul ated domain objects

ThewhenMer ged hook alowsto manipulate the fully populated domain objects. Often thisis the preferred
way to customize Eclipse files. Here is how you would export all the dependencies of an Eclipse project:
Example 63.5. Export Dependencies

bui |l d. gradl e

eclipse.classpath.file {
whenMerged { cl asspath ->

classpath.entries.findAll { entry -> entry.kind == "|lib" }*.exported = f

}

Page 432 of 561

63.4.2.3. Modifying the XML representation

The wi t hXm hook allows to manipulate the in-memory XML representation just before the file gets
written to disk. Although Groovy's XML support makes up for a lot, this approach is less convenient than
manipulating the domain objects. In return, you get total control over the generated file, including sections
not modeled by the domain objects.

Example 63.6. Customizing the XML

bui |l d. gradl e

apply plugin: "eclipse-wp'

eclipse.wp.facet.file.withXm { provider ->

provi der.asNode().fixed.find { it. @acet == 'jst.java’ }.@acet = '|st2.]avg

}

Page 433 of 561

64

The IDEA Plugin

The IDEA plugin generates files that are used by IntelliJ IDEA, thus making it possible to open the project
from IDEA (File - Open Project). Both external dependencies (including associated source and Javadoc
files) and project dependencies are considered.

What exactly the IDEA plugin generates depends on which other plugins are used:

Table 64.1. IDEA plugin behavior

Plugin Description

None Generates an IDEA module file. Also generates an IDEA project and workspace fileif the
project is the root project.

Java Adds Java configuration to the module and project files.

One focus of the IDEA plugin is to be open to customization. The plugin provides a standardized set of
hooks for adding and removing content from the generated files.

64.1. Usage

To usethe IDEA plugin, include thisin your build script:

Example 64.1. Using the IDEA plugin

bui |l d. gradl e

apply plugin: 'idea'

The IDEA plugin adds a number of tasks to your project. The main tasks that you will use arethe i dea and cl ea

tasks.

64.2. Tasks

The IDEA plugin adds the tasks shown below to a project. Notice that the ¢l ean task does not depend on
the cl eanl deaWbr kspace task. This is because the workspace typically contains a lot of user specific
temporary data and it is not desirable to manipulate it outside IDEA.

Page 434 of 561

http://www.jetbrains.com/idea/

Table 64.2. IDEA plugin - Tasks

Task name Dependson Type Description

i dea i deaPr oj ect ,i deaMbdul e Generates al
,i deaWbr kspace IDEA
configuration
files

cl eanl dea cl eanl deaPr oj ect Del et e Removes all
, ¢l eanl deaMbdul e IDEA
configuration
files

cl eanl deaPr oj ect - Del ete Removes the
IDEA
project file

cl eanl deaMbdul e - Del et e Removes the
IDEA
modulefile

cl eanl deawr kspace - Del ete Removes the
IDEA
workspace
file

i deaPr oj ect - Gener at el deaPr oj ect Generates
the. i pr
file. This
task isonly
added to the
root project.

i deaMbdul e - Gener at el deaModul e Generates
the.in
file

i deaWr kspace - Cener at el deaWbr kspace Generates
the. i ws
file. This
task isonly
added to the
root project.

Page 435 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.idea.GenerateIdeaProject.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.idea.GenerateIdeaModule.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.idea.GenerateIdeaWorkspace.html

64.3. Configuration

Table 64.3. Configuration of theidea plugin

Model Reference name

| deaMbdel i dea

| deaPr oj ect i dea. proj ect

| deaModul e i dea. nodul e

| deaWbr kspace i dea. wor kspace

Description

Top level element that enables configuration of the idea
pluginin aDSL-friendly fashion

Allows configuring project information
Allows configuring module information

Allows configuring the workspace XML

64.4. Customizing the generated files

The IDEA plugin provides hooks and behavior for customizing the generated content. The workspace file
can effectively only be manipulated via the wi t hXm hook because its corresponding domain object is

essentially empty.

The tasks recognize existing IDEA files, and merge them with the generated content.

64.4.1. Merging

Sections of existing IDEA files that are also the target of generated content will be amended or overwritten,
depending on the particular section. The remaining sections will be left as-is.

64.4.1.1. Disabling merging with a complete overwrite

To completely rewrite existing IDEA files, execute a clean task together with its corresponding generation
task, like“gr adl e cl eanl dea i dea” (inthat order). If you want to make this the default behavior, add
“t asks. i dea. dependsOn(cl eanl dea) ” to your build script. This makes it unnecessary to execute

the clean task explicitly.

This strategy can also be used for individual files that the plugin would generate. For instance, this can be
doneforthe“. i m " filewith“gr adl e cl eanl deaMbdul e i deavbdul e”.

64.4.2. Hooking into the generation lifecycle

The plugin provides objects modeling the sections of the metadata files that are generated by Gradle. The

generation lifecycleis as follows:

1. Thefileisread; or adefault version provided by Gradleis used if it does not exist
2. Thebef or eMer ged hook is executed with adomain object representing the existing file
3. Theexisting content is merged with the configuration inferred from the Gradle build or defined

explicitly in the eclipse DSL

Page 436 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.idea.model.IdeaModel.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html

4. ThewhenMer ged hook is executed with a domain object representing contents of the fileto be
persisted

5. Thewi t hXm hook is executed with araw representation of the XML that will be persisted

6. Thefina XML is persisted

The following table lists the domain object used for each of the model types:

Table 64.4. |dea plugin hooks

Model beforeMerged { arg ->} whenMerged { arg ->} withxm {
argument type argument type argument type
| deaPr oj ect Pr oj ect Pr oj ect Xm Provi de
| deaModul e Modul e Modul e Xm Provi de
| deaWor kspace Wbr kspace Wor kspace Xm Provi de

64.4.2.1. Partia rewrite of existing content

A complete rewrite causes all existing content to be discarded, thereby losing any changes made directly in
the IDE. The bef or eMer ged hook makes it possible to overwrite just certain parts of the existing content.
The following example removes all existing dependencies from the Modul e domain object:

Example 64.2. Partial Rewritefor Module

bui |l d. gradl e

i dea. nodule.im {
bef oreMerged { nodule ->
nodul e. dependenci es. cl ear ()

}

The resulting module file will only contain Gradle-generated dependency entries, but not any other
dependency entries that may have been present in the original file. (In the case of dependency entries, thisis
also the default behavior.) Other sections of the module file will be either left as-is or merged. The same
could be done for the module paths in the project file:

Example 64.3. Partial Rewrite for Project
bui |l d. gradl e
i dea. project.ipr {

bef oreMerged { project ->
pr oj ect . nodul ePat hs. cl ear ()

}

Page 437 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/plugins/ide/idea/model/Project.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/plugins/ide/idea/model/Project.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/plugins/ide/idea/model/Module.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/plugins/ide/idea/model/Module.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/plugins/ide/idea/model/Workspace.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/plugins/ide/idea/model/Workspace.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/XmlProvider.html

64.4.2.2. Modifying the fully popul ated domain objects

The whenMer ged hook allows you to manipulate the fully populated domain objects. Often this is the
preferred way to customize IDEA files. Here is how you would export all the dependencies of an IDEA
module:

Example 64.4. Export Dependencies

bui |l d. gradl e

i dea. modul e.iml {
whenMerged { nodule ->

nodul e. dependenci es*. exported = true

}

64.4.2.3. Modifying the XML representation

The wi t hXm hook allows you to manipulate the in-memory XML representation just before the file gets
written to disk. Although Groovy's XML support makes up for a lot, this approach is less convenient than
manipulating the domain objects. In return, you get total control over the generated file, including sections
not modeled by the domain objects.

Example 64.5. Customizing the XML
bui |l d. gradl e
i dea. proj ect.ipr {
withXm { provider ->

provi der . node. conponent
.find { it. @ane == '\VcsDirectoryMppi ngs' }

. mappi ng. @cs = 'Gt'

64.5. Further things to consider

The paths of dependencies in the generated IDEA files are absolute. If you manually define a path variable
pointing to the Gradle dependency cache, IDEA will automatically replace the absolute dependency paths
with this path variable. you can configure this path variable viathe “i dea. pat hVari abl es” property,
so that it can do a proper merge without creating duplicates.

Page 438 of 561

Part VI. The Software model
- Next generation Gradle
builds

65

Rule based model configuration

Support for rule based configuration is currently incubating. Please be aware that the DSL, APIs and
other configuration may changein later Gradle versions.

Rule based model configuration enables configuration logic to itself have dependencies on other elements of
configuration, and to make use of the resolved states of those other elements of configuration while
performing its own configuration.

65.1. Background

Rule based model configuration is essentially the foundation for Gradle 3.0 and the next generation of
Gradle builds. It is being incrementally developed during the Gradle 2.x stream. Gradle's support for
building native software and Play Framework applications already uses this configuration model. Gradle
also includes some initial support for building Java libraries using this configuration model.

Rule based model configuration facilitates easier domain modelling: communicating intent (i.e. the what)
over mechanics (i.e. the how). Domain modelling is a core tenet of Gradle and provides Gradle with several
advantages over prior generation build tools such as Apache Ant that focus on the execution model. It
allows humans to understand builds at alevel that is meaningful to them.

As well as helping humans, a strong domain model also helps the dutiful machines. Plugins can more
effectively collaborate around a strong domain model (e.g. plugins can say something about Java
applications, such as providing conventions). Very importantly, by having a model of the what instead of
the how Gradle can make intelligent choices on just how to do the how.

65.2. Motivations for change

Domain modelling in Gradle isn't new. The Java plugin's Sour ceSet concept is an example of domain
modelling, asisthe modelling of Nat i veBi nary in the native plugin suite.

A distinguishing characteristic of Gradle compared to other build tools that also embrace modelling is that
Gradle's model is open and collaborative. Gradle is fundamentally atool for modelling software construction
and then realizing the model, via tasks such as compilation etc. Different domain plugins (e.g. Java, C++,
Android) provide models that other plugins can collaborate with and build upon.

While Gradle has long employed sophisticated techniques when it comes to realizing the model (i.e. what

Page 440 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeBinary.html

we know as building code), the next generation of Gradle builds will employ some of the same techniques to
creation of the model itself. By defining build tasks as effectively a graph of dependent functions with
explicit inputs and outputs, Gradle is able to order, cache, parallelize and apply other optimizations to the
work. Using a“graph of tasks’ for the production of software is along established idea, and necessary given
the complexity of software production. The task graph effectively defines the rules of execution that Gradle
must follow. The term “Rule based model configuration” refers to applying the same concepts to building
the model that builds the task graph.

Another key motivation is performance and scale. Aspects of the current approach that Gradle takes to
modelling the build reduce parallelism opportunities and limit scalability. The software model is being
designed with the requirements of modern software delivery in mind, where immediate responsiveness is
critical for projects large and small.

65.3. Basic Concepts

65.3.1. The “model space’

The term “model space” is used to refer to the forma model, which can be read and modified by rules.

A counterpart to the model space is the “project space”, which should be familiar to readers. The “project
space” is agraph of objects (e.g pr oj ect. repositories, proj ect.tasks etc.) havingaPr oj ect
asitsroot. A build script is effectively adding and configuring objects of this graph. For the most part, the
“project space” is opaque to Gradle. It is an arbitrary graph of objects that Gradle only partially understands.

Each project also has its own model space, which is distinct from the project space. A key characteristic of
the “model space” is that Gradle knows much more about it (which is knowledge that can be put to good
use). The objects in the model space are “managed”, to a greater extent than objects in the project space. The
origin, structure, state, collaborators and relationships of objects in the model space are first class constructs.
This is effectively the characteristic that functionally distinguishes the model space from the project space:
the objects of the model space are defined in ways that Gradle can understand them intimately, as opposed
to an object that is the result of running relatively opague code. A “rule” is effectively a building block of
this definition.

The model space will eventually replace the project space, becoming the only “ space”.

65.3.2. Rules

The model space is defined by “rules’. A ruleisjust afunction (in the abstract sense) that either produces a
model element, or acts upon a model element. Every rule has a single subject and zero or more inputs. Only
the subject can be changed by arule, while the inputs are effectively immutable.

Gradle guarantees that all inputs are fully “realized” before the rule executes. The process of “realizing” a
model element is effectively executing al the rules for which it is the subject, transitioning it to its fina
state. Thereis a strong analogy here to Gradle's task graph and task execution model. Just as tasks depend on
each other and Gradle ensures that dependencies are satisfied before executing a task, rules effectively
depend on each other (i.e. arule depends on all rules whose subject is one of the inputs) and Gradle ensures
that all dependencies are satisfied before executing the rule.

Page 441 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html

Model elements are very often defined in terms of other model elements. For example, a compile task's
configuration can be defined in terms of the configuration of the source set that it is compiling. In this
scenario, the compile task would be the subject of a rule and the source set an input. Such a rule could
configure the task subject based on the source set input without concern for how it was configured, who it
was configured by or when the configuration was specified.

There are several waysto declare rules, and in several forms.

65.4. Rule sources

One way to define rulesis viaa Rul eSour ce subclass. If an object extends RuleSource and contains any
methods annotated by '@Mutate’, then each such method defines a rule. For each such method, the first
argument is the subject, and zero or more subsequent arguments may follow and are inputs of the rule.

Example 65.1. applying a rule sour ce plugin

bui | d. gradl e
@managed

interface Person {
voi d setFirstNane(String nane)
String getFirstNane()

voi d setLast Name(String nane)
String getLast Nane()

}

cl ass PersonRul es extends Rul eSource {
@mbdel void person(Person p) {}

//Create a rule that nodifies a Person and takes no other inputs
@ut ate voi d setFirstNanme(Person p) {
p.firstName = "John"

}

//Create a rule that nodifies a Mdel Map<Task> and takes as input a Person
@ut ate void createHel | oTask(Model Map<Task> tasks, Person p) {
tasks.create("hello") {
doLast {
println "Hello $p.firstName $p. | ast Nane!"

apply plugin: PersonRul es

Output of gr adl e hel | o
> gradle hello
chello
Hel 1l o John Smith!

BU LD SUCCESSFUL

Total tinme: 1 secs

Page 442 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/RuleSource.html

Each of the different methods of the rule source are discrete, independent rules. Their order, or the fact that
they belong to the same class, do not affect their behavior.
Example 65.2. amodel creation rule

bui |l d. gradl e

@mbdel void person(Person p) {}

Thisrule declares that there isamodel element at path " per son" (defined by the method name), of type Per soi
. Thisis the form of the Model type rule for Managed types. Here, the person object is the rule subject.

The method could potentially have a body, that mutated the person instance. It could aso potentially have
more parameters, which would be the rule inputs.

Example 65.3. a model mutation rule

bui | d. gradl e

//Create a rule that nodifies a Person and takes no other inputs
@Mutate voi d set First Name(Person p) {

p.firstName = "John"
}

This Mut at e rule mutates the person object. The first parameter to the method is the subject. Here, a
by-type reference is used as no Pat h annotation is present on the parameter. It could also potentially have
more parameters, that would be the rule inputs.

Example 65.4. creating a task

bui | d. gradl e

/Il Create a rule that nodifies a Mddel Map<Task> and takes as input a Person
@Mtate voi d createHel | oTask(Mbdel Map<Task> tasks, Person p) ({
tasks.create("hello") {
doLast {

println "Hello $p.firstNanme $p. | ast Nane!"

This Mut at e rule effectively adds atask, by mutating the tasks collection. The subject hereisthe "t asks"
node, which is available as a Mbdel Map of Task. The only input is our person element. As the person is
being used as an input here, it will have been realised before executing this rule. That is, the task container
effectively depends on the person element. If there are other configuration rules for the person element,
potentially specified in abuild script or other plugin, they will also be guaranteed to have been executed.

AsPer son isaManaged typein this example, any attempt to modify the person parameter in this method
would result in an exception being thrown. Managed objects enforce immutability at the appropriate point in
their lifecycle.

Rule source plugins can be packaged and distributed in the same manner as other types of plugins (see

Page 443 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/Model.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/Managed.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/Mutate.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/Path.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/Mutate.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/Managed.html

Chapter 39, Writing Custom Plugins). They also may be applied in the same manner (to project objects) as
Pl ugi n implementations (i.e. viaPr oj ect . appl y(j ava. util. Map)).

Please see the documentation for Rul eSour ce for more information on constraints on how rule sources
must be implemented and for more types of rules.

65.5. Advanced Concepts

65.5.1. Model paths

A model path identifies the location of an element relative to the root of its model space. A common
representation is a period-delimited set of names. For example, the model path "t asks” isthe path to the
element that is the task container. Assuming a task whose name is hel | o, the path "t asks. hel | 0" is
the path to this task.

65.5.2. Managed model elements

Currently, any kind of Java object can be part of the model space. However, there is a difference between
“managed” and “unmanaged” objects.

A “managed” object is transparent and enforces immutability once realized. Being transparent means that its
structure is understood by the rule infrastructure and as such each of its properties are also individual
elementsin the model space.

An “unmanaged” object is opaque to the the model space and does not enforce immutability. Over time,
more mechanisms will be available for defining managed model elements culminating in al model elements
being managed in some way.

Managed models can be defined by attaching the @/anaged annotation to an interface:

Example 65.5. a managed type
bui |l d. gradl e

@managed

interface Person {
voi d setFirstNane(String nane)
String getFirstNane()

voi d setLast Name(Stri ng nane)
String getLast Nane()

By defining a getter/setter pair, you are effectively declaring a managed property. A managed property is a
property for which Gradle will enforce semantics such as immutability when a node of the model is not the
subject of a rule. Therefore, this example declares properties named firstName and lastName on the
managed type Person. These properties will only be writable when the view is mutable, that is to say when
the Person isthe subject of a Rul e (see below the explanation for rules).

Managed properties can be of any scalar type. In addition, properties can also be of any type which is itself

Page 444 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Project.html#org.gradle.api.Project:apply(java.util.Map)
http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/RuleSource.html

managed:

Property type Nullable Example

String Yes
Example 65.6. a String property

bui I d. gradl e

voi d set FirstNane(String nane)

String getFirstNanme()

File Yes
Example 65.7. a File property

build. gradle

voi d set HoneDi rectory(File honmebDir)

Fil e get HoneDirectory()

I nt eger, Bool ean,Byte, Yes
Short, Fl oat, Long, Doubl e Example 65.8. a L ong property

buil d. gradl e

voi d setld(Long id)

Long getld()

i nt,bool ean, byte,short No

,fl oat, | ong, doubl e Example 65.9. a boolean property

bui I d. gradl e

voi d set Enpl oyed(bool ean i sEnpl oyed)

bool ean i sEnpl oyed()

Example 65.10. an int property
buil d. gradl e

voi d set Age(int age)

i nt get Age()

Another managed type. Only if
read/write EXample 65.11. a managed property

bui I d. gradl e

voi d set Mot her (Per son not her)

Per son get Mot her ()

Page 445 of 561

An enumeration type.

A ManagedSet . A managed
set supports the creation of
new named model elements,
but not their removal.

A Set orLi st of scalar
types. All classic operations
on collections are supported:
add, remove, clear...

Yes

Only if
read/write

Only if
read/write

Example 65.12. an enumer ation type property

bui I d. gradl e

voi d setMarital Status(Marital Status stat

Marital Status getMarital Status()

Example 65.13. a managed set

bui I d. gradl e

Model Set <Per son> get Chi | dren()

bui I d. gradl e

voi d set User Groups(List<String> groups)

Li st<String> get User G oups()

If the type of a property isitself amanaged type, it is possible to declare only a getter, in which case you are
declaring a read-only property. A read-only property will be instantiated by Gradle, and cannot be replaced
with another object of the same type (for example calling a setter). However, the properties of that property
can potentially be changed, if, and only if, the property is the subject of a rule. If it's not the case, the
property is immutable, like any classic read/write managed property, and properties of the property cannot

be changed at all.

Managed types can be defined out of interfaces or abstract classes and are usually defined in plugins, which
are written either in Java or Groovy. Please see the Managed annotation for more information on creating

managed model objects.

65.5.3. Model element types

There are particular types (language types) supported by the model space and can be generalised as follows:

Page 446 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/Managed.html

Table 65.2. Type definitions
Type Definition

Scalar A scalar type is one of the following:
* aprimitivetype (e.g. i nt) or itsboxed type (e.g | nt eger)
® aBi gl nt eger or Bi gDeci nual
® aString
* aFile
® an enumeration type

Scalar Collection A javauutil.List or java.util.Set containing one of the scalar types
Managed type Any classwhich is avalid managed model (i.e.annotated with @Managed)

Managed collection A Model Map or Model Set

There are various contexts in which these types can be used:

Table 65.3. Model type support

Context Supported types

Creating top level * Any managed type

model elements ® Functi onal Sour ceSet (whenthelLanguageBaseP! ugi n plugin
has been applied)

® Subtypesof LanguageSour ceSet which have been registered via

Conponent Type

Properties of The properties (attributes) of a managed model elements may be one or more

managed model of the following:

elements * A managed type

* A typewhich is annotated with @Unnmanaged

® A Scalar Collection

* A Managed collection containing managed types

* A Managed collection containing Funct i onal Sour ceSet 's (when the
LanguageBasePl ugi n plugin has been applied)

® Subtypesof LanguageSour ceSet which have been registered via
Conponent Type

65.5.4. Language source sets

Funct i onal Sour ceSet s and subtypes of LanguageSour ceSet (which have been registered via
Conponent Type) can be added to the model space viarules or viathe model DSL.

Page 447 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/Managed.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/ModelSet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/base/FunctionalSourceSet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/base/plugins/LanguageBasePlugin.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/Unmanaged.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/base/FunctionalSourceSet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/base/plugins/LanguageBasePlugin.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/base/FunctionalSourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/platform/base/ComponentType.html

Example 65.14. strongly modelling sour ces sets

bui | d. gradl e

apply plugin: "java-lang'

/] Creating LanguageSourceSets via rul es
cl ass LanguageSour ceSet Rul es ext ends Rul eSource {
@/mbde
voi d nySour ceSet (JavaSour ceSet javaSource) {
j avaSour ce. source.srcDir("src/ main/ ny")
}

}
apply plugin: LanguageSour ceSet Rul es

/| Creating LanguageSourceSets via the nodel DSL
nodel {
anot her (JavaSour ceSet) {
source {
srcDir "src/ main/another"

}
}

/' Usi ng Functi onal SourceSet s
@managed
i nterface SourceBundl e {
Funct i onal Sour ceSet get FreeSour ces()
Funct i onal Sour ceSet get Pai dSour ces()
}
nodel {
sour ceBundl e(Sour ceBundl e) {
freeSources. create("nmain", JavaSourceSet)
freeSources. create("resources", JvmResourceSet)
pai dSour ces. create("nai n", JavaSourceSet)
pai dSour ces. create("resources", JvnResourceSet)

Note: The code for this example can be found at sanpl es/ nodel Rul es/ | anguage- support
inthe ‘-al’ distribution of Gradle.

Output of gr adl e hel p

> gradle help
“help

65.5.5. References, binding and scopes

As previously mentioned, a rule has a subject and zero or more inputs. The rul€'s subject and inputs are
declared as “references’ and are “bound” to model elements before execution by Gradle. Each rule must
effectively forward declare the subject and inputs as references. Precisely how this is done depends on the
form of the rule. For example, the rules provided by a Rul eSour ce declare references as method
parameters.

Page 448 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/RuleSource.html

A reference is either “by-path” or “by-type”.

A “by-type” reference identifies a particular model element by its type. For example, a reference to the
TaskCont ai ner effectively identifies the "t asks" element in the project model space. The model
space is not exhaustively searched for candidates for by-type binding; rather, a rule is given a scope
(discussed later) that determines the search space for a by-type binding.

A “by-path” reference identifies a particular model element by its path in model space. By-path references
are always relative to the rule scope; there is currently no way to path “out” of the scope. All by-path
references also have an associated type, but this does not influence what the reference binds to. The element
identified by the path must however by type compatible with the reference, or a fatal “binding failure” will
occur.

65.5.5.1. Binding scope

Rules are bound within a “scope”, which determines how references bind. Most rules are bound at the
project scope (i.e. the root of the model graph for the project). However, rules can be scoped to a node
within the graph. The Mbdel Map. named(j ava. |l ang. String, java.lang.d ass) method is
an example of amechanism for applying scoped rules. Rules declared in the build script using the nodel {}
block, or viaa Rul eSour ce applied as a plugin use the root of the model space as the scope. This can be
considered the default scope.

By-path references are aways relative to the rule scope. When the scope is the root, this effectively allows
binding to any element in the graph. When it is not, then only the children of the scope can be referenced
using "by-path" notation.

When binding by-type references, the following elements are considered:

® The scope element itself.
® Theimmediate children of the scope element.
* Theimmediate children of the model space (i.e. project space) root.

For the common case, where the rule is effectively scoped to the root, only the immediate children of the
root need to be considered.
65.5.5.2. Binding to all elementsin a scope matching type

Mutating or validating all elements of a given type in some scope is a common use-case. To accommodate
this, rules can be applied viathe @ach annotation.

In the example below, a @ef aul t s ruleis applied to each Fi | el t emin the model setting a default file
size of "1024". Another rule applies a Rul eSour ce to every Di r ect or yl t emthat makes sure al file
sizes are positive and divisible by "16".

Page 449 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/ModelMap.html#named(java.lang.String, java.lang.Class)
http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/RuleSource.html

Example 65.15. a DSL example applying aruleto every element in a scope
buil d. gradl e

@mnaged interface |tem extends Naned {}
@mnaged interface Fileltemextends Item {
voi d setSize(int size)
int getSize()
}
@mnaged interface Directoryltemextends |tem {
Model Map<It em> get Chi | dren()

}

cl ass Pl ugi nRul es extends Rul eSource {
@ef aults void setDefaul tFil eSize(@ach Fileltemfile) {
file.size = 1024

}

@rul es voi d appl yVal i dat eRul es(Val i dat eRul es rul es, @ach Directoryltemdire

}
apply plugin: PluginRul es

abstract class ValidateRul es extends Rul eSource {
@/al i dat e
voi d val i dat eSi zel sPosi ti ve(Model Map<Fileltenr files) {
files.each { file ->
assert file.size > 0
}
}

@/al i dat e
voi d val i dat eSi zeDi vi si bl eBySi xt een(Model Map<Fil elten> files) {
files.each { file ->
assert file.size %16 ==

}
}

nodel {
root (Directoryltem {
children {
dir(Directoryltenm {
children {
filel(Fileltem
file2(Fileltem) { size = 2048 }
}

}
file3(Fileltem

Note: The code for this example can be found at sanpl es/ nodel Rul es/ r ul eSour cePl ugi nEach
inthe ‘-all’ distribution of Gradle.

Page 450 of 561

65.6. The model DSL

In addition to using a RuleSource, it is also possible to declare a model and rules directly in a build script
using the “model DSL".

The general form of the model DSL is:

The model DSL makes heavy
nodel { use of various Groovy DSL
} features. Please have a read of
Section 16.7, “Some Groovy
basics’ for an introduction to
these Groovy features.

«rul e-definitions»

All rules are nested inside a nodel block. There may be any
number of rule definitions inside each nodel block, and there
may be any number of nodel blocksin abuild script. You can
also use anodel block in build scripts that are applied using

apply from Suri.

There are currently 2 kinds of rule that you can define using the model DSL: configuration rules, and
creation rules.

65.6.1. Configuration rules

You can define a rule that configures a particular model element. A configuration rule has the following
form:

nodel {
«nmodel - pat h-t o- subj ect » {

«configuration code»

}

Continuing with the example so far of the model element " per son" of type Per son being present, the
following DSL snippet adds a configuration rule for the person that setsits | ast Name property.

Example 65.16. DSL configuration rule

buil d. gradl e

nodel {
person {
| ast Name = "Smi th"

}

A configuration rule specifies a path to the subject that should be configured and a closure containing the
code to run when the subject is configured. The closure is executed with the subject passed as the closure
delegate. Exactly what code you can provide in the closure depends on the type of the subject. This is

Page 451 of 561

discussed below.

Y ou should note that the configuration code is not executed immediately but is instead executed only when
the subject is required. This is an important behaviour of model rules and alows Gradle to configure only
those elements that are required for the build, which helps reduce build time. For example, let's run a task
that uses the "person” object:

Example 65.17. Configuration run when required

bui |l d. gradl e

nodel {
person {
println "configuring person”

| ast Name = "Sm t h"

Output of gr adl e showPer son
> gradl e showPerson
configuring person
: showPer son
Hel 1l o John Smith!

BUI LD SUCCESSFUL

Total tinme: 1 secs

Y ou can see that before the task is run, the "person™ element is configured by running the rule closure. Now
let's run atask that does not require the "person” element:

Example 65.18. Configuration not run when not required
Output of gr adl e sonet hi ngEl se

> gradl e sonet hi ngEl se

: sonet hi ngEl se

Not usi ng person

BU LD SUCCESSFUL

Total tinme: 1 secs

In thisinstance, you can see that the "person™ element is not configured at all.

65.6.2. Creation rules

It isalso possible to create model elements at the root level. The general form of acreation ruleis:

Page 452 of 561

nodel {
«el ement - name»(«el enent -type») {

«initialization code»

}

The following model rule createsthe " per son" element:

Example 65.19. DSL creation rule
bui |l d. gradl e

nodel {
per son(Person) {
firstName = "John"

}

A creation rule definition specifies the path of the element to create, plus its public type, represented as a
Javainterface or class. Only certain types of model elements can be created.

A creation rule may also provide a closure containing the initialization code to run when the element is
created. The closure is executed with the element passed as the closure delegate. Exactly what code you can
provide in the closure depends on the type of the subject. Thisis discussed below.

Theinitialization closureis optional and can be omitted, for example:

Example 65.20. DSL creation rule without initialization
bui |l d. gradl e

nodel {
barry(Person)

}

Y ou should note that the initialization code is not executed immediately but is instead executed only when
the element is required. The initialization code is executed before any configuration rules are run. For
example:

Page 453 of 561

Example 65.21. I nitialization before configuration
buil d. gradl e

nodel {
person {
println "configuring person”
println "last nane is $l ast Nane, should be Snythe"
| ast Name = " Snyt he"

}

per son(Person) {
println "creating person®
firstName = "John"
| ast Name = "Smith"

Output of gr adl e showPer son

> gradl e showPer son

creating person

configuring person

last name is Smth, should be Snythe
: showPer son

Hel I o John Snyt he!

BU LD SUCCESSFUL

Total tinme: 1 secs

Notice that the creation rule appears in the build script after the configuration rule, but its code runs before
the code of the configuration rule. Gradle collects up all the rules for a particular subject before running any
of them, then runs the rules in the appropriate order.

65.6.3. Model rule closures

Most DSL rules take a closure containing some code to run to configure the subject. The code you can usein
this closure depends on the type of the subject of therule.

In general, arule closure may contain arbitrary code, mixed with

some type specific DSL syntax. You can use the model report to

) determine the type of a
65.6.3.1. Model Map<T> subject particular model element.

A Model Map isbasically amap of model elements, indexed by
some name. When aMbdel Map is used as the subject of a DSL
rule, the rule closure can use any of the methods defined on the Model Map interface.

A rule closure with Mbdel Map as a subject can also include nested creation or configuration rules. These
behave in asimilar way to the creation and configuration rules that appear directly under the nodel block.

Here is an example of a nested creation rule:

Page 454 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/ModelMap.html

Example 65.22. Nested DSL creation rule

bui | d. gradl e

nodel {
peopl e {
j ohn(Person) {
firstName = "John"

As before, a nested creation rule defines a name and public type for the element, and optionally, a closure
containing code to use to initialize the element. The code is run only when the element is required in the
build.

Here is an example of a nested configuration rule:

Example 65.23. Nested DSL configuration rule
bui |l d. gradl e
nodel {

peopl e {
john {

| ast Name = "Sm t h"

As before, a nested configuration rule defines the name of the element to configure and a closure containing
code to use to configure the element. The code is run only when the element is required in the build.

Model Map introduces several other kinds of rules. For example, you can define arule that targets each of
the elements in the map. The code in the rule closure is executed once for each element in the map, when
that element isrequired. Let's run atask that requires all of the children of the "people" element:

Page 455 of 561

Example 65.24. DSL configuration rulefor each element in a map
buil d. gradl e

nodel {
peopl e {

j ohn(Person) {
println "creating $it"
firstName = "John"
| ast Name = " Smith"

}

all {
println "configuring $it"

}
barry(Person) {

println "creating $it"
firstName = "Barry"
| ast Name = "Barry"

Output of gradl e |i st Peopl e

> gradle |istPeople

creating Person 'people.barry'
configuring Person 'people.barry'
creating Person 'people.john'
configuring Person 'people.john'
1 1istPeople

Hell o Barry Barry!

Hel 1l o John Smith!

BUI LD SUCCESSFUL

Total tinme: 1 secs

Any method on Model Map that acceptsan Act i on asitslast parameter can also be used to define a nested
rule.

65.6.3.2. @/anaged type subject

When a managed type is used as the subject of a DSL rule, the rule closure can use any of the methods
defined on the managed type interface.

A rule closure can also configure the properties of the element using nested closures. For example:

Page 456 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/Action.html

Example 65.25. Nested DSL property configuration

bui | d. gradl e

nodel {
person {
address {
city = "Mel bourne"

Currently, the nested closures do not define rules and are executed immediately. Please be aware that
this behaviour will change in afuture Gradle release.

65.6.3.3. All other subjects

For all other types, the rule closure can use any of the methods defined by the type. There is no special DSL
defined for these elements.

65.6.4. Automatic type coercion

Scalar properties in managed types can be assigned Char Sequence values (e.g. Stri ng, GStri ng,
etc.) and they will be converted to the actual property type for you. Thisworks for all scalar typesincluding Fi | e
s, which will be resolved relative to the current project.

Example 65.26. a DSL example showing type conversions

bui |l d. gradl e

Page 457 of 561

enum Tenper at ure {
TOO_HOT,
TOO_COLD,
JUST_RI GHT

}

@managed
interface Item {
voi d set Name(String n); String get Name()

void setQuantity(int g); int getQuantity()
void setPrice(float p); float getPrice()

voi d set Tenper at ure(Tenperature t)
Tenper at ure get Tenper at ur e()

void setDataFile(File f); File getDataFile()
}

class ItenRul es extends Rul eSource {

@nbdel

void itenmltemitem {
def data = itemdataFile.text.trin()
def (name, quantity, price, tenp) = data.split(',")
item nane = nane
itemquantity = quantity
itemprice = price
itemtenperature = tenp

}

@efaults
voi d setDefaults(ltemitem {
itemdataFile = 'data.csv'

}

@/t at e
voi d creat eDat aTask(Model Map<Task> tasks, Itemitem {
tasks. create(' showbata') {
doLast {
println """

Item' $item nane'

qguantity: $item quantity

price: $itemprice

tenperature: $itemtenperature""”

}

apply plugin: ItenRul es

nodel {
item {
price = "${price * (quantity <10 ? 2 : 0.5)}"
}

Page 458 of 561

Note: The code for this example can be found at sanpl es/ nodel Rul es/ nodel Dsl Coer ci on
inthe‘-al’ distribution of Gradle.

In the above example, an | t emis created and isinitialized in set Def aul t s() by providing the path to
the data file. In the i t em() method the resolved Fi | e is parsed to extract and set the data. In the DSL
block at the end, the price is adjusted based on the quantity; if there are fewer than 10 remaining the priceis
doubled, otherwiseit is reduced by 50%. The GSt r i ng expressionisavalid value sinceit resolvesto af | oat
valuein string form.

Finally, incr eat eDat aTask() we add the showDat a task to display all of the configured values.

65.6.5. Declaring input dependencies

Rules declared in the DSL may depend on other model elements through the use of a special syntax, which
is of the form:

$. «pat h- t o- nodel - el ement »

Paths are a period separated list of identifiers. To directly depend on the fi r st Name of the person, the
following could be used:

$. person. first Nane

Example 65.27. a DSL ruleusing inputs
buil d. gradl e

nodel {
tasks {
hel | o(Task) {
def p = $.person
doLast {

println "Hello $p.firstName $p. | ast Nane!"

Note: The code for this example can be found at sanpl es/ nodel Rul es/ nodel Dsl inthe ‘-all’
distribution of Gradle.

In the above snippet, the $. per son construct is an input reference. The construct returns the value of the
model element at the specified path, asits default type (i.e. the type advertised by the Model Report). It may
appear anywhere in the rule that an expression may normally appear. It is not limited to the right hand side
of variable assignments.

Page 459 of 561

The input element is guaranteed to be fully configured before the rule executes. That is, all of the rules that
mutate the element are guaranteed to have been previously executed, leaving the target element in its final,
immutable, state.

Most model elements enforce immutability when being used as inputs. Any attempt to mutate such an
element will result in a runtime error. However, some legacy type objects do not currently implement such
checks. Regardless, it isaways invalid to attempt to mutate an input to arule.

65.6.5.1. Using Model Map<T> asan input

When you use a Mbdel Map asinput, each item in the map is made available as a property.

65.7. The model report

The built-in Model Report task displays ahierarchical view of the elementsin the model space. Each item
prefixed with a + on the model report is amodel element and the visual nesting of these elements correlates
to the model path (e.g. t asks. hel p). The model report displays the following details about each model
element:

Table 65.4. Model report - model element details

Detail Description
Type Thisisthe underlying type of the model element and istypically afully qualified class name.
Vaue I's conditionally displayed on the report when a model element can be represented as a string.

Creator Every model element has acreator. A creator signifies the origin of the model element (i.e.
what created the model element).

Rules Isalisting of the rules, excluding the creator rule, which are executed for a given model
element. The order in which the rules are displayed reflects the order in which they are
executed.

Example 65.28. model task output
Output of gr adl e nodel

> gradl e nodel
: model

+ person

| Type: Per son

| Creator: Per sonRul es#per son(Per son)

| Rul es:
person { ... } @build.gradle line 59, colum 3
Per sonRul es#set Fi r st Nane(Per son)

+ age

| Type: i nt
| Val ue: 0

Page 460 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/ModelMap.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.reporting.model.ModelReport.html

| Creator:

chil dren
| Type:

| Creator:

empl oyed
| Type:
| Val ue:

| Creator:

f at her

| Type:
| Val ue:

| Creator:

firstNane

| Type:
| Val ue:

| Creator:

homeDi rectory

| Type:
| Val ue:

| Creator:

| Type:
| Val ue:

| Creator:

| ast Nane

| Type:
| Val ue:

| Creator:

mari tal St at us
| Type:

| Creator:

not her

| Type:
| Val ue:

| Creator:

user G oups

| Type:
| Val ue:

| Creator:
+ tasks

| Type:
| Creator:
| Rul es:

Per sonRul es#cr eat eHel | oTask(Model Map<Task>,
+ bui | dEnvi r onment

| Type:
Val ue:

Rul es:

I
| Creator:
I

Per sonRul es#per son(Per son)

org. gradl e. nodel . Model Set <Per son>
Per sonRul es#per son(Per son)

bool ean
fal se
Per sonRul es#per son(Per son)

Per son
nul |
Per sonRul es#per son(Per son)

java.lang. String
John
Per sonRul es#per son(Per son)

java.io.File
nul |
Per sonRul es#per son(Per son)

java. |l ang. Long
nul |
Per sonRul es#per son(Per son)

java.lang. String
Smith
Per sonRul es#per son(Per son)

Marital Status
Per sonRul es#per son(Per son)

Per son
nul |
Per sonRul es#per son(Per son)

java. util.List<java.lang. String>
nul |
Per sonRul es#per son(Per son)

org. gr adl e. nodel . Model Map<or g. gr adl e. api . Task>
Project.<init>. tasks()

Per son)
org. gradl e. api . t asks. di agnosti cs. Bui | dEnvi r onment Repor t Task

task ':buil dEnvironment'
t asks. addPl acehol der Acti on(bui | dEnvi r onnent)

copyToTaskCont ai ner

+ conponents

| Type:
Val ue:

I
| Creator:
I

Rul es:

org. gradl e. api . reporting. conponent s. Conponent Report
task ':conponents’
t asks. addPl acehol der Acti on(conponent s)

copyToTaskCont ai ner

+ dependenci es

| Type:
Val ue:

I
| Creator:
I

Rul es:

org. gradl e. api . t asks. di agnost i cs. DependencyRepor t Task
task ':dependencies'
t asks. addPl acehol der Acti on(dependenci es)

Page 461 of 561

copyToTaskCont ai ner
dependencyl nsi ght

| Type: org. gradl e. api . t asks. di agnosti cs. Dependencyl nsi ght Report Task
| Val ue: task ':dependencyl nsi ght'

| Creator: t asks. addPl acehol der Acti on(dependencyl nsi ght)

| Rules:

Hel pTasksPl ugi n. Rul es#addDef aul t Dependenci esReport Confi gur ati on(Depend
copyToTaskCont ai ner

hel |l o
| Type: org. gradl e. api . Task
| Val ue: task ':hello
| Creator: Per sonRul es#cr eat eHel | oTask(Mbdel Map<Task>, Person) > creat
| Rul es:
copyToTaskCont ai ner
hel p
| Type: org.gradl e.configuration. Hel p
| Val ue: task ':hel p'
| Creator: t asks. addPl acehol der Acti on(hel p)
| Rul es:
copyToTaskCont ai ner
init
| Type: org.gradle.buildinit.tasks.InitBuild
| Val ue: task ':init'
| Creator: t asks. addPl acehol der Acti on(init)
| Rul es:
copyToTaskCont ai ner
nodel
| Type: org. gradl e. api . reporting. nodel . Mbdel Report
| Val ue: task ':nodel’
| Creator: t asks. addPl acehol der Acti on(nodel)
| Rul es:
copyToTaskCont ai ner
proj ects
| Type: org. gradl e. api . t asks. di agnosti cs. Proj ect Report Task
| Val ue: task ':projects'
| Creator: t asks. addPl acehol der Acti on(proj ects)
| Rul es:
copyToTaskCont ai ner
properties
| Type: org. gradl e. api . t asks. di agnosti cs. Propert yReport Task
| Val ue: task ':properties’
| Creator: t asks. addPl acehol der Acti on(properti es)
| Rul es:
copyToTaskCont ai ner
t asks
| Type: org. gradl e. api . t asks. di agnosti cs. TaskRepor t Task
| Val ue: task ':tasks'
| Creator: t asks. addPl acehol der Acti on(t asks)
| Rules:
copyToTaskCont ai ner
wr apper
| Type: org. gradl e. api . t asks. wr apper . W apper
| Val ue: task ':wapper’
| Creator: t asks. addPl acehol der Acti on(wr apper)

Page 462 of 561

| Rul es:
copyToTaskCont ai ner

65.8. Limitations and future direction

Rule based model configuration is the future of Gradle. This area is fledgling, but under very active
development. Early experiments have demonstrated that this approach is more efficient, able to provide
richer diagnostics and authoring assistance and is more extensible. However, there are currently many
limitations.

The magjority of the development to date has been focused on proving the efficacy of the approach, and
building the internal rule execution engine and model graph mechanics. The user facing aspects (e.g the
DSL, rule source classes) are yet to be optimized for conciseness and general usability. Likewise, many
necessary configuration patterns and constructs are not yet able to be expressed viathe API.

In conjunction with the addition of better syntax, a richer toolkit of configuration constructs and generally
more expressive power, more tooling will be added that will enable build engineers and users alike to
comprehend, modify and extend builds in new ways.

Due to the inherent nature of the rule based approach, it is more efficient at constructing the build model
than today's Gradle. However, in the future Gradle will also leverage the parallelism that this approach
enables both at configuration and execution time. Moreover, due to increased transparency of the model
Gradle will be able to further reduce build times by caching and pre-computing the build model. Beyond
improved general build performance, this will greatly improve the experience when using Gradle from tools
such as IDEs.

Asthis area of Gradleis under active development, it will be changing rapidly. Please be sure to consult the
documentation of Gradle corresponding to the version you are using and to watch for changes announced in
the release notes for future versions.

Page 463 of 561

66

Software model concepts

Support for the software model is currently incubating. Please be aware that the DSL, APIs and other
configuration may change in later Gradle versions.

The software model describes how a piece of software is built and how the components of the software
relate to each other. The software model is organized around some key concepts:

* A component isagenera concept that represents some logical piece of software. Examples of
components are a command-line application, aweb application or alibrary. A component is often
composed of other components. Most Gradle builds will produce at least one component.

® A library isareusable component that is linked into or combined into some other component. In the
Java ecosystem, alibrary is often built as a Jar file, and then later bundled into an application of some
kind. In the native ecosystem, alibrary may be built as a shared library or static library, or both.

® A sourceset representsalogical group of source files. Most components are built from source sets of
various languages. Some source sets contain source that is written by hand, and some source sets may
contain source that is generated from something else.

® A binary represents some output that is built for a component. A component may produce multiple
different output binaries. For example, for a C++ library, both a shared library and a static library binary
may be produced.

® A variant represents some mutually exclusive binary of acomponent. A library, for example, might
target Java 7 and Java 8, effectively producing two distinct binaries: a Java 7 Jar and a Java 8 Jar. These
are different variants of the library.

* The API of alibrary represents the artifacts and dependencies that are required to compile against that
library. The API typically consists of abinary together with a set of dependencies.

Page 464 of 561

6/

| mplementing model rulesin a plugin

A plugin can define rules by extending Rul eSour ce and adding methods that define the rules. The plugin

class can either extend Rul eSour ce directly or can implement Pl ugi n and include a nested
Rul eSour ce subclass.

Refer to the API docsfor Rul eSour ce for more details.

67.1. Applying additional rules

A rule method annotated with Rul es can apply aRul eSour ce to atarget model element.

Page 465 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/RuleSource.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/Rules.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/model/RuleSource.html

68

Building Java Libraries

Support for building Java libraries using the software model is currently incubating. Please be aware
that the DSL, APIs and other configuration may changein later Gradle versions.

The Java software plugins are intended to replace the Java plugin, and leverage the Gradle software model
to achieve the best performance, improved expressiveness and support for variant-aware dependency
management.

68.1. Features

The Java software plugins provide:

® Support for building Java libraries and other components that run on the VM.

® Support for several source languages.

® Support for building different variants of the same software, for different Java versions, or for any
purpose.

® Build time definition and enforcement of Javalibrary API.

® Compile avoidance.

* Dependency management between Java software components.

68.2. Java Software Model

The Java software plugins provide a software model that describes Java based software and how it should be
built. This Java software model extends the base Gradle software model, to add support for building VM
libraries. A JVM library isakind of library that is built for and runs on the VM. It may be built from Java
source, or from various other languages. All VM libraries provide an APl of some kind.

68.3. Usage

To use the Java software plugins, include the following in your build script:

Page 466 of 561

Example 68.1. Using the Java softwar e plugins

bui | d. gradl e

pl ugi ns {
id'jvmconponent'

id'java-lang

68.4. Creating alibrary

A library is created by declaring aJvrLi br ar y Spec under the conponent s element of the nodel :

Example 68.2. Creating ajavalibrary
bui |l d. gradl e

nmodel {
conponents {
mai n(Jvnli br ar ySpec)

}

Output of gr adl e bui I d

> gradle build

:conpi | eMai nJar Mai nJava

: processMai nJar Mai nResour ces
:creat eMai nJar

: mai nApi Jar

:mai nJar

:assenbl e

: check UP- TO DATE

tbuild

BU LD SUCCESSFUL

This example creates a library named rmai n, which will implicitly createaJavaSour ceSet named j ava
. The conventions of the legacy Java plugin are observed, where Java sources are expected to be found in sr ¢/ ma
, While resources are expected to befound in sr ¢/ mai n/ r esour ces.

68.5. Source Sets

Source sets represent logical groupings of source filesin alibrary. A library can define multiple source sets
and all sources will be compiled and included in the resulting binaries. When a library is added to a build,
the following source sets are added by default.

Page 467 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/jvm/JvmLibrarySpec.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/java/JavaSourceSet.html

Table 68.1. Java plugin - default sour ce sets

SourceSet Type Directory
java JavaSour ceSet src/${ library.name} /java

resources JvnResour ceSet src/${ library.name} /resources

Itis possible to configure an existing source set through the sour ces container:

Example 68.3. Configuring a sour ce set

bui |l d. gradl e

conponents {
mai n {
sources {
java {

/'l configure the "java" source set

It isalso possible to create an additional source set, using the JavaSour ceSet type:

Example 68.4. Creating a new sour ce set
bui |l d. gradl e
conponents {
mai n {
sources {
nmy Sour ceSet (JavaSour ceSet) {

/] configure the "mySourceSet" source set

68.6. Tasks

By default, when the plugins above are applied, no new tasks are added to the build. However, when
libraries are defined, conventional tasks are added which build and package each binary of the library.

For each binary of a library, a single lifecycle task is created which executes all tasks associated with
building the binary. To build all binaries, the standard bui | d lifecycle task can be used.

Table 68.2. Java plugin - lifecycle tasks

Component Type Binary Type Lifecycle Task

JvnLi brarySpec JvnBi narySpec ¥ library.name} ${ binary.name}

Page 468 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/java/JavaSourceSet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/jvm/JvmResourceSet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/java/JavaSourceSet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/jvm/JvmLibrarySpec.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/jvm/JvmBinarySpec.html

For each source set added to alibrary, tasks are added to compile or process the source files for each binary.

Table 68.3. Java plugin - sour ce set tasks

Source Set Type Task hame Type

JavaSour ceSet compile${ library.name} ${ binary.name} ¥ library.name} ${ sourceset.name} Pl at f 1

JvnResour ceSet process¥{ library.name} ${ binary.name} H{ library.name} ${ sourceset.name} Proce:

For each binary in alibrary, a packaging task is added to create the jar for that binary.

Table 68.4. Java plugin - packaging tasks

Binary Type Task hame Dependson Type Dest

JvnBi narySpec create¥{library.name} ${ binary.name} al Jar Pack
Pl at f or mlavaConpi | e the

and Pr ocessResour ces comj

tasks associated with the clase

binary proct

resot

thek

68.7. Finding out more about your project

Gradle provides a report that you can run from the command-line that shows details about the components
and binaries that your project produces. To use this report, just run gr adl e conponent s. Below is an
example of running this report for one of the sample projects:

Page 469 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/java/JavaSourceSet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/java/tasks/PlatformJavaCompile.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/jvm/JvmResourceSet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/jvm/tasks/ProcessResources.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/jvm/JvmBinarySpec.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/java/tasks/PlatformJavaCompile.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/java/tasks/PlatformJavaCompile.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/jvm/tasks/ProcessResources.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.jvm.tasks.Jar.html

Example 68.5. The componentsreport
Output of gr adl e comnponent s

> gradl e conmponents
: conponent s

Source sets
Java source 'nmain:java'
srcDir: src/main/java
Java source ' main: mySourceSet"'
srcDir: src/ main/ mySourceSet
JVM resources 'nain:resources'
srcDir: src/main/resources

Bi nari es
Jar 'main:jar'

buil d using task: :mainJar
target platform java7
tool chain: JDK 7 (1.7)
classes dir: build/classes/nain/jar
resources dir: build/resources/main/jar
APl Jar file: build/jars/main/jar/api/main.jar
Jar file: build/jars/main/jar/main.jar

Note: currently not all plugins register their conmponents, so sone conponents may nha
BUI LD SUCCESSFUL

Total tinme: 1 secs

68.8. Dependencies

A component in the Java software model can declare dependencies on other Javalibraries. If component mai n
dependson library ut i | , thismeansthat the APl of uti | isrequired when compiling the sources of mai n

, and the runtime of uti | isrequired when running or testing mai n. The terms 'API' and ‘runtime' are
examples of usages of a Javalibrary.

68.8.1. Library usage

The'API' usage of a Javalibrary consists of:

® Artifact(s): the Jar file(s) containing the public classes of that library
® Dependencies: the set of other libraries that are required to compile against that library

When library mai n is compiled with a dependency on ut i | , the 'API' dependencies of 'util' are resolved
transitively, resulting in the complete set of libraries required to compile. For each of these libraries

Page 470 of 561

(including 'util"), the 'API" artifacts will be included in the compile classpath.

Similarly, the 'runtime' usage of a Java library consists of artifacts and dependencies. When a Java
component is tested or bundled into an application, the runtime usage of any runtime dependencies will be
resolved transitively into the set of libraries required at runtime. The runtime artifacts of these libraries will

then be included in the testing or runtime classpath.

68.8.2. Dependency types

Two types of Java library dependencies can be declared:

® Dependencieson alibrary defined in alocal Gradle project
* Dependencieson alibrary published to a Maven repository

Dependencies onto libraries published to an vy repository are not yet supported.

68.8.3. Declaring dependencies

Dependencies may be declared for a specific JavaSour ceSet , for an entire JvrrLi br ar ySpec or as
part of the JvmApi Spec of a component:

Page 471 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/java/JavaSourceSet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/jvm/JvmLibrarySpec.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/jvm/JvmApiSpec.html

Example 68.6. Declaring a dependency onto alibrary
buil d. gradl e

nodel {
conponents {
server (Jvnli brarySpec) ({
sour ces {
java {
dependenci es {
library 'core

}

}

core(Jvnli brarySpec) {
dependenci es {
library 'conmons'
}
}

conmmons(Jvnli brarySpec) {
api {
dependenci es {
l'ibrary 'collections

}

}

col I ecti ons(Jvnli br ar ySpec)

Output of gr adl e serverJar

> gradl e serverJar

:conpil eCol | ecti onsJar Col | ecti onsJava
:col | ectionsApi Jar

: conpi | eCommonsJar CormonsJava
: commnsApi Jar

:conpi | eCor eJar CoreJava

: processCor eJar Cor eResour ces
:cor eApi Jar

:conpi | eServer Jar Server Java
:createServerJar
:server Api Jar

:serverJar

BUI LD SUCCESSFUL

Dependencies declared for a source set will only be used for compiling that particular source set.
Dependencies declared for a component will be used when compiling al source sets for the component.

Dependencies declared for the component api are used for compiling all source sets for the component, and
are also exported as part of the component's API. See Enforcing API boundaries at compile time for more
details.

Page 472 of 561

The previous example declares a dependency for the j ava source set of the ser ver library ontothe cor e
library of the same project. However, it is possible to create a dependency on alibrary in a different project
aswell:

Example 68.7. Declaring a dependency onto a project with an explicit library

bui |l d. gradl e

client (JvnLi brarySpec) {
sour ces {
java {
dependenci es {
project ':util' library 'main'

Output of gr adl e cli ent Jar

> gradle clientJar
cutil:conpil eMai nJar Mai nJava
cutil: mai nApi Jar

:conpil edientJardientJava
:clientApiJar
:createdientJar

:clientJar

BU LD SUCCESSFUL

When the target project definesasinglelibrary, thel i br ar y selector can be omitted altogether:

Example 68.8. Declaring a dependency onto a project with an implicit library
bui |l d. gradl e

dependenci es {
project ':util’

}

Dependencies onto libraries published to Maven repositories can be declared vianodul e i dentifiers
consisting of agr oup name, anodul e name plusan optiona ver si on sel ector:

Page 473 of 561

Example 68.9. Declaring a dependency onto a library published to a Maven repository

bui | d. gradl e

verifier(Jvnli brarySpec) {
dependenci es {
nodul e ' asni group 'org.ow2.asm version '5.0.4

nodul e ' asm anal ysi s' group 'org.ow2. asni

Output of gr adl e verifierJar

> gradl e verifierJar

:conpi l eVerifierJarVerifierJava
:createVerifierJar
cverifierApiJar

cverifierJar

BU LD SUCCESSFUL

A shorthand notation for module identifiers can also be used:

Example 68.10. Declaring a module dependency using shorthand notation

bui | d. gradl e

dependenci es {
nodul e ' org. ow2. asm asm 5. 0. 4

nmodul e ' org. ow2. asm asm anal ysi s'

Module dependencies will be resolved against the configured repositories as usual:

Example 68.11. Configuring repositoriesfor dependency resolution
bui |l d. gradl e

repositories {
mavenCentral ()

}

The DependencySpecCont ai ner class provides a complete reference of the dependencies DSL.

68.9. Defining aLibrary API

Every library has an API, which consists of artifacts and dependencies that are required to compile against
the library. The library may be explicitly declared for a component, or may be implied based on other
component metadata.

By default, all publ i ¢ types of alibrary are considered to be part of its API. In many cases this is not
ideal; alibrary will contain many public types that intended for internal use within that library. By explicitly
declaring an APl for a Java library, Gradle can provide compile-time encapsulation of these

Page 474 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/platform/base/DependencySpecContainer.html

internal-but-public types. The types to include in a library APl are declared at the package level. Packages
containing API types are considered to be exported.

By default, dependencies of a library are not considered to be part of its API. By explicitly declaring a
dependency as part of the library API, this dependency will then be made available to consumers when
compiling. Dependencies declared this way are considered to be exported, and are known as 'API
dependencies.

JDK 9 will introduce Jigsaw, the reference implementation of the Java Module System. Jigsaw will
provide both compile-time and run-time enforcement of APl encapsulation.

Gradle anticipates the arrival of JDK 9 and the Java Module System with an approach to specifying
and enforcing APl encapsulation at compile-time. This allows Gradle users to leverage the many
benefits of strong encapsulation, and prepare their software projects for migration to JDK 9.

68.9.1. Some terminology

®* An API isaset of classes, interfaces, methods that are exposed to a consumer.
* An API specification is the specification of classes, interfaces or methods that belong to an API, together

with the set of dependenciesthat are part of the API. It can be found in various forms, like nodul e- i nf o. j

inJigsaw, ortheapi { ... } block that Gradle defines as part of those stories. Usually, we can
simplify thisto alist of packages, called exported packages.

® A runtimejar consists of API classes and non-API classes used at execution time. There can be
multiple runtime jars depending on combinations of the variant dimensions: target platform, hardware
infrastructure, target application server, ...

® AP classes are classes of a variant which match the API specification

® Non-API classes are classes of a variant which do not match the API specification.

* A stubbed API class isan API class for which itsimplementation and non public members have been
removed. It is meant to be used when a consumer is going to be compiled against an API.

®* An API jar isacollection of API classes. There can be multiple APl jars depending on the
combinations of variant dimensions.

® A stubbed API jar isacollection of stubbed API classes. There can be multiple stubbed API jars
depending on the combinations of variant dimensions.

* An ABI (application binary interface) corresponds to the public signature of an API, that isto say the set
of stubbed API classes that it exposes (and their API visible members).

We avoid the use of the term implementation because it istoo vague: both API classes and Non-API classes
can have an implementation. For example, an API class can be an interface, but also a concrete class.
Implementation is an overloaded term in the Java ecosystem, and often refers to a class implementing an
interface. This is not the case here: a concrete class can be member of an API, but to compile against an
API, you don't need the implementation of the class: all you need is the signatures.

68.9.2. Specifying API classes

Page 475 of 561

Example 68.12. Specifying api packages
buil d. gradl e

nodel {
conponents {
mai n(Jvnli brarySpec) {
api {
exports 'org.gradle

exports 'org.gradle.utils’

68.9.3. Specifying APl dependencies
Example 68.13. Specifying api dependencies
bui | d. gradl e
comons(Jvnli brarySpec) {
api {

dependenci es {
library 'collections'

68.9.4. Compile avoidance

When you define an API for your library, Gradle enforces the usage of that APl at compile-time. This comes

with 3 direct consequences:

* Trying to use anon-API classin adependency will now result in a compilation error.
ying €D Cy p

® Changing the implementation of an API classwill not result in recompilation of consumersif the ABI
doesn't change (that isto say, all public methods have the same signature but not necessarily the same

body).

¢ Changing the implementation of anon-API classwill not result in recompilation of consumers. This
means that changes to non-API classes will not trigger recompilation of downstream dependencies,

because the ABI of the component doesn't change.

Given a main component that exportsor g. gr adl e, or g. gradl e. uti | s and defines those classes:

Page 476 of 561

Example 68.14. Main sour ces
src/ mai n/ javal/ org/ gradl e/ Person. j ava

package org. gradl e;

public class Person {
private final String name;

public Person(String nanme) {

t hi s. nane = nane;

}

public String get Nanme() {
return nane;

}

src/ mai n/javal/ org/ gradl e/i nternal /Personlnternal.java
package org.gradle.internal;
i nport org.gradl e. Person;
public class Personl nternal extends Person {
public Personlnternal (String nanme) {

super (nane) ;

}

src/main/java/org/gradle/utils/StringUils.java

package org.gradle.utils;

public abstract class StringUtils {

}

Compiling acomponent client that declares a dependency onto main will succeed:

Page 477 of 561

Example 68.15. Client component

bui | d. gradl e

nodel {
conponents {
client(Jvnli brarySpec) {
sour ces {
java {
dependenci es {

library 'nmain'

}

src/client/javal/org/gradle/Cient.java
package org. gradl e;

public class dient {
private Person person;

public void set Person(Person p) { this.person = p; }
public Person getPerson() { return person; }

Output of gr adl e : clientJar

> gradle :clientJar

:conpi | eMai nJar Mai nJava

: processMai nJar Mai nResour ces
: mai nApi Jar
:conpiledientJardientJava
cclientApiJar
:createdientJar

:clientJar

BU LD SUCCESSFUL

But trying to compile a component brokenclient that declares a dependency onto main but uses an non-API
class of main will result in acompile-time error:

Page 478 of 561

Example 68.16. Broken client component
src/ brokenclient/java/org/gradle/Cient.java
package org. gradl e;

i mport org.gradl e.internal.Personlnternal;

public class dient {
private Personlnternal person;

public void setPerson(Personlnternal p) { this.person = p; }
publ i c Personlnternal getPerson() { return person; }

Output of gr adl e : brokencl i ent Jar

> gradl e : brokenclientJar

: conpi | eMai nJar Mai nJava

: processMai nJar Mai nResour ces

: mai nApi Jar

:conpi | eBrokencl i ent Jar Brokencl i ent Java FAI LED

BUI LD FAI LED

On the other hand, if Person.java in client is updated and its APl hasn't changed, client will not be
recompiled. Thisisin particular important for incremental builds of large projects, where we can avoid the
compilation of dependenciesin chain, and then dramatically reduce build duration:

Page 479 of 561

Example 68.17. Recompiling the client
src/ mai n/ javal/ org/ gradl e/ Person. j ava

package org. gradl e;

public class Person {
private final String name;

public Person(String nanme) {
/'l we updated the body if this nmethod
/1 but the signature doesn't change
/'l so we will not reconpile conponents
/1 that depend on this class
t hi s. name = name. t oUpper Case() ;

}

public String get Nanme() {
return nane;

}

Output of gradl e : clientJar

> gradle :clientJar

:conpi | eMai nJar Mai nJava

: processMai nJar Mai nResour ces UP- TO DATE
: mai nApi Jar

:conpileCientJardientJava UP- TO DATE
:clientApi Jar UP- TO DATE
:createdientJar UP-TO DATE

:clientJar UP-TO DATE

BUI LD SUCCESSFUL

Page 480 of 561

68.10. Platform aware dependency management

68.10.1. Specifying the target platform

The software model extracts the target platform as a core concept. In the Java world, this means that a
library can be built, or resolved, against a specific version of Java. For example, if you compile alibrary for
Java 5, we know that such a library can be consumed by a library built for Java 6, but the opposite is not

true. Gradle lets you define which platforms alibrary targets, and will take care of:

® generating abinary for each target platform (eg, aJavas jar aswell asaJava6 jar)

® resolving dependencies against a matching platform

Thet ar get Pl at f or mDSL defines which platforms alibrary should be built against:

Example 68.18. Declaring tar get platforms

core/ build.gradle

node

{

conponents {

mai n(Jvnli brarySpec) {
targetPlatform'java5b

targetPlatform'java6

Output of gradl e : core: build

> gradle :core:build

. core:
. core:
. core:
.core:
. core:
. core:
. core:
.core:
. core:
. core:
. core:
. core:
. core:
. core:

BU LD

conpi | eMai nJava5Jar Mai nJava
processMai nJava5Jar Mai nResour ces
cr eat eMai nJavabJar

mai nJavaS5Api Jar

mai nJavabJar

conpi | eMai nJava6Jar Mai nJava
conpi | eMai nJava6Jar Mai nJava6Jar Java
processMai nJava6Jar Mai nResour ces
cr eat eMai nJava6Jar

mai nJava6Api Jar

mai nJava6Jar

assenbl e

check UP-TO DATE

build

SUCCESSFUL

When building the application, Gradle generates two binaries: j ava5Mai nJar and j ava6Mai nJar
corresponding to the target versions of Java. These artifacts will participate in dependency resolution as
described here.

Page 481 of 561

68.10.2. Binary specific source sets

For each JvrLi br ar ySpec it is possible to define additional source sets for each binary. A common use
case for this is having specific dependencies for each variant and source sets that conform to those
dependencies. The example below configuresaj ava6 source set onthemai n. j ava6Jar binary:

Example 68.19. Declaring binary specific sour ces

core/ build.gradle

mai n {
bi nari es. j ava6Jar {
sources {
j ava(JavaSour ceSet) {

source.srcDir 'src/nmain/java6

Output of gr adl e cl ean : core: mai nJava6Jar

> gradl e clean :core: minJava6Jar
:core:clean

:server: cl ean UP- TO DATE

1 core: conpi |l eMai nJava6Jar Mai nJava

:core: conpi | eMai nJava6Jar Mai nJava6Jar Java
:core: processMai nJavaéJar Mai nResour ces
:core: creat eMai nJava6Jar
:core: mai nJava6Api Jar

1 core: mai nJava6Jar

BU LD SUCCESSFUL

68.10.3. Dependency resolution

When a library targets multiple versions of Java and depends on another library, Gradle will make its best
effort to resolve the dependency to the most appropriate version of the dependency library. In practice, this
means that Gradle chooses the highest compatible version:

® for abinary B built for Javan

¢ for adependency binary D built for Javam

® Discompatible with B if m<=n

® for multiple compatible binariesD(j ava 5), D(java 6), ...D(java n),choosethe
compatible D binary with the highest Java version

Page 482 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/jvm/JvmLibrarySpec.html

Example 68.20. Declaring tar get platforms
server/build. gradl e

nodel {
conponents {
mai n(Jvnli brarySpec) {

targetPlatform'javab
targetPlatform'java6

sources {

java {
dependenci es {

project ':core' library 'nmain'

}

Output of gr adl e cl ean :server:build

> gradle clean :server:build
:core:clean

:server:cl ean UP- TO DATE

1 core: conpi | eMai nJavabJar Mai nJava
:core: processMai nJava5Jar Mai nResour ces
:core: mai nJava5Api Jar

:server: conpi | eMai nJavabJar Mai nJava
:server: creat eMai nJava5Jar
:server: mai nJava5Api Jar
:server: mai nJavabJar

:core: conpil eMai nJava6Jar Mai nJava
:core: conpi | eMai nJava6Jar Mai nJava6Jar Java
:core: processMai nJava6Jar Mai nResour ces
:core: mai nJava6Api Jar

:server: conpi | eMai nJava6Jar Mai nJava
:server: creat eMai nJava6Jar
:server: mai nJava6Api Jar
:server: mai nJava6éJar

:server:assenbl e

:server: check UP-TO DATE

:server:build

BU LD SUCCESSFUL

In the example above, Gradle automatically chooses the Java 6 variant of the dependency for the Java 6
variant of the ser ver component, and chooses the Java 5 version of the dependency for the Java 5 variant
of theser ver component.

68.11. Custom variant resolution

The Java plugin, in addition to the target platform resolution, supports resolution of custom variants. Custom
variants can be defined on custom binary types, as long as they extend Jar Bi nar ySpec. Users interested
in testing this incubating feature can check out the documentation of the Var i ant annotation.

Page 483 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/jvm/JarBinarySpec.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/platform/base/Variant.html

Page 484 of 561

68.12. Testing Javalibraries

68.12.1. Standalone JUnit test suites

The Java software model supports defining standalone JUnit test suites as components of the model.
Standalone test suite are components that are self contained, in the sense that there is no component under
test: everything being tested must belong to the test suite sources.

A test suiteis declared by creating a component of type JUni t Test Sui t eSpec, which is available when
you apply thej uni t -t est - sui t e plugin:

Example 68.21. Using the JUnit plugin

bui | d. gradl e

pl ugi ns {
id'jvmconponent'
id'java-lang'

id 'junit-test-suite'

}

nodel {
testSuites {
test (JUnit Test Sui t eSpec) {
jUnitVersion '4.12'

In the example above, t est isthe name of our test suite. By convention, Gradle will create two source sets

for the test suite, based on the name of the component: one for Java sources, and the other for resources: src/ t es

and src/resources/java. If the component was named i nt egTest , then sources and resources
would have been found respectively insrc/ i nt egTest/j avaandsrc/i ntegTest/resources.

Once the component is created, the test suite can be executed running the <<t est sui t e nanme>>Bi naryTe:

task:

Page 485 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/jvm/test/JUnitTestSuiteSpec.html

Example 68.22. Executing the test suite
src/test/javalorg/ gradl e/ MyTest. java

package org. gradl e;

i mport org.junit. Test;

i nport static org.junit.Assert.*;

public class MyTest {

@est
public void myTest Met hod() {
assert Equal s(4, "test".length());

}

Output of gr adl e t est Bi naryTest

> gradl e testBinaryTest

:conpi | eTest Bi naryTest Java

: processTest Bi nar yTest Resour ces
:testBi naryTest

BU LD SUCCESSFUL

It is possible to configure source setsin a similar way aslibraries.
A test suite being a component can also declare dependencies onto other components.
A test suite can also contain resources, in which caseit is possible to configure the resource processing task:

Example 68.23. Executing thetest suite
bui |l d. gradl e

nodel {
t asks. processTest Bi naryTest Resour ces {
/'l uncoment |ines
filter { String line ->

line.replaceAll ("<!-- (.+?)

68.12.2. Testing VM libraries with JUnit

It islikely that you will want to test another VM component. The Java software model supports it exactly
like standal one test suites, by just declaring an additional component under test:

Page 486 of 561

Example 68.24. Declaring a component under test
buil d. gradl e

nodel {
conponents {
mai n(Jvnli br ar ySpec)
}
testSuites {
test (JUni t Test Sui t eSpec) {

jUnitVersion '4.12'
testing $.conponents. main

Output of gr adl e t est Mai nJar Bi nar yTest

> gradl e testMinJarBi naryTest
:conpi | eMai nJar Mai nJava

: processMai nJar Mai nResour ces
:conpi | eTest Mai nJar Bi naryTest Java
:test Mai nJar Bi nar yTest

BU LD SUCCESSFUL

Note that the syntax to choose the component under test is areference ($.). You can select any JvimConponent ¢
as the component under test. It's also worth noting that when you declare a component under test, atest suite
is created for each binary of the component under test (for example, if the component under test has a Java 7

and Java 8 version, 2 different test suite binaries would be automatically created).

68.13. Declaring Javatoolchains

You can declare the list of local JVM installations using the j aval nst al | at i ons model block. Gradle
will use this information to locate your JVMs and probe their versions. Please note that this information is
not yet used by Gradle to select the appropriate JDK or JRE when compiling your Java sources, or when
executing Java applications. A local Java instalation can be declared using the Local Java type,

independently of the fact they are a JDK or a JRE:

Page 487 of 561

Example 68.25. Declaring local Java installations
buil d. gradl e

nodel {
javal nstal l ations {
openJdk6(Local Java) {
path '/usr/lib/jvnjdkl.6.0-and64'

}
oracl eJre7(Local Java) {
path '/usr/lib/jvmjrel. 7.0

}
i bmldk8(Local Java) {

path '/usr/lib/jvnjdkl. 8.0

Page 488 of 561

69

Building Play applications

Support for building Play applicationsis currently incubating. Please be aware that the DSL, APIs and
other configuration may changein later Gradle versions.

Play is amodern web application framework. The Play plugin adds support for building, testing and running
Play applications with Gradle.

The Play plugin makes use of the Gradle software model.

69.1. Usage

To use the Play plugin, include the following in your build script to apply the pl ay plugin and add the
Typesafe repositories:

Example 69.1. Using the Play plugin

bui | d. gradl e

pl ugi ns {
id'play
}

repositories {
jcenter ()
maven {
nane "typesafe-maven-rel ease"

url "https://repo.typesafe.conltypesafe/ maven-rel eases"

}

ivy {
nanme "typesafe-ivy-rel ease”
url "https://repo.typesafe.conitypesafel/ivy-rel eases"
[ayout "ivy"

Note that defining the Typesafe repositories is necessary. In future versions of Gradle, this will be replaced
with amore convenient syntax.

Page 489 of 561

https://www.playframework.com/

69.2. Limitations

The Play plugin currently has afew limitations.

® Full support islimited to Play 2.3.x applications. Limited support is available for Play 2.4.x applications.
Gradle does not include support for afew new build-related featuresin 2.4. Specifically, Gradle does not
yet support aggregate reverse routes. Future Gradle versions will add more support for Play 2.5.x and

2.6.X.

* A given project may only define a single Play application. This means that a single project cannot build
more than one Play application. However, a multi-project build can have many projects that each define

their own Play application.

* Play applications can only target a single “platform” (combination of Play, Scala and Java version) at a
time. This meansthat it is currently not possible to define multiple variants of a Play application that, for
example, produce jars for both Scala 2.10 and 2.11. This limitation may be lifted in future Gradle

versions.

® Support for generating IDE configurations for Play applicationsis limited to IDEA.

69.3. Software M odel

The Play plugin uses a software model to describe a Play application and how to build it. The Play software
model extends the base Gradle software model to add support for building Play applications. A Play
application is represented by a Pl ayAppl i cati onSpec component type. The plugin automatically
creates a single Pl ayAppl i cati onBi narySpec instance when it is applied. Additional Play

components cannot be added to a project.

Figure 69.1. Play plugin - softwar e model

PlayApplicationSpec

Target Platform

Scala Source Set

Java Source Set

binaries a R
SOUrCEes

- ’ .
[PlayApplicationBinarys pec] -
Compiled Assets

Compiled Source \

Resources Source Set

Target Platform

JavaScript Source Set

Page 490 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.play.PlayApplicationSpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.play.PlayApplicationBinarySpec.html

69.3.1. The Play application component

A Play application component describes the application to be built and consists of several configuration
elements. One type of element that describes the application are the source sets that define where the
application controller, route, template and model class source files should be found. These source sets are
logical groupings of files of a particular type and a default source set for each type is created when the pl ay
plugin is applied.

Table 69.1. Default Play sour ce sets

Sour ce Set Type Directory Filters

java JavaSour ceSet app **[* java
scala Scal aLanguageSour ceSet app **[* scala
routes Rout esSour ceSet conf routes, *.routes
twirlTemplates Twi r | Sour ceSet app **[* html
javaScript JavaScri pt Sour ceSet applassets **/* s

These source sets can be configured or additional source sets can be added to the Play component. See Configuring
for further information.

Another element of configuring a Play application is the platform. To build a Play application, Gradle needs
to understand which versions of Play, Scala and Javato use. The Play component specifies this requirement
asaPl ayPl at f or m If these values are not configured, a default version of Play, Scala and Java will be
used. See Targeting a certain version of Play for information on configuring the Play platform.

Note that only a single platform can be specified for a given Play component. This means that only a single
version of Play, Scala and Java can be used to build a Play component. In other words, a Play component
can only produce one set of outputs, and those outputs will be built using the versions specified by the
platform configured on the component.

69.3.2. The Play application binary

A Play application component is compiled and packaged to produce a set of outputs which are represented
by a Pl ayAppl i cati onBi nar ySpec. The Play binary specifies the jar files produced by building the
component as well as providing elements by which additional content can be added to those jar files. It also
exposes the tasks involved in building the component and creating the binary.

See Configuring Play for examples of configuring the Play binary.

69.4. Project Layout

The Play plugin follows the typical Play application layout. You can configure source sets to include
additional directories or change the defaults.

Page 491 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/java/JavaSourceSet.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/scala/ScalaLanguageSourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.routes.RoutesSourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.twirl.TwirlSourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.javascript.JavaScriptSourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.play.platform.PlayPlatform.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.play.PlayApplicationBinarySpec.html

app
assets
javascripts
controllers
nodel s
Vi ews
buil d. gradl e
conf
public
i mges
javascripts
styl esheets
t est

69.5. Tasks

Application source code

Assets that require conpilation.
JavaScri pt source code to be minified.

Application controller source code.
Appl i cation business source code.
Application U tenplates.

Your project's build script.

Mai n application configuration file and routes files.

Publ i c assets.
Application i mage files.
Typically JavaScript source code.
Typically CSS source code.

Test source code

The Play plugin hooks into the normal Gradle lifecycle tasks such as assenbl e, check and bui | d, but it
also adds several additional tasks which form the lifecycle of a Play project:

Table 69.2. Play plugin - lifecycle tasks

Task name Dependson Type Description
pl ayBi nary All compiletasksfor source setsaddedtothe Task Performsabuild of just
Play application. the Play application.
di st creat ePl ayBi naryZi pDi st , cr eat ePl ayBisiar y Pess®nlles the Play
distribution.
st age st agePl ayBi naryDi st Task Stagesthe Play
distribution.

The plugin also provides tasks for running, testing and packaging your Play application:

Table 69.3. Play plugin - running and testing tasks

Task name

runPl ayBi nary

test Pl ayBi nary

Dependson Type Description

pl ayBi nary to build Play Pl ayRun Runsthe Play application for local
application. development. See how thisworksw
pl ayBi nary to build Play Test Runs JUnit/TestNG tests for the Pla

application and conpi | ePl ayBi naryTests application.

For the different types of sourcesin a Play application, the plugin adds the following compilation tasks:

Page 492 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.play.tasks.PlayRun.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.testing.Test.html

Table 69.4. Play plugin - source set tasks

Task name Source
Type

conpi | ePl ayBi nar yScal a Scalaand
Java

conpi | ePl ayBi naryPl ayTwi r|l Tenpl ates Twirl
HTML
templates

conpi | ePl ayBi nar yPl ayRout es Play
Route
files

m ni f yPl ayBi nar yJavaScr i pt JavaScript
files

Type

Pl at f or n5cal aConpi | e

Twi r | Conpi |l e

Rout esConpi | e

JavaScriptMnify

69.6. Finding out more about your project

Gradle provides a report that you can run from the command-line that shows some details about the
components and binaries that your project produces. To use this report, just run gr adl e conponent s.

Below is an example of running this report for one of the sample projects:

Descrig

Compil:
all Scal
and Jav
sources
defined
the Play

applical
Compil:
HTML
templat
with the
Twirl

compile

Compil
routes f
into Sct
sources
Minifie
JavaScr
files wii
the Goc
Closure
compile

Page 493 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/scala/tasks/PlatformScalaCompile.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.play.tasks.TwirlCompile.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.play.tasks.RoutesCompile.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.play.tasks.JavaScriptMinify.html

Example 69.2. The componentsreport
Output of gr adl e comnponent s

> gradl e conmponents
: conponent s

Source sets
Java source 'play:java
srcDir: app
includes: **/*. java
JavaScript source 'play:javaScript
srcDir: app/assets
includes: **/*.js
JVM resources 'play:resources'
srcDir: conf
Rout es source 'play:routes
srcDir: conf
includes: routes, *.routes
Scal a source 'play:scala
srcDir: app
includes: **/* scala
Twirl tenplate source 'play:twrl Tenpl ates’
srcDir: app
includes: **/* htm

Bi nari es

Pl ay Application Jar 'play:binary'
buil d using task: :playBinary
target platform Play Platform (Play 2.3.9, Scala:
tool chain: Default Play Tool chain
classes dir: build/playBinary/cl asses
resources dir: build/playBinary/resources
JAR file: build/playBinary/lib/basic.jar

Note: currently not all plugins register their conponents,
BUI LD SUCCESSFUL

Total tinme: 1 secs

69.7. Running a Play application

2.11, Java: Java SE 8)

SO sonme conmponents may nae

The runPl ayBi nary task starts the Play application under development. During development it is
beneficial to execute this task as a continuous build. Continuous build is a generic feature that supports
automatically re-running a build when inputs change. The r unPl ayBi nary task is “continuous build

aware” in that it behaves differently when run as part of a continuous build.

When not run as part of a continuous build, the r unPl ayBi nary task will block the build. That is, the

Page 494 of 561

task will not complete as long as the application is running. When running as part of a continuous build, the
task will start the application if not running and otherwise propagate any changes to the code of the
application to the running instance. This is useful for quickly iterating on your Play application with an
edit->rebuild->refresh cycle. Changes to your application will not take affect until the end of the overall
build.

To enable continuous build, run Gradlewith -t runPl ayBi nary or - - cont i nuous runPl ayBi nary

Users of Play used to such a workflow with Play's default build system should note that compile errors are
handled differently. If a build failure occurs during a continuous build, the Play application will not be
reloaded. Instead, you will be presented with an exception message. The exception message will only
contain the overall cause of the build failure. More detailed information will only be available from the
console.

69.8. Configuring a Play application

69.8.1. Targeting a certain version of Play

By default, Gradle uses Play 2.3.9, Scala 2.11 and the version of Java used to start the build. A Play
application can select a different version by specifying a target
Pl ayAppl i cati onSpec. pl atforn(j ava. | ang. Qbj ect) onthe Play application component.

Example 69.3. Selecting a version of the Play Framework

bui | d. gradl e

nodel {
conponents {

play {
platformplay: '2.3.6", scala: '2. 10

69.8.2. Adding dependencies

You can add compile, test and runtime dependencies to a Play application through Confi gur ati on
created by the Play plugin.

If you are coming from SBT, the Play SBT plugin provides short hames for common dependencies. For
instance, if your project has a dependency on ws, you will need to add a dependency to com t ypesaf e. pl ay:
where 2. 11 isyour Scalaversionand 2. 3. 9 isyour Play framework version.

Other dependencies that have short names, such asj acksons may actually be multiple dependencies. For
those dependencies, you will need to work out the dependency coordinates from a dependency report.

* pl ay isused for compile time dependencies.
® pl ayTest isused for test compile time dependencies.
® pl ayRun isused for run time dependencies.

Page 495 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.play.PlayApplicationSpec.html#org.gradle.play.PlayApplicationSpec:platform(java.lang.Object)
http://www.gradle.org/docs/3.0/dsl/org.gradle.play.PlayApplicationSpec.html#org.gradle.play.PlayApplicationSpec:platform(java.lang.Object)
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.artifacts.Configuration.html

Example 69.4. Adding dependenciesto a Play application
buil d. gradl e

dependenci es {
pl ay "commons-| ang: conmons- | ang: 2. 6"

}

69.8.3. Configuring the default source sets

Y ou can further configure the default source sets to do things like add new directories, add filters, etc.

69.8.4. Adding extra source sets

If your Play application has additional sources that exist in non-standard directories, you can add extra
source sets that Gradle will automatically add to the appropriate compile tasks.

Page 496 of 561

Example 69.5. Adding extra sour ce setsto a Play application
buil d. gradl e

nodel {
conponents {
play {
sour ces {
java {
source.srcDir "additional/java"

}
javaScri pt {

source {

srcDir "additional/javascript"

exclude "**/old *.]s"

bui | d. gradl e

nodel {
conponents {
play {
sour ces {

extraJava(JavaSour ceSet) {
source.srchDir "extraljava"

}

extraTwi rl (Twirl SourceSet) {
source.srchir "extra/twrl"

}

ext raRout es(Rout esSour ceSet) {
source.srchDir "extralroutes"

}

69.8.5. Configuring compiler options

If your Play application requires additional Scala compiler flags, you can add these arguments directly to the

Scala compiler task.

Page 497 of 561

Example 69.6. Configuring Scala compiler options

bui | d. gradl e

nodel {
conponents {
play {
bi naries.all {
tasks. wi t hType(Pl at f or nScal aConpi |) {
scal aConpi | eOpti ons. addi ti onal Paraneters = ["-feature",

}

69.8.6. Configuring routes style

The injected router is only supported in Play Framework 2.4 or better.

If your Play application's router uses dependency injection to access your controllers, you'll need to
configure your application to not use the default static router. Under the covers, the Play pluginisusing the | nj e
instead of the default St at i cRout esGener at or to generate the router classes.

Example 69.7. Configuring routes style

bui | d. gradl e

nodel {
conponents {

play {

i nj ect edRout esGenerator = true

69.8.7. Injecting a custom asset pipeline

Gradle Play support comes with a simplistic asset processing pipeline that minifies JavaScript assets.
However, many organizations have their own custom pipeline for processing assets. Y ou can easily hook the
results of your pipeline into the Play binary by utilizing the Publ i cAsset s property on the binary.

Page 498 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.play.PublicAssets.html

Example 69.8. Configuring a custom asset pipeline
buil d. gradl e

nodel {
conponents {
play {
binaries.all { binary ->

t asks. creat e("addCopyri ght ToPl ay${ bi nary. nane. capitali ze()} Asset
source "raw assets"
copyrightFile = project.file(' copyright.txt")
destinationDir = project.file("${buildD r}/play${binary.nang

/'l Hook this task into the binary
bi nary. assets. addAsset Dir destinationDir
bi nary. assets. bui |l t By copyri ght Task

cl ass AddCopyri ghts extends SourceTask {
@nputFile
File copyrightFile

@ut put Di rectory
File destinationDr

@askActi on
voi d generateAssets() {
String copyright = copyrightFile.text
get Source().files.each { File file ->
File outputFile = new Fil e(destinationDir, file.nane)
outputFile.text = "${copyright}\n${file.text}"

69.9. Multi-project Play applications

Play applications can be built in multi-project builds as well. Simply apply the pl ay plugin in the
appropriate subprojects and create any project dependencies on the pl ay configuration.

Example 69.9. Configuring dependencies on Play subprojects
bui |l d. gradl e
dependenci es {

play project(":admin")
pl ay project(":user")

play project(":util")

Seethepl ay/ nul ti proj ect sample provided in the Gradle distribution for aworking example.

Page 499 of 561

69.10. Packaging a Play application for
distribution

Gradle provides the capability to package your Play application so that it can easily be distributed and run in
atarget environment. The distribution package (zip file) contains the Play binary jars, all dependencies, and
generated scripts that set up the classpath and run the application in a Play-specific Netty container.

The distribution can be created by running the di st lifecycle task and places the distribution in the $bui | dDi r/
directory. Alternatively, one can validate the contents by running the st age lifecycle task which copies the
filesto the $bui | dDi r/ st age directory using the layout of the distribution package.

Page 500 of 561

http://netty.io

Table 69.5. Play distribution tasks

Task name Dependson Type

createPl ayBi naryStart Scripts - CreateStart Scr
st agePl ayBi naryDi st pl ayBi nary, creat ePl ayBi narySt arCSoyi pts

cr eat ePl ayBi nar yZi pDi st Zip

creat ePl ayBi naryTar Di st Tar

st age st agePl ayBi naryDi st Task

di st creat ePl ayBi naryZi pDi st, cr eat ePTayBi nar yTar Di

69.10.1. Adding additional filesto your Play application distribution

Y ou can add additional files to the distribution package using the Di st ri but i on API.

Page 501 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/tasks/application/CreateStartScripts.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/distribution/Distribution.html

Example 69.10. Add extrafilesto a Play application distribution

bui | d. gradl e

nodel {
di stributions {
pl ayBi nary {
contents {
fron(" READVE. nd")

from("scripts") {

into "bin"

}

69.11. Building a Play application with an IDE

If you want to generate | DE metadata configuration for your Play project, you need to apply the appropriate
IDE plugin. Gradle supports generating | DE metadata for IDEA only for Play projects at thistime.

To generate IDEA's metadata, apply the i dea plugin along with the pl ay plugin.

Example 69.11. Applying both the Play and IDEA plugins

bui | d. gradl e

pl ugi ns {
id'play'

id'idea'

Source code generated by routes and Twirl templates cannot be generated by IDEA directly, so changes
made to those files will not affect compilation until the next Gradle build. Y ou can run the Play application
with Gradle in continuous build to automatically rebuild and reload the application whenever something
changes.

69.12. Resources

For additional information about developing Play applications:

* Play typesinthe Gradle DSL Guide:
* Pl ayAppl i cati onBi narySpec
* Pl ayApplicationSpec
* PlayPlatform
* JvnC asses
® PublicAssets
®* PlayDi stributionContai ner

Page 502 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.play.PlayApplicationBinarySpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.play.PlayApplicationSpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.play.platform.PlayPlatform.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.play.JvmClasses.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.play.PublicAssets.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.play.distribution.PlayDistributionContainer.html

® JavaScriptMnify
®* Pl ayRun
®* Rout esConpil e
® Twirl Conpile
® Play Framework Documentation.

Page 503 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.play.tasks.JavaScriptMinify.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.play.tasks.PlayRun.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.play.tasks.RoutesCompile.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.play.tasks.TwirlCompile.html
https://www.playframework.com/documentation

70

Building native softwar e

Support for building native software is currently incubating. Please be aware that the DSL, APIs and
other configuration may changein later Gradle versions.

The native software plugins add support for building native software components, such as executables or
shared libraries, from code written in C++, C and other languages. While many excellent build tools exist
for this space of software development, Gradle offers devel opersits trademark power and flexibility together
with dependency management practices more traditionally found in the VM devel opment space.

The native software plugins make use of the Gradle software model.

70.1. Features

The native software plugins provide:

® Support for building native libraries and applications on Windows, Linux, OS X and other platforms.

® Support for several source languages.

® Support for building different variants of the same software, for different architectures, operating
systems, or for any purpose.

® Incrementa parallel compilation, precompiled headers.

* Dependency management between native software components.

® Unit test execution.

® Generate Visual studio solution and project files.

® Deep integration with various tool chain, including discovery of installed tool chains.

70.2. Supported languages

The following source languages are currently supported:

e C

® C++

® Objective-C

® Objective-C++

* Assembly

® \Windows resources

Page 504 of 561

70.3. Tool chain support

Gradle offers the ability to execute the same build using different tool chains. When you build a native
binary, Gradle will attempt to locate a tool chain installed on your machine that can build the binary. You
can fine tune exactly how this works, see Section 70.17, “Tool chains’ for details.

The following tool chains are supported:

Operating Tool Chain Notes
System
Linux GCC
Linux Clang
Mac OS X XCode Uses the Clang tool chain bundled with X Code.
Windows Visua C++ Windows XP and later, Visual C++ 2010/2012/2013.
Windows GCC with Cywin Windows XP and later.
32
Windows GCCwithMinGW Windows XP and later. Mingw-w64 is currently not
supported.

The following tool chains are unofficially supported. They generally work fine, but are not tested
continuously:

Operating System Tool Chain Notes

Mac OS X GCC from Macports

Mac OS X Clang from Macports

Windows GCC with Cywin 64 Windows XP and later.
UNIX-like GCC

UNIX-like Clang

70.4. Tool chan installation

Note that if you are using GCC then you currently need to install support for C++, even if you are not
building from C++ source. Thisrestriction will be removed in afuture Gradle version.

To build native software, you will need to have a compatible tool chain installed:

Page 505 of 561

http://gcc.gnu.org/
http://clang.llvm.org
http://www.microsoft.com/visualstudio/en-us
http://gcc.gnu.org/
http://cygwin.com
http://cygwin.com
http://gcc.gnu.org/
http://www.mingw.org/
http://mingw-w64.sourceforge.net
http://gcc.gnu.org/
http://clang.llvm.org
http://gcc.gnu.org/
http://cygwin.com
http://gcc.gnu.org/
http://clang.llvm.org

70.4.1. Windows

To build on Windows, install a compatible version of Visual Studio. The native plugins will discover the
Visua Studio installations and select the latest version. There is no need to mess around with environment
variables or batch scripts. Thisworks fine from a Cygwin shell or the Windows command-line.

Alternatively, you can install Cygwin with GCC or MinGW. Clang is currently not supported.

70.4.2. OS X

To build on OS X, you should install XCode. The native plugins will discover the XCode installation using
the system PATH.

The native plugins also work with GCC and Clang bundled with Macports. To use one of the Macports tool
chains, you will need to make the tool chain the default using the port sel ect command and add
Macports to the system PATH.

70.4.3. Linux

To build on Linux, install a compatible version of GCC or Clang. The native plugins will discover GCC or
Clang using the system PATH.

70.5. Native software model

The native software model builds on the base Gradle software model.

To build native software using Gradle, your project should define one or more native components. Each
component represents either an executable or a library that Gradle should build. A project can define any
number of components. Gradle does not define any components by default.

For each component, Gradle defines a source set for each language that the component can be built from. A
source set is essentially just a set of source directories containing source files. For example, when you apply
the ¢ plugin and define a library called hel | owor | d, Gradle will define, by default, a source set
containing the C source filesin the sr ¢/ hel | owor | d/ ¢ directory. It will use these source files to build
thehel | owor | d library. Thisis described in more detail below.

For each component, Gradle defines one or more binaries as output. To build a binary, Gradle will take the
source files defined for the component, compile them as appropriate for the source language, and link the
result into a binary file. For an executable component, Gradle can produce executable binary files. For a
library component, Gradle can produce both static and shared library binary files. For example, when you
definealibrary called hel | owor | d and build on Linux, Gradle will, by default, produce | i bhel | owor | d. sa
and| i bhel | owor| d. a binaries.

In many cases, more than one binary can be produced for a component. These binaries may vary based on
the tool chain used to build, the compiler/linker flags supplied, the dependencies provided, or additional
source files provided. Each native binary produced for a component is referred to as variant. Binary variants
are discussed in detail below.

Page 506 of 561

70.6. Parallel Compilation

Gradle uses the single build worker pool to concurrently compile and link native components, by default. No
special configuration is required to enable concurrent building.

By default, the worker pool size is determined by the number of available processors on the build machine
(as reported to the build JVM). To explicitly set the number of workers use the - - max- wor ker s
command-line option or or g. gr adl e. wor ker s. max system property. There is generally no need to
change this setting from its defaullt.

The build worker pool is shared across all build tasks. This means that when using parallel project execution
, the maximum number of concurrent individual compilation operations does not increase. For example, if
the build machine has 4 processing cores and 10 projects are compiling in parallel, Gradle will only use 4
total workers, not 40.

70.7. Building alibrary

To build either a static or shared native library, you define a library component in the conponent s
container. The following sample defines alibrary caled hel | o:

Example 70.1. Defining a library component

bui |l d. gradl e

nmodel {
conponents {
hel | o(Nati velLi br arySpec)

}

A library component is represented using Nat i veLi br ar ySpec. Each library component can produce at
least one shared library binary (Shar edLi br ar yBi nar ySpec) and at least one static library binary (
Stati cLi braryBi narySpec).

70.8. Building an executable

To build a native executable, you define an executable component in the conponent s container. The
following sample defines an executable called mai n:

Page 507 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.SharedLibraryBinarySpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html

Example 70.2. Defining executable components
buil d. gradl e

nodel {
conponents {
mai n(Nat i veExecut abl eSpec) {
sour ces {

c.lib library: "hello"

An executable component is represented using Nat i veExecut abl eSpec. Each executable component
can produce at least one executable binary (Nat i veExecut abl eBi nar ySpec).

For each component defined, Gradle adds a Funct i onal Sour ceSet with the same name. Each of these
functional source sets will contain a language-specific source set for each of the languages supported by the
project.

70.9. Tasks

For each Nat i veBi nar ySpec that can be produced by a build, a single lifecycle task is constructed that

can be used to create that binary, together with a set of other tasks that do the actual work of compiling,

linking or assembling the binary.
Component Type Native Binary Type Lifecycle task L ocat
Nat i veExecut abl eSpec Nati veExecut abl eBi narySpec ${ conponent . nane} Exesusrz
Nat i veLi brar ySpec Shar edLi br ar yBi nar ySpec ${ conponent . nane} Shag{guil

Nat i veLi br ar ySpec St ati cLi braryBi narySpec ${ conponent . name} St &{ @l

70.9.1. Working with shared libraries

For each executable binary produced, the cpp plugin provides an i nst al | ${ bi nary. nane} task,
which creates a development install of the executable, along with the shared libraries it requires. This allows
you to run the executable without needing to install the shared librariesin their final locations.

70.10. Finding out more about your project

Gradle provides a report that you can run from the command-line that shows some details about the
components and binaries that your project produces. To use this report, just run gr adl e conponent s.
Below is an example of running this report for one of the sample projects:

Page 508 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeExecutableBinarySpec.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/language/base/FunctionalSourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeExecutableBinarySpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.SharedLibraryBinarySpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html

Example 70.3. The componentsreport
Output of gr adl e comnponent s

> gradl e conmponents
: conponent s

Source sets
C++ source 'hello:cpp'
srcDir: src/hellolcpp

Bi nari es
Shared library 'hello:sharedLibrary'
buil d using task: :helloSharedLibrary
build type: build type 'debug’
flavor: flavor 'default’
target platform platform'current'
tool chain: Tool chain 'clang' (d ang)
shared library file: build/libs/hello/shared/libhello.dylib
Static library '"hello:staticLibrary’
build using task: :helloStaticLibrary
build type: build type 'debug’
flavor: flavor 'default’
target platform platform'current'
tool chain: Tool chain 'clang' (Cd ang)
static library file: build/libs/hello/static/libhello.a

Nat i ve executable 'main’

Source sets
C++ source ' main: cpp'
srcDir: src/main/cpp

Bi nari es

Execut abl e ' nai n: execut abl e
buil d using task: :nmainExecutable
install using task: :install Mai nExecutable
build type: build type 'debug’
flavor: flavor 'default’
target platform platform'current'
tool chain: Tool chain 'clang' (d ang)
executable file: build/ exel/ main/min

Note: currently not all plugins register their conmponents, so sone conponents may nha
BUI LD SUCCESSFUL

Total tinme: 1 secs

Page 509 of 561

70.11. Language support

Presently, Gradle supports building native software from any combination of source languages listed below.
A native binary project will contain one or more named Funct i onal Sour ceSet instances (eg 'main’,
'test’, etc), each of which can contain LanguageSour ceSet s containing source files, one for each
language.

e C

o C++

® Objective-C

® Objective-C++

® Assembly

® Windows resources

70.11.1. C++ sources

C++ language support is provided by means of the' cpp' plugin.

Example 70.4. The'cpp’ plugin

bui | d. gradl e
apply plugin: 'cpp'

C++ sources to be included in a native binary are provided via a CppSour ceSet , which defines a set of
C++ source files and optionally a set of exported header files (for a library). By default, for any named
component the CppSour ceSet contains. cpp sourcefilesinsr c/ ${ nanme}/ cpp, and header filesinsrc/ $

While the cpp plugin defines these default locations for each CppSour ceSet |, it is possible to extend or
override these defaults to allow for a different project layout.

Example 70.5. C++ sour ce set

bui |l d. gradl e

sources {
cpp {
source {
srcDir "src/source"

include "**/* cpp"

For alibrary named 'main’, header filesin sr ¢/ mai n/ header s are considered the “public” or “exported”
headers. Header files that should not be exported should be placed inside the sr ¢/ mai n/ cpp directory
(though be aware that such header files should always be referenced in a manner relative to the file
including them).

Page 510 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.language.cpp.CppSourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.cpp.CppSourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.cpp.CppSourceSet.html

70.11.2. C sources

C language support is provided by means of the' ¢' plugin.

Example 70.6. The'c' plugin

bui | d. gradl e

apply plugin: 'c'

C sources to be included in a native binary are provided via a CSour ceSet , which defines a set of C
source files and optionally a set of exported header files (for a library). By default, for any named

component the CSour ceSet contains. ¢ sourcefilesinsrc/ ${ nane}/ c, and header filesin sr c/ ${ nane}.

While the ¢ plugin defines these default locations for each CSour ceSet , it is possible to extend or
override these defaults to allow for a different project layout.

Example 70.7. C sour ce set
bui |l d. gradl e

sour ces {
c {
source {
srcDir "src/source"
include "**/* ¢c"

}

export edHeaders {
srcDir "src/include"

For alibrary named 'main’, header filesin sr ¢/ mai n/ header s are considered the “public” or “exported”
headers. Header files that should not be exported should be placed inside the sr ¢/ mai n/ ¢ directory
(though be aware that such header files should always be referenced in a manner relative to the file
including them).

70.11.3. Assembler sources

Assembly language support is provided by means of the' assenbl er' plugin.

Example 70.8. The'assembler' plugin

bui | d. gradl e

apply plugin: "assenbler’

Assembler sources to be included in a native binary are provided via a Assenbl er Sour ceSet , which
defines a set of Assembler source files. By default, for any named component the Assenbl er Sour ceSet
contains. s sourcefilesunder src/ ${ nane}/ asm

Page 511 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.assembler.AssemblerSourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.assembler.AssemblerSourceSet.html

70.11.4. Objective-C sources
Objective-C language support is provided by means of the' obj ecti ve-c' plugin.

Example 70.9. The 'objective-c' plugin

bui |l d. gradl e

apply plugin: 'objective-c'

Objective-C sources to be included in a native binary are provided viaa Obj ect i veCSour ceSet , which
defines a set of Objective-C source files. By default, for any named component the
bj ect i veCSour ceSet contains. msource filesunder sr ¢/ ${ nane}/ obj ecti veC.

70.11.5. Objective-C++ sources
Objective-C++ language support is provided by means of the' obj ecti ve- cpp' plugin.

Example 70.10. The 'objective-cpp’ plugin

bui | d. gradl e

apply plugin: 'objective-cpp'

Objective-C++ sources to be included in a native binary are provided viaa Obj ect i veCppSour ceSet ,
which defines a set of Objective-C++ source files. By default, for any named component the
Obj ect i veCppSour ceSet contains. mmsource files under sr ¢/ ${ nane}/ obj ecti veCpp.

70.12. Configuring the compiler, assembler and
linker

Each binary to be produced is associated with a set of compiler and linker settings, which include
command-line arguments as well as macro definitions. These settings can be applied to all binaries, an
individual binary, or selectively to a group of binaries based on some criteria.

Page 512 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html

Example 70.11. Settingsthat apply to all binaries

bui | d. gradl e

nodel {
bi nari es {
all {
/'l Define a preprocessor nmacro for every binary
cppConpi | er. defi ne " NDEBUG'

/| Define tool chai n-specific conpiler and |inker options
if (toolChain in CGecc) {
cppConpi l er.args "-2", "-fno-access-control”
linker.args "-Xlinker", "-S"
}
if (tool Chain in Visual Cpp) ({
cppConpi ler.args "/Z "
I'i nker.args "/ DEBUG'

Each binary is associated with a particular Nat i veTool Chai n, allowing settings to be targeted based on
thisvalue.

It is easy to apply settingsto all binaries of a particular type:

Example 70.12. Settingsthat apply to all shared libraries
bui |l d. gradl e

/'l For any shared library binaries built with Visual Ct++,
/] define the DLL_EXPORT nmacro
nodel {
bi nari es {
wi t hType(Shar edLi br ar yBi nar ySpec) {
if (tool Chain in Visual Cpp) {

cConmpiler.args "/zi "
cConpi |l er. define "DLL_EXPORT"

Furthermore, it is possible to specify settings that apply to all binaries produced for a particular execut abl e
orl i brary component:

Page 513 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

Example 70.13. Settings that apply to all binaries produced for the 'main' executable component
buil d. gradl e

nodel {
conponents {
mai n(Nat i veExecut abl eSpec) {
target Pl atf orm " x86"
bi naries.all ({
if (tool Chain in Visual Cpp) {
sources {
pl at f or mMsn(Assenbl er Sour ceSet) {
source.srchDir "src/main/asm.i 386_nasni

}

}

assenbler.args "/ Zi "

} else {
sources {
pl at f or mMsn(Assenbl er Sour ceSet) {
source.srchDir "src/min/asmi 386 gcc"

}
}

assenbl er.args "

The example above will apply the supplied configuration to all execut abl e binaries built.

Similarly, settings can be specified to target binaries for a component that are of a particular type: eg all
shared libraries for the main library component.

Example 70.14. Settingsthat apply only to shared libraries produced for the 'main’ library component
bui |l d. gradl e

nodel {
conmponent s {
mai n(Nat i veLi brarySpec) {
bi nari es. w t hType(Shar edLi br ar yBi narySpec) {
/'l Define a preprocessor macro that only applies to shared |ibrag

cppConpi | er. define "DLL_EXPORT"

70.13. Windows Resources

When using the Vi sual Cpp tool chain, Gradle is able to compile Window Resource (r ¢) files and link
them into a native binary. This functionality is provided by the' wi ndows- r esour ces' plugin.

Page 514 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html

Example 70.15. The 'windows-resour ces plugin

bui | d. gradl e

apply plugin: '"w ndows-resources'

Windows resources to be included in a native binary are provided viaa W ndowsResour ceSet , which
defines a set of Windows Resource source files. By default, for any named component the
W ndowsResour ceSet contains. r ¢ sourcefilesunder src/ ${ nanme}/rc.

As with other source types, you can configure the location of the windows resources that should be included
in the binary.

Example 70.16. Configuring the location of Windows r esour ce sour ces
bui | d-resource-only-dll.gradle

sources {
rc {
source {
srcDirs "src/hello/rc"
}
export edHeaders {
srcDirs "src/ hell o/ headers"

You are able to construct a resource-only library by providing Windows Resource sources with no other
language sources, and configure the linker as appropriate:

Example 70.17. Building a resour ce-only dll
buil d-resource-only-dll.gradle

nodel {
conponents {
hel | oRes(Nati veLi brarySpec) {
bi naries.all ({
rcConpil er.args "/v"
i nker.args "/noentry", "/machi ne: x86"
}
sources {
rc {
source {
srcDirs "src/hello/rc"
}
export edHeaders {
srcDirs "src/ hell o/ headers"

}

Page 515 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.language.rc.WindowsResourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.rc.WindowsResourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.rc.WindowsResourceSet.html

The example above also demonstrates the mechanism of passing extra command-line arguments to the
resource compiler. Ther cConpi | er extensionisof type Pr epr ocessi ngTool .

70.14. Library Dependencies

Dependencies for native components are binary libraries that export header files. The header files are used
during compilation, with the compiled binary dependency being used during linking and execution. Header
files should be organized into subdirectories to prevent clashes of commonly named headers. For instance, if
your yl i b project has al oggi ng. h header, it will make it less likely the wrong header is used if you
includeitas" nyl i b/ 1 oggi ng. h" instead of " | oggi ng. h".

70.14.1. Dependencies within the same project

A set of sources may depend on header files provided by another binary component within the same project.
A common example is a native executable component that uses functions provided by a separate native
library component.

Such alibrary dependency can be added to a source set associated with the execut abl e component:

Example 70.18. Providing a library dependency to the sour ce set
buil d. gradl e

sources {

cpp {
lib library: "hello"

}

Alternatively, a library dependency can be provided directly to the Nat i veExecut abl eBi nar ySpec
for theexecut abl e.

Page 516 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.PreprocessingTool.html

Example 70.19. Providing a library dependency to the binary
buil d. gradl e

nodel {
conponents {
hel | o(Nati veLi brarySpec) ({
sour ces {
c {

source {
srcDir "src/source"
include "**/*. c"

}

export edHeaders {
srcDir "src/include"

}

}
}

mai n(Nat i veExecut abl eSpec) {
sources {
cpp {
source {
srcDir "src/source"
i nclude "**/*. cpp"

}
}

bi naries.all ({
/| Each executabl e bi nary produced uses the 'hello' static librd
lib library: "hello', |linkage: 'static'

70.14.2. Project Dependencies

For a component produced in a different Gradle project, the notation is similar.

Page 517 of 561

Example 70.20. Declaring project dependencies
buil d. gradl e

project(":1ib") {
apply plugin: "cpp"
nodel {
conponents {
mai n(Nat i veLi br ar ySpec)
}

/'l For any shared library binaries built with Visual C++
/1 define the DLL_EXPORT nacro
bi nari es {
wi t hType(Shar edLi br ar yBi nar ySpec) {
if (tool Chain in Visual Cpp) ({
cppConpi | er. define "DLL EXPORT"

}

project(":exe") {
apply plugin: "cpp"

nodel {
conponents {
mai n(Nat i veExecut abl eSpec) {
sources {
cpp {
lib project: ":lib", library: 'nmain'

}

70.15. Precompiled Headers

Precompiled headers are a performance optimization that reduces the cost of compiling widely used headers
multiple times. This feature precompiles a header such that the compiled object file can be reused when
compiling each source file rather than recompiling the header each time. This support is available for C,
C++, Objective-C, and Objective-C++ builds.

To configure a precompiled header, first a header file needs to be defined that includes al of the headers that
should be precompiled. It must be specified as the first included header in every source file where the
precompiled header should be used. It is assumed that this header file, and any headers it contains, make use
of header guards so that they can be included in an idempotent manner. If header guards are not used in a
header file, it is possible the header could be compiled more than once and could potentially lead to a broken
build.

Page 518 of 561

Example 70.21. Creating a precompiled header file

src/ hel | o/ header s/ pch. h

#i f ndef PCH_H
#defi ne PCH_H

#i ncl ude <i ostreanr
#i ncl ude "hell o. h"
#endi f

Example 70.22. Including a precompiled header filein a sourcefile
src/ hel | o/ cpp/ hel | 0. cpp

#i ncl ude "pch. h"

void LIB FUNC Greeter::hello () {
std::cout << "Hello world!" << std::endl;

}

Precompiled headers are specified on a source set. Only one precompiled header file can be specified on a
given source set and will be applied to all source filesthat declareit as the first include. If a source files does
not include this header file as the first header, the file will be compiled in the normal manner (without
making use of the precompiled header object file). The string provided should be the same as that which is
used in the "#include" directivein the sourcefiles.

Example 70.23. Configuring a precompiled header
bui |l d. gradl e

nodel {
conponents {
hel | o(Nati velLi brarySpec) ({
sources {

cpp {
pr eConpi | edHeader "pch. h"

}

A precompiled header must be included in the same way for al files that use it. Usually, this means the
header file should exist in the source set "headers" directory or in a directory included on the compiler
include path.

70.16. Native Binary Variants

For each executable or library defined, Gradle is able to build a number of different native binary variants.
Examples of different variants include debug vs release binaries, 32-bit vs 64-bit binaries, and binaries
produced with different custom preprocessor flags.

Binaries produced by Gradle can be differentiated on build type, platform, and flavor. For each of these

Page 519 of 561

'variant dimensions, it is possible to specify a set of available values as well as target each component at
one, some or al of these. For example, a plugin may define a range of support platforms, but you may
choose to only target Windows-x86 for a particular component.

70.16.1. Build types

A bui |l d type determines various non-functional aspects of a binary, such as whether debug information
is included, or what optimisation level the binary is compiled with. Typical build types are 'debug’ and
'release, but a project isfreeto define any set of build types.

Example 70.24. Defining build types

bui | d. gradl e

nodel {
bui | dTypes {
debug

rel ease

If no build types are defined in a project, then a single, default build type called 'debug’ is added.
For a build type, a Gradle project will typically define a set of compiler/linker flags per tool chain.

Example 70.25. Configuring debug binaries
bui |l d. gradl e

nodel {
bi nari es {
all {
if (toolChain in Gcc && buil dType == buil dTypes. debug) {
cppConpi l er.args "-g"
}
if (tool Chain in Visual Copp && buil dType == buil dTypes. debug) {

cppConpi l er.args '/ Zi
cppConpi | er. defi ne ' DEBUG
I'i nker.args '/ DEBUG

At this stage, it is completely up to the build script to configure the relevant compiler/linker flags for
each build type. Future versions of Gradle will automatically include the appropriate debug flags for
any 'debug' build type, and may be aware of various levels of optimisation aswell.

Page 520 of 561

70.16.2. Platform

An executable or library can be built to run on different operating systems and cpu architectures, with a
variant being produced for each platform. Gradle defines each OS/architecture combination as a
Nat i vePl at f or m and a project may define any number of platforms. If no platforms are defined in a
project, then asingle, default platform "current' is added.

Presently, aPl at f or mconsists of a defined operating system and architecture. As we continue to
develop the native binary support in Gradle, the concept of Platform will be extended to include
things like C-runtime version, Windows SDK, ABI, etc. Sophisticated builds may use the extensibility
of Gradle to apply additional attributes to each platform, which can then be queried to specify
particular includes, preprocessor macros or compiler arguments for a native binary.

Example 70.26. Defining platforms
bui |l d. gradl e

nodel {
platforms {
x86 {
architecture "x86"
}
x64 {
architecture "x86 64"

}
itani um {
architecture "ia-64"

For a given variant, Gradle will attempt to find a Nat i veTool Chai n that is able to build for the target
platform. Available tool chains are searched in the order defined. See the tool chains section below for more
details.

70.16.3. Flavor

Each component can have a set of named f | avor s, and a separate binary variant can be produced for each
flavor. Whilethe bui | d type andt arget pl at f or mvariant dimensions have a defined meaning in
Gradle, each project is free to define any number of flavors and apply meaning to them in any way.

An example of component flavors might differentiate between 'demo’, 'paid' and 'enterprise’ editions of the
component, where the same set of sources is used to produce binaries with different functions.

Page 521 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.platform.NativePlatform.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.platform.NativePlatform.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

Example 70.27. Defining flavors
buil d. gradl e

nodel {
flavors {
engl i sh
french

}
conponents {
hel | o(Nati veLi brarySpec) ({

bi naries.all {
if (flavor == flavors. french) {
cppConpi | er. defi ne " FRENCH'

}

In the example above, alibrary is defined with a 'english' and 'french’ flavor. When compiling the ‘french’
variant, a separate macro is defined which leads to a different binary being produced.

If no flavor is defined for a component, then a single default flavor named 'default’ is used.

70.16.4. Selecting the build types, platforms and flavors for a component

For a default component, Gradle will attempt to create a native binary variant for each and every
combination of bui | dType, pl at f or mand f | avor defined for the project. It is possible to override this
on a per-component basis, by specifying the set of t ar get Bui | dTypes, t ar get Pl at f or mand/or t ar get F

Example 70.28. Targeting a component at particular platforms
bui |l d. gradl e

nodel {
conponents {
hel | o(Nati velLi brarySpec) ({
target Pl atf orm " x86"
target Pl at f orm " x64"

}
mai n(Nat i veExecut abl eSpec) {

target Pl atf orm " x86"
target Pl at f orm " x64"
sources {
cpp.lib library: '"hello'", linkage: 'static'

Here you can see that the
Tar get edNat i veConponent . target Pl atforn(java.lang. String) method is used to
specify aplatform that the Nat i veExecut abl eSpec named mai n should be built for.

Page 522 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetPlatform(java.lang.String)
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetPlatform(java.lang.String)

A similar mechanism exists for selecting
Tar get edNat i veConponent . t arget Bui | dTypes(j ava.l ang. String[]) and
Tar get edNat i veConponent . t arget Fl avor s(j ava.lang. String[]) .

70.16.5. Building all possible variants

When a set of build types, target platforms, and flavors is defined for a component, a
Nat i veBi nar ySpec model element is created for every possible combination of these. However, in
many cases it is not possible to build a particular variant, perhaps because no tool chain is available to build
for aparticular platform.

If a binary variant cannot be built for any reason, then the Nat i veBi nar ySpec associated with that
variant will not be bui | dabl e. It is possible to use this property to create atask to generate all possible
variants on a particular machine.

Example 70.29. Building all possible variants

bui | d. gradl e

nodel {
tasks {
bui | dAI' | Execut abl es(Task) {
dependsOn $. binaries.findAl |l { it.buildable }

70.17. Tool chains

A single build may utilize different tool chains to build variants for different platforms. To this end, the core
‘native-binary' plugins will attempt to locate and make available supported tool chains. However, the set of
tool chains for a project may also be explicitly defined, allowing additional cross-compilersto be configured
aswell as allowing theinstall directories to be specified.

70.17.1. Defining tool chains

The supported tool chain types are:

* Ccc
* C ang
* i sual Cpp

Page 523 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetBuildTypes(java.lang.String[])
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetBuildTypes(java.lang.String[])
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetFlavors(java.lang.String[])
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetFlavors(java.lang.String[])
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.toolchain.Gcc.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.toolchain.Clang.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html

Example 70.30. Defining tool chains
buil d. gradl e

nodel {
t ool Chai ns {

vi sual Cpp(Vi sual Cpp) {
/] Specify the installDir if Visual Studio cannot be | ocated
/1 installDir "C:/Apps/Mcrosoft Visual Studio 10.0"

}

gce(Gee) {
/1 Uncoment to use a GCC install that is not in the PATH
/1 path "/usr/bin/gcc"

}
cl ang(d ang)

Each tool chain implementation allows for a certain degree of configuration (see the API documentation for
more details).

70.17.2. Using tool chains

It is not necessary or possible to specify the tool chain that should be used to build. For a given variant,
Gradle will attempt to locate a Nat i veTool Chai n that is able to build for the target platform. Available
tool chains are searched in the order defined.

When a platform does not define an architecture or operating system, the default target of the tool
chain isassumed. So if a platform does not define avalue for oper at i ngSyst em Gradle will find
the first available tool chain that can build for the specified ar chi t ect ur e.

The core Gradle tool chains are able to target the following architectures out of the box. In each case, the
tool chain will target the current operating system. See the next section for information on cross-compiling
for other operating systems.

Tool Chain Architectures
GCC x86, x86_64
Clang %86, x86_64
Visual C++ x86, x86_64, ia-64

So for GCC running on linux, the supported target platforms are 'linux/x86' and 'linux/x86_64". For GCC
running on Windows via Cygwin, platforms ‘windows/x86" and ‘windows/x86_64" are supported. (The
Cygwin POSIX runtimeis not yet modelled as part of the platform, but will be in the future.)

If no target platforms are defined for a project, then al binaries are built to target a default platform named
‘current’. This default platform does not specify any ar chi t ect ure or operati ngSyst em value,
hence using the default values of the first available tool chain.

Gradle provides a hook that allows the build author to control the exact set of arguments passed to a tool

Page 524 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html

chain executable. This enables the build author to work around any limitations in Gradle, or assumptions
that Gradle makes. The arguments hook should be seen as a 'last-resort’ mechanism, with preference given to
truly modelling the underlying domain.

Example 70.31. Reconfiguretool arguments
buil d. gradl e

nodel {
t ool Chai ns {
vi sual Cpp(Vi sual Cpp) {
eachPl at f orm {
cppConpi | er. wi t hArgunents { args ->
args << "-DFRENCH'
}
}
}
cl ang(C ang) {
eachPl at f orm {
cConmpi | er.wi t hArgunments { args ->

Col | ections. repl aceAl |l (args, "CUSTOM', "-DFRENCH")

}

| i nker.w t hArgunments { args ->
args. renove " CUSTOM'

}

staticLi bArchi ver.w t hArgunents { args ->
args. renmove " CUSTOM'

}

70.17.3. Cross-compiling with GCC

Cross-compiling is possible with the Gcc and Cl ang tool chains, by adding support for additional target
platforms. This is done by specifying a target platform for a toolchain. For each target platform a custom
configuration can be specified.

Page 525 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.toolchain.Gcc.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.toolchain.Clang.html

Example 70.32. Defining tar get platforms
buil d. gradl e

nodel {
t ool Chai ns {
gee(CGee) |
target ("arm'){

cppConpi | er. wi t hArgunents { args ->
args << "-nB2"

}

| i nker.w t hArguments { args ->
args << "-nB2"

}

}
target ("sparc")

}
}

platforms {
arm {
architecture "arnf
}
sparc {
architecture "sparc"
}
}

conponents {
mai n(Nat i veExecut abl eSpec) {
targetPlatform "arn
target Pl atform "sparc"

70.18. Visual Studio IDE integration

Gradle has the ability to generate Visual Studio project and solution files for the native components defined
in your build. This ability is added by the vi sual - st udi o plugin. For a multi-project build, al projects
with native components should have this plugin applied.

When the vi sual - st udi o plugin is applied, a task name ${ conponent . nane} Vi sual St udi o is
created for each defined component. This task will generate a Visual Studio Solution file for the named
component. This solution will include a Visual Studio Project for that component, as well as linking to
project files for each depended-on binary.

The content of the generated visual studio files can be modified via API hooks, provided by the vi sual St udi o
extension. Take a look at the 'visual-studio’ sample, or see

Vi sual St udi oExt ensi on. get Proj ects() and

Vi sual St udi oExt ensi on. get Sol uti ons() inthe APl documentation for more details.

Page 526 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:projects
http://www.gradle.org/docs/3.0/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:projects
http://www.gradle.org/docs/3.0/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:solutions
http://www.gradle.org/docs/3.0/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:solutions

70.19. CUnit support

The Gradle cuni t plugin provides support for compiling and executing CUnit tests in your native-binary
project. For each Nat i veExecut abl eSpec and Nati velLi br arySpec defined in your project,
Gradle will create amatching CUni t Test Sui t eSpec component, named ${ conponent . nane} Test

70.19.1. CUnit sources

Gradle will create a CSour ceSet named 'cunit' for each CUni t Test Sui t eSpec component in the
project. This source set should contain the cunit test files for the component under test. Source files can be
located in the conventional location (sr c/ ${ conmponent . nane} Test/ cuni t) or can be configured
like any other source set.

Gradle initialises the CUnit test registry and executes the tests, utilising some generated CUnit launcher
sources. Gradle will expect and call a function with the signature voi d gradl e_cunit _regi ster ()
that you can use to configure the actual CUnit suites and tests to execute.

Due to this mechanism, your CUnit sources may not contain a mai n method since this will clash with
the method provided by Gradle.

70.19.2. Building CUnit executables

A CUni t Test Sui t eSpec component has an associated Nati veExecut abl eSpec or
Nat i veLi br ar ySpec component. For each Nat i veBi nar ySpec configured for the main component,
a matching CUni t Test Sui t eBi nar ySpec will be configured on the test suite component. These test
suite binaries can be configured in asimilar way to any other binary instance:

Page 527 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/nativeplatform/test/cunit/CUnitTestSuiteBinarySpec.html

Example 70.33. Registering CUnit tests

suite_operators.c

#i ncl ude <Cuni t/Basi c. h>
#i ncl ude "gradl e _cunit_register.h"
#i ncl ude "test_operators. h"

int suite_init(void) {
return O;

}

int suite_clean(void) {
return O;

}

void gradle_cunit_register() {
CU pSuite pSuiteMath = CU add_suite("operator tests", suite_init, suite_cled
CU add_test (pSuiteMath, "test plus", test_plus);
CU add_t est (pSuiteMath, "test_m nus", test_m nus);

bui | d. gradl e

nodel {
bi nari es {
wi t hType(CUni t Test Sui t eBi narySpec) {
lib library: "cunit", |linkage: "static"

if (flavor == flavors.failing) {
cConpi | er. define "PLUS BROKEN'

Both the CUnit sources provided by your project and the generated launcher require the core CUnit
headers and libraries. Presently, this library dependency must be provided by your project for each
CUni t Test Sui t eBi nar ySpec.

70.19.3. Running CUnit tests

For each CUni t Test Sui t eBi nar ySpec, Gradle will create atask to execute this binary, which will run
al of the registered CUnit tests. Test results will be found in the ${buil d.dir}/test-results
directory.

Example 70.34. Running CUnit tests

bui | d. gradl e

Page 528 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/nativeplatform/test/cunit/CUnitTestSuiteBinarySpec.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/nativeplatform/test/cunit/CUnitTestSuiteBinarySpec.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/nativeplatform/test/cunit/CUnitTestSuiteBinarySpec.html

apply plugin: "c"
apply plugin: '"cunit-test-suite

nmodel {
flavors {
passi ng
failing
}
platforms {
x86 {
architecture "x86"

}
}
repositories {
| i bs(PrebuiltLibraries) {
cunit {
headers.srcDir "libs/cunit/2.1-2/include"
bi nari es. w thType(StaticLi braryBi nary) {
staticlLibraryFile =
file("libs/cunit/2.1-2/1ib/" +
findCUni t Li bFor Pl at forn{target Pl atforn))

}
}

conponent s {
oper at or s(Nat i veLi brarySpec) {
target Pl atform " x86"

}

}

testSuites {
oper at or sTest (CUni t Test Sui t eSpec) {
testing $.conponents. operators

}
}
}

nodel {
bi nari es {
wi t hType(CUni t Test Sui t eBi narySpec) {
lib library: "cunit", linkage: "static"

if (flavor == flavors.failing) {
cConpi | er. define "PLUS BROKEN'

Note: The code for this example can be found at sanpl es/ nati ve- bi nari es/ cunit in the
‘-al’ distribution of Gradle.

Output of gradl e -g runQper at or sTest Fai | i ngCUni t Exe

Page 529 of 561

> gradl e -q runQperatorsTest Fai | i ngCUni t Exe

There were test failures:
1. /hone/user/gradl e/ sanpl es/ nati ve-binaries/cunit/src/operatorsTest/c/test_plus.c
2. /hone/user/ gradl e/ sanpl es/ nati ve-bi nari es/cunit/src/operatorsTest/c/test_plus.c

The current support for CUnit is quite rudimentary. Plans for future integration include:

® Allow tests to be declared with Javadoc-style annotations.

® Improved HTML reporting, similar to that available for JUnit.
Real-time feedback for test execution.

® Support for additional test frameworks.

70.20. GoogleTest support

The Gradle googl e-t est plugin provides support for compiling and executing GoogleTest tests in your
native-binary project. For each Nat i veExecut abl eSpec and Nat i veLi br ar ySpec defined in your
project, Gradle will create amatching Googl eTest Test Sui t eSpec component, named ${ conponent . nal

70.20.1. GoogleTest sources

Gradle will create a CppSour ceSet named 'cpp’ for each Googl eTest Test Sui t eSpec component in
the project. This source set should contain the GoogleTest test files for the component under test. Source
files can be located in the conventional location (sr c/ ${ conponent . nane} Test/ cpp) or can be
configured like any other source set.

70.20.2. Building GoogleTest executables

A Googl eTest Test Sui t eSpec component has an associated Nati veExecut abl eSpec or
Nat i veLi br ar ySpec component. For each Nat i veBi nar ySpec configured for the main component,
a matching Googl eTest Test Sui t eBi nar ySpec will be configured on the test suite component.
These test suite binaries can be configured in asimilar way to any other binary instance:

Page 530 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.cpp.CppSourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.test.googletest.GoogleTestTestSuiteSpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/nativeplatform/test/googletest/GoogleTestTestSuiteBinarySpec.html

Example 70.35. Registering GoogleT est tests
buil d. gradl e

nodel {
bi nari es {
wi t hType(Googl eTest Test Sui t eBi nar ySpec) {
lib library: "googleTest", l|inkage: "static"

if (flavor == flavors.failing) {
cppConpi | er. defi ne "PLUS BROKEN'

}

if (targetPl atform operatingSystem | inux) {
cppConpi l er.args ' -pthread'
| i nker.args ' -pthread

Note: The code for this example can be found at sanpl es/ nati ve- bi nari es/ googl e-t est
inthe ‘-all’ distribution of Gradle.

The GoogleTest sources provided by your project require the core GoogleTest headers and libraries.
Presently, this library dependency must be provided by your project for each
Googl eTest Test Sui t eBi nar ySpec.

70.20.3. Running GoogleTest tests

For each Googl eTest Test Sui t eBi nar ySpec, Gradle will create a task to execute this binary, which
will run all of the registered GoogleTest tests. Test resultswill befoundinthe ${buil d. dir}/test-resul t
directory.

The current support for GoogleTest is quite rudimentary. Plans for future integration include:

® |mproved HTML reporting, similar to that available for JUnit.
¢ Real-time feedback for test execution.
® Support for additional test frameworks.

Page 531 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/nativeplatform/test/googletest/GoogleTestTestSuiteBinarySpec.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/nativeplatform/test/googletest/GoogleTestTestSuiteBinarySpec.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/nativeplatform/test/googletest/GoogleTestTestSuiteBinarySpec.html

/1

Extending the software model

Support for the software model is currently incubating. Please be aware that the DSL, APIs and other
configuration may changein later Gradle versions.

One of the strengths of Gradle has always been its extensibility, and its adaptability to new domains. The
software model takes this extensibility to a new level, enabling the deep modeling of specific domains via
richly typed DSLs. The following chapter describes how the model and the corresponding DSLs can be
extended to support domains like Java, Play Framework or native software devel opment. Before reading this
you should be familiar with the Gradle software model rule based configuration and concepts.

The following build script is an example of using a custom software model for building Markdown based
documentation:

Example 71.1. an example of using a custom softwar e model

bui |l d. gradl e

i nport sanpl e. docunent ati on. Docunent at i onConponent
i nport sanpl e. docunent at i on. Text Sour ceSet
i mport sanpl e. mar kdown. Mar kdownSour ceSet

appl y pl ugi n: sanpl e. docunent ati on. Docunent ati onPl ugi n
apply pl ugin: sanpl e. mar kdown. Mar kdownPl ugi n

nodel {
conponents {
docs(Docunent at i onConponent) {
sour ces {
r ef er ence(Text Sour ceSet)
user gui de(Mar kdownSour ceSet) {
gener at el ndex = true
smart Quotes = true

Note: The code for this example can be found at sanpl es/ cust omvbdel / | anguageType/ in
the“-all’ distribution of Gradle.

Page 532 of 561

Therest of this chapter is dedicated to explaining what is going on behind this build script.

71.1. Concepts

A custom software model type has a public type, a base interface and internal views. Multiple such types
then collaborate to define a custom software model.

71.1.1. Public type and base interfaces

Extended types declare a public type that extends a base interface:

® Components extend the Conponent Spec base interface
® Binaries extend the Bi nar ySpec base interface
® Source sets extend the LanguageSour ceSet base interface

The public type is exposed to build logic.

71.1.2. Internal views

Adding internal views to your model type, you can make some data visible to build logic via a public type,
while hiding the rest of the data behind the internal view types. Thisis covered in a dedicated section below.

71.1.3. Components all the way down

Components are composed of other components. A source set is just a special kind of component
representing sources. It might be that the sources are provided, or generated. Similarily, some components
are composed of different binaries, which are built by tasks. All buildable components are built by tasks. In
the software model, you will write rules to generate both binaries from components and tasks from binaries.

71.2. Components

To declare a custom component type one must extend Conponent Spec, or one of the following,
depending on the use case:

® Sour ceConponent Spec represents a component which has sources

® Vari ant Component Spec represents a component which generates different binaries based on
context (target platforms, build flavors, ...). Such a component generally produces multiple binaries.

® Cener al Component Spec isaconvenient base interface for components that are built from sources

and variant-aware. Thisisthe typical case for alot of software components, and therefore it should be in
most of the cases the base type to be extended.

The core software model includes more types that can be used as base for extension. For example:
Li brarySpec and Applicati onSpec can also be extended in this manner. Theses are no-op
extensions of Gener al Conponent Spec used to describe a software model better by distinguishing
libraries and applications components. Test Sui t eSpec should be used for all components that describe a
test suite.

Page 533 of 561

http://www.gradle.org/docs/3.0/dsl/org.gradle.platform.base.ComponentSpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.platform.base.BinarySpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.base.LanguageSourceSet.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.platform.base.ComponentSpec.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/platform/base/SourceComponentSpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.platform.base.VariantComponentSpec.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/platform/base/GeneralComponentSpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.platform.base.LibrarySpec.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.platform.base.LibrarySpec.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/platform/base/ApplicationSpec.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/testing/base/TestSuiteSpec.html

Example 71.2. Declar e a custom component

Docunent at i onConponent . gr oovy

@managed

i nterface Docunent ati onConponent extends Ceneral Conponent Spec {}

Types extending Conponent Spec are registered via arule annotated with Conponent Type:

Example 71.3. Register a custom component
Docunent at i onPl ugi n. gr oovy

cl ass Document ati onPl ugi n ext ends Rul eSource {

@onponent Type
voi d regi st er Conponent (TypeBui | der <Docunent at i onConponent > bui | der) {}

71.3. Binaries

To declare a custom binary type one must extend Bi nar ySpec.

Example 71.4. Declare a custom binary

Docunent ati onBi nary. gr oovy

@managed

i nterface DocunentationBi nary extends BinarySpec {
File getQutputDir()
void setQutputDir(File outputbDir)

Types extending Bi har ySpec areregistered viaarule annotated with Conponent Type:

Example 71.5. Register a custom binary
Docunent ati onPl ugi n. gr oovy

cl ass Docunent ati onPl ugi n ext ends Rul eSource {
@Conponent Type

voi d regi sterBinary(TypeBui |l der <Docunent ati onBi nary> bui |l der) {}

71.4. Source sets

To declare a custom source set type one must extend LanguageSour ceSet .

Page 534 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.platform.base.BinarySpec.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/3.0/dsl/org.gradle.language.base.LanguageSourceSet.html

Example 71.6. Declare a custom sour ce set

Mar kdownSour ceSet . gr oovy

@managed

i nterface MarkdownSour ceSet extends LanguageSourceSet {
bool ean i sGener at el ndex()
voi d set Gener at el ndex(bool ean gener at el ndex)

bool ean i sSmart Quot es()
voi d set Smart Quot es(bool ean smart Quot es)

Types extending LanguageSour ceSet areregistered viaarule annotated with Conponent Type:

Example 71.7. Register a custom sour ce set
Mar kdownPl ugi n. gr oovy

cl ass Mar kdownPl ugi n ext ends Rul eSource {
@Conponent Type

voi d regi st er Mar kdownLanguage(TypeBui | der <Mar kdownSour ceSet > bui | der) {}

Setting the language name is mandatory.

71.5. Putting it all together

71.5.1. Generating binaries from components

Binaries generation from components is done via rules annotated with Conponent Bi nari es. Thisrule
generates a Documnrent at i onBi nary named expl oded for each Docurent at i onConponent and
setsitsout put Di r property:

Example 71.8. Generates documentation binaries

Docunent ati onPl ugi n. gr oovy

cl ass Docunent ati onPl ugi n ext ends Rul eSource {
@Conponent Bi nari es
voi d gener at eDocBi nari es(Mbdel Map<Docunent at i onBi nary> bi nari es, Vari ant Con
bi nari es. creat e("expl oded") { binary ->

outputDir = new Fil e(buildDir, "${conponent.nane}/${binary. nane}")

71.5.2. Generating tasks from binaries

Tasks generation from binaries is done via rules annotated with Bi nar yTasks. Thisrule generates a Copy
task for each Text Sour ceSet of each Docunent at i onBi nary:

Page 535 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/platform/base/ComponentType.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/platform/base/ComponentBinaries.html
http://www.gradle.org/docs/3.0/javadoc/org/gradle/platform/base/BinaryTasks.html

Example 71.9. Generatestasksfor text source sets

Docunent ati onPl ugi n. gr oovy

cl ass Docunent ati onPl ugi n ext ends Rul eSource {
@i nar yTasks
voi d gener at eText Tasks(Mbdel Map<Task> tasks, final DocunentationBi nary bi nar
bi nary. i nputs. w t hType(Text SourceSet) { text SourceSet ->
def taskName = binary.tasks.taskNane("conpile", textSourceSet. nane)
def outputDir = new File(binary.outputDir, textSourceSet.nane)

t asks. creat e(t askNane, Copy) {
from t ext Sour ceSet . sour ce
destinationDir = outputDir

Thisrule generates a Mar kdownConpi | eTask task for each Mar kdownSour ceSet of each Docunent at i

Example 71.10. Register a custom sour ce set
Mar kdownPl ugi n. gr oovy

cl ass Mar kdownPl ugi n ext ends Rul eSource {
@i nar yTasks
voi d processhar kdownDocunent at i on(Model Map<Task> t asks, final Docunentati onH
bi nary. i nputs.w t hType(Mar kdownSour ceSet) { mar kdownSourceSet ->
def taskName = binary.tasks.taskNane("conpile", markdownSourceSet. ng
def outputDir = new Fil e(bi nary. out putDi r, markdownSour ceSet . nane)
t asks. creat e(t askNane, Mar kdownHt ml Conpile) { conpil eTask ->

conpi | eTask. source = mar kdownSour ceSet . sour ce

conpi | eTask. destinationDir = outputDir

conpi | eTask. smart Quot es = mar kdownSour ceSet . smar t Quot es
conpi | eTask. gener at el ndex = mar kdownSour ceSet . gener at el ndex

See the sample source for more on the Mar kdownConpi | eTask task.

71.5.3. Using your custom model

This build script demonstrate usage of the custom model defined in the sections above:

Page 536 of 561

Example 71.11. an example of using a custom softwar e model
buil d. gradl e

i nport sanpl e. docunent ati on. Docunent at i onConponent
i nport sanpl e. docunent ati on. Text Sour ceSet
i mport sanpl e. mar kdown. Mar kdownSour ceSet

apply pl ugi n: sanpl e. docunent ati on. Docunent ati onPl ugi n
apply pl ugin: sanpl e. mar kdown. Mar kdownPl ugi n

nodel {
conponents {
docs(Docunent ati onConponent) {
sour ces {
r ef er ence(Text Sour ceSet)
user gui de(Mar kdownSour ceSet) {
gener at el ndex = true
smart Quotes = true

Note: The code for this example can be found at sanpl es/ cust omvbdel / | anguageType/ in

the ‘-all’ distribution of Gradle.

And in the components reports for such a build script we can see our model types properly registered:

Example 71.12. foo bar
Output of gradl e -gq conponents

> gradle -q conponents

Docunent at i onConponent ' docs'

Source sets
Mar kdown sour ce 'docs: usergui de'
srcDir: src/docs/ userguide
Text source 'docs:reference’
srcDir: src/docs/reference

Bi nari es
Docunent ati onBi nary ' docs: expl oded'
buil d using task: :docsExpl oded

Note: currently not all plugins register their conponents,

SO sonme conponents may nao

Page 537 of 561

71.6. About internal views

Internal views can be added to an already registered type or to a new custom type. In other words, using
internal views, you can attach extra properties to already registered components, binaries and source sets
types like JvnLi br ar ySpec, Jar Bi nar ySpec or JavaSour ceSet and to the custom types you
write.

Let's start with a simple component public type and itsinternal view declarations:

Example 71.13. public type and inter nal view declaration
bui |l d. gradl e

@mnaged i nterface MyConponent extends Conponent Spec {
String getPublicData()
voi d setPublicData(String data)

}

@mnaged i nterface MyConponent|nternal extends MyConponent {
String getlnternal Dat a()
voi d setlnternal Data(String internal)

The typeregistration is as follows:

Example 71.14. typeregistration
bui | d. gradl e

cl ass MyPl ugi n ext ends Rul eSource {
@Conponent Type
voi d regi st er MyConponent (TypeBui | der <MyConponent > bui | der) {
bui | der . i nt er nal Vi em(MyConponent | nt er nal)
}

The i nt er nal Vi em(t ype) method of the type builder can be called several times. This is how you
would add several internal viewsto atype.

Now, let's mutate both public and internal data using some rule:

Example 71.15. public and internal data mutation
bui |l d. gradl e

cl ass MyPl ugi n extends Rul eSource {
@t at e
voi d mut at eMyConponent s(Mbdel Map<MyConponent | nt er nal > conponents) {
conponents. all { conponent ->

conponent . publicData = "Sone PUBLIC data"
conponent.internal Data = "Sone | NTERNAL dat a"

Page 538 of 561

Our i nt er nal Dat a property should not be exposed to build logic. Let's check this using the nodel task
on the following build file:

Example 71.16. example build script and model report output

bui |l d. gradl e

apply plugin: M/Plugin
nodel {
conponents {

ny (MyConponent)

}

Output of gr adl e - g nodel
> gradl e -q nodel

+ conponent s

| Type: org. gradl e. pl atf orm base. Conponent SpecCont ai ner
| Creator: Conponent BasePl ugi n. Pl ugi nRul es#conponent s(Conponent SpecCont ai n
| Rules:
components { ... } @build.gradle line 42, colum 5
MyPl ugi n#mut at eMyConponent s(Mbdel Map<MyConponent | nt er nal >)
+ny
| Type: MyConponent
| Creator: conponents { ... } @build.gradle line 42, colum 5 > creat
| Rul es:
My Pl ugi n#mut at eMyConponent s(Mbdel Map<MyConponent I nternal >) > all ()
+ publicDat a
| Type: java.lang. String
| Val ue: Sone PUBLI C dat a
| Creator: conponents { ... } @build.gradle line 42, colum 5 > ¢
+ tasks
| Type: org. gradl e. nodel . Mbdel Map<or g. gr adl e. api . Task>
| Creator: Project.<init> tasks()
+ assenbl e
| Type: org. gradl e. api . Def aul t Task
| Val ue: task ':assenbl e’
| Creator: t asks. addPl acehol der Acti on(assenbl e)
| Rules:
copyToTaskCont ai ner
+ build
| Type: org. gradl e. api . Def aul t Task
| Val ue: task ':build
| Creator: t asks. addPl acehol der Acti on(bui | d)
| Rules:
copyToTaskCont ai ner
+ bui | dEnvi r onnment
| Type: org. gradl e. api . tasks. di agnosti cs. Bui | dEnvi ronment Report Task
| Val ue: task ':buil dEnvironment’
| Creator: t asks. addPl acehol der Acti on(bui | dEnvi r onnment)
| Rules:
copyToTaskCont ai ner
+ check

| Type: org. gradl e. api . Def aul t Task

Page 539 of 561

| Val ue: task ':check
| Creator: t asks. addPl acehol der Acti on(check)
| Rul es:
copyToTaskCont ai ner
cl ean
| Type: org. gradl e. api .t asks. Del ete
| Val ue: task ':clean
| Creator: t asks. addPl acehol der Acti on(cl ean)
| Rul es:
copyToTaskCont ai ner
conponent s
| Type: org. gradl e. api . reporting. conponent s. Conponent Report
| Val ue: task ':conponents’
| Creator: t asks. addPl acehol der Acti on(conponent s)
| Rul es:

copyToTaskCont ai ner
dependenci es

| Type: org. gradl e. api . t asks. di agnost i cs. DependencyReport Task
| Val ue: task ':dependencies'

| Creator: t asks. addPl acehol der Acti on(dependenci es)

| Rul es:

copyToTaskCont ai ner
dependencyl nsi ght

| Type: org. gradl e. api . t asks. di agnosti cs. Dependencyl nsi ght Report Task
| Val ue: task ':dependencyl nsi ght'

| Creator: t asks. addPl acehol der Acti on(dependencyl nsi ght)

| Rul es:

Hel pTasksPl ugi n. Rul es#addDef aul t Dependenci esReport Conf i gur ati on(Depend
copyToTaskCont ai ner

hel p
| Type: org.gradl e.configuration. Help
| Val ue: task ':help'
| Creator: t asks. addPl acehol der Acti on(hel p)
| Rules:
copyToTaskCont ai ner
init
| Type: org.gradle.buildinit.tasks.InitBuild
| Val ue: task '":init’
| Creator: t asks. addPl acehol der Acti on(init)
| Rules:
copyToTaskCont ai ner
nodel
| Type: org. gradl e. api . reporting. nodel . Mbdel Report
| Val ue: task ': nodel
| Creator: t asks. addPl acehol der Acti on(nodel)
| Rules:
copyToTaskCont ai ner
proj ects
| Type: org. gradl e. api . t asks. di agnosti cs. Proj ect Report Task
| Val ue: task ':projects’
| Creator: t asks. addPl acehol der Acti on(proj ects)
| Rules:
copyToTaskCont ai ner
properties
| Type: org. gradl e. api . t asks. di agnosti cs. PropertyReport Task
| Val ue: task ':properties’
| Creator: t asks. addPl acehol der Acti on(properties)
| Rules:
copyToTaskCont ai ner
t asks

| Type: org. gradl e. api . t asks. di agnost i cs. TaskReport Task

Page 540 of 561

| Val ue: task ':tasks'

| Creator: t asks. addPl acehol der Acti on(t asks)
| Rul es:
copyToTaskCont ai ner
+ W apper
| Type: org. gradl e. api . t asks. wr apper . W apper
| Val ue: task ':wapper'
| Creator: t asks. addPl acehol der Acti on(wr apper)

Page 541 of 561

| Rul es:
copyToTaskCont ai ner

We can seein thisreport that publ i cDat a ispresent and that i nt er nal Dat a isnot.

Page 542 of 561

Part VII. Appendix

A

Gradle Samples

Listed below are some of the stand-alone samples which are included in the Gradle distribution. You can
find these samplesin the GRADLE_HOVE/ sanpl es directory of the distribution.

Table A.1. Samplesincluded in thedistribution

Sample

announce

application

bui | dDashboard

codeQual ity

conposi teBuild

cust onBui | dLanguage

custonDi stri bution

cust onPl ugi n

ear/ ear Cust om zed/ ear

ear/ ear Wt hWar

Description

A project which uses the announce plugin

A project which uses the application plugin

A project which uses the build-dashboard plugin

A project which uses the various code quality
plugins.

A build that uses the tooling APl to create a
composite Gradle build and execute tasks.

This sample demonstrates how to add some
custom elements to the build DSL. It also
demonstrates the use of custom plug-ins to
organize build logic.

This sample demonstrates how to create a custom
Gradle distribution and use it with the Gradle

wrapper.

A set of projects that show how to implement, test,
publish and use a custom plugin and task.

Web application ear project with customized
contents

Web application ear project

Page 544 of 561

groovy/ crossConpi |l ati on A project doing cross compilation for a Groovy

Project to Java 6
groovy/ cust oni zedLayout Groovy project with a custom source layout
groovy/ ni xedJavaAndG oovy Project containing a mix of Java and Groovy
source
groovy/ nul ti project Build made up of multiple Groovy projects. Also

demonstrates how to exclude certain source files,
and the use of a custom Groovy AST
transformation.

groovy/ qui ckstart Groovy quickstart sample

j aval base Java base project

j aval/ crossConpil ation A project doing cross compilation to Java 6

j aval cust oni zedLayout Java project with a custom source layout

javal/ nmul tiproject This sample demonstrates how an application can

be composed using multiple Java projects.

j aval/ qui ckstart Java quickstart project

java/wi thlntegrationTests This sample demonstrates how to use a source set
to add an integration test suite to a Java project.

j avaGadl ePl ugi n This example demonstrates the use of the java
gradle plugin development plugin. By applying the
plugin, the java plugin is automatically applied as
well as the gradleApi() dependency. Furthermore,
validations are performed against the plugin
metadata during jar execution.

maven/ ponmCGener ati on Demonstrates how to deploy and install to a
Maven repository. Also demonstrates how to
deploy a javadoc JAR along with the main JAR,
how to customize the contents of the generated
POM, and how to deploy snapshots and releases to
different repositories.

Page 545 of 561

maven/ qui ckst art

osgi

pl ugi ns

scal a/ crossConpi | ati on

scal a/ cust omi zedLayout

scal a/force

scal a/ m xedJavaAndScal a

scal a/ qui ckstart

scal a/ zi nc

testing/testReport

t ool i ngApi / conposi t e- nodel s

t ool i ngApi / conposi te-t asks

t ool i ngApi / cust omvbdel

t ool i ngApi / ecli pse

t ool i ngApi /i dea

Demonstrates how to deploy and install artifacts to
aMaven repository.

A project which builds an OSGi bundle

A set of projects that show how to implement, test,
publish and use a custom plugins with the latest
technology.

A project doing cross compilation for a Scala
project to Java 6

Scala project with a custom source layout

Scala quickstart project

A project containing a mix of Java and Scala
source.

Scala quickstart project

Scala project using the Zinc based Scala compiler.

Generates an HTML test report that includes the
test results from al subprojects.

An application that uses the tooling API to create a
composite Gradle build and queries for the Eclipse
model for the set of all build participants.

A build that uses the tooling API to create a
composite Gradle build and execute tasks.

A sample of how a plugin can expose its own
custom tooling mode to tooling API clients.

An application that uses the tooling API to build
the Eclipse model for a project.

An application that uses the tooling API to extract
information needed by IntelliJ IDEA.

Page 546 of 561

t ool i ngApi / nodel An application that uses the tooling API to build
the model for a Gradle build.

t ool i ngApi /runBui | d An application that uses the tooling API to run a
Gradle task.
usergui de/ di stribution A project which uses the distribution plugin

user gui de/ javali braryDi stri bution A project which uses the Java library distribution

plugin
webAppl i cati on/ cust om zed Web application with customized WAR contents.
webAppl i cati on/ qui ckstart Web application quickstart project

A.l. Samplecust onBui | dLanguage

This sample demonstrates how to add some custom elements to the build DSL. It also demonstrates the use
of custom plug-ins to organize build logic.

The build is composed of 2 types of projects. The first type of project represents a product, and the second
represents a product module. Each product includes one or more product modules, and each product module
may be included in multiple products. That is, there is a many-to-many relationship between these products
and product modules. For each product, the build produces a ZIP containing the runtime classpath for each
product module included in the product. The ZIP a so contains some product-specific files.

The custom elements can be seen in the build script for the product projects (for example, basi cEdi ti on/ bui |
). Notice that the build script usesthe pr oduct { } element. Thisisacustom element.

The build scripts of each project contain only declarative elements. The bulk of the work is done by 2
custom plug-insfound in bui | dSr ¢/ sr ¢/ mai n/ gr oovy.

A.2. Samplecust onDi stri buti on

This sample demonstrates how to create a custom Gradle distribution and use it with the Gradle wrapper.
This sample contains the following projects:

® Thepl ugi n directory contains the project that implements a custom plugin, and bundles the plugin into
acustom Gradle distribution.
®* Theconsuner directory contains the project that uses the custom distribution.

Page 547 of 561

A.3. Samplecust onPl ugi n

A set of projects that show how to implement, test, publish and use a custom plugin and task.
This sample contains the following projects:

® Thepl ugi n directory contains the project that implements and publishes the plugin.
®* Theconsuner directory containsthe project that uses the plugin.

A.4. Samplej ava/ nul ti proj ect
This sample demonstrates how an application can be composed using multiple Java projects.

This build creates a client-server application which is distributed as 2 archives. First, there is a client ZIP
which includes an APl JAR, which a 3rd party application would compile against, and a client runtime.
Then, thereis aserver WAR which provides aweb service.

A.5. Sample pl ugi ns

A set of projects that show how to implement, test, publish and use a custom plugins with the latest
technology.

This sample contains the following projects:

®* The bui | dscri pt directory contains a project that uses the old bui | dscri pt syntax for using
plugins.

®* Thedsl directory containsthe aproject that usesthe new pl ugi ns syntax for using plugins.

® The publ i shi ng directory contains a complete example of the modern publishing plugins working
with the java-gradle-plugin to produce two plugins shipped in the same jar and being published to both
an ivy and maven repository.

®* The consuni ng directory contains an example of resolving plugins from custom repositories instead
the Gradle Plugin Portal.

Page 548 of 561

B

Potential Traps

B.1. Groovy script variables

For Gradle usersit isimportant to understand how Groovy deals with script variables. Groovy has two types
of script variables. One with alocal scope and one with a script-wide scope.

Page 549 of 561

Example B.1. Variables scope: local and script wide
scope. gr oovy

String | ocal Scopel = "I ocal Scopel
def | ocal Scope2 = '| ocal Scope?2
scri pt Scope = 'scri pt Scope

println | ocal Scopel
println | ocal Scope2
println scriptScope

closure = {
println | ocal Scopel
println | ocal Scope2
println scriptScope

met hod() {

try {
| ocal Scopel

} catch (M ssingPropertyException e) {
println 'l ocal ScopelNot Avai | abl e'

}
try {
| ocal Scope2

} catch(M ssingPropertyException e) {
println 'l ocal Scope2Not Avai | abl e’
}

println scriptScope

}

closure.call ()
nmet hod()

Output of gr adl e

> gradle

| ocal Scopel

| ocal Scope2

scri pt Scope

| ocal Scopel

| ocal Scope2

scri pt Scope

| ocal ScopelNot Avai |l abl e
| ocal Scope2Not Avai | abl e
scri pt Scope

Variables which are declared with atype modifier are visible within closures but not visible within methods.
Thisis aheavily discussed behavior in the Groovy community. (3%

B.2. Configuration and execution phase

It isimportant to keep in mind that Gradle has a distinct configuration and execution phase (see Chapter 20,
The Build Lifecycle).

Page 550 of 561

Example B.2. Distinct configuration and execution phase
buil d. gradl e

def classesDir = file('build/classes")
cl assesDir. nkdi rs()
task clean(type: Delete) {
delete ' build’
}
task conpil e(dependsOn: 'clean') << {
if ('classesDir.isDirectory()) {
println ' The class directory does not exist. | can not operate
/'l do sonet hi ng

}

/1 do sonething

Output of gradl e -qg conpile

> gradle -q conpile
The class directory does not exist. | can not operate

As the creation of the directory happens during the configuration phase, the cl ean task removes the
directory during the execution phase.

[30] One of those discussions can be found here:
http://groovy.329449.n5.nabbl e.com/scri pt-scopi ng-question-td355887.html

Page 551 of 561

http://groovy.329449.n5.nabble.com/script-scoping-question-td355887.html

C

The Feature L ifecycle

Gradle is under constant development and improvement. New versions are delivered on a regular and
frequent basis (approximately every 6 weeks). Continuous improvement combined with frequent delivery
allows new features to be made available to users early and for invaluable real world feedback to be
incorporated into the development process. Getting new functionality into the hands of users regularly is a
core value of the Gradle platform. At the same time, APl and feature stability is taken very seriously and is
also considered a core value of the Gradle platform. This is something that is engineered into the
development process by design choices and automated testing, and is formalised by Section C.2,
“Backwards Compatibility Policy”.

The Gradle feature lifecycle has been designed to meet these goals. It also servesto clearly communicate to
users of Gradle what the state of a feature is. The term feature typically means an APl or DSL method or
property in this context, but it is not restricted to this definition. Command line arguments and modes of
execution (e.g. the Build Daemon) are two examples of other kinds of features.

C.1. States

Features can be in one of 4 states:

® |nternal
® [ncubating
Public
® Deprecated

C.1.1. Internd

Internal features are not designed for public use and are only intended to be used by Gradle itself. They can
change in any way at any point in time without any notice. Therefore, we recommend avoiding the use of
such features. Internal features are not documented. If it appears in this User Guide, the DSL Reference or
the API Reference documentation then the feature is not internal.

Internal features may evolve into public features.

C.1.2. Incubating

Features are introduced in the incubating state to allow real world feedback to be incorporated into the
feature before it is made public and locked down to provide backwards compatibility. It also gives users
who are willing to accept potential future changes early access to the feature so they can put it into use
immediately.

Page 552 of 561

A feature in an incubating state may change in future Gradle versions until it is no longer incubating.
Changes to incubating features for a Gradle release will be highlighted in the release notes for that release.
Theincubation period for new features varies depending on the scope, complexity and nature of the feature.

Features in incubation are clearly indicated to be so. In the source code, all methods/properties/classes that
are incubating are annotated with | ncubat i ng, which is aso used to specially mark them in the DSL and
API references. If an incubating feature is discussed in this User Guide, it will be explicitly said to bein the
incubating state.

C.1.3. Public

The default state for a non-internal feature is public. Anything that is documented in the User Guide, DSL
Reference or API references that is not explicitly said to be incubating or deprecated is considered public.
Features are said to be promoted from an incubating state to public. The release notes for each release
indicate which previously incubating features are being promoted by the release.

A public feature will never be removed or intentionally changed without undergoing deprecation. All public
features are subject to the backwards compatibility policy.

C.1.4. Deprecated

Some features will become superseded or irrelevant due to the natural evolution of Gradle. Such features
will eventually be removed from Gradle after being deprecated. A deprecated feature will never be
changed, until it isfinally removed according to the backwards compatibility policy.

Deprecated features are clearly indicated to be so. In the source code, all methods/properties/classes that are
deprecated are annotated with “@ ava. | ang. Depr ecat ed” which is reflected in the DSL and API
references. In most cases, there is a replacement for the deprecated element, and this will be described in the
documentation. Using a deprecated feature will also result in a runtime warning in Gradle's output.

Use of deprecated features should be avoided. The release notes for each release indicate any features that
are being deprecated by the release.

C.2. Backwards Compatibility Policy

Gradle provides backwards compatibility across major versions (e.g. 1. X, 2. X, etc.). Once a public feature
is introduced or promoted in a Gradle release it will remain indefinitely or until it is deprecated. Once
deprecated, it may be removed in the next major release. Deprecated features may be supported across major
releases, but thisis not guaranteed.

Page 553 of 561

http://www.gradle.org/docs/3.0/javadoc/org/gradle/api/Incubating.html

D

Gradle Command Line

The gradle command has the following usage:
gradle [option...] [task...]
The command-line options available for the gradle command are listed below:

-?,-h,--help
Shows a help message.

-a,--no-rebuild
Do not rebuild project dependencies.

--all
Shows additional detail in the task listing. See Section 4.7.2, “Listing tasks’.

-b,--build-file
Specifiesthe build file. See Section 4.5, “ Selecting which build to execute”.

-c,--settings-file
Specifies the settingsfile.

--consol e
Specifies which type of console output to generate.

Set to pl ai n to generate plain text only. This option disables all color and other rich output in the
console output.

Set to aut o (the default) to enable color and other rich output in the console output when the build
processis attached to a console, or to generate plain text only when not attached to a console.

Setto ri ch to enable color and other rich output in the console output, regardless of whether the build
process is not attached to a console. When not attached to a console, the build output will use ANSI
control characters to generate the rich output.

--conti nue
Continues task execution after atask failure.

--configure-on-denand (i ncubating)
Only relevant projects are configured in this build run. This means faster builds for large multi-projects.
See Section 24.1.1.1, “ Configuration on demand”.

Page 554 of 561

-D,--system prop
Sets a system property of the VM, for example - Dy pr op=nyval ue. See Section 11.2, “Gradle
properties and system properties’.

-d,--debug
Log in debug mode (includes normal stacktrace). See Chapter 22, Logging.

-g,--gradl e-user - hone
Specifies the Gradle user home directory. The default is the . gr adl e directory in the user's home
directory.

- - gui
Launches the Gradle GUI. See Chapter 10, Using the Gradle Graphical User Interface.

-l,--init-script
Specifies an initialization script. See Chapter 42, Initialization Scripts.

-i,--info
Set log level to info. See Chapter 22, Logging.

-m--dry-run
Runs the build with all task actions disabled. See Section 4.8, “Dry Run”.

--of fline

Specifies that the build should operate without accessing network resources. See Section 23.9.2,
“Command line options to override caching”.

-P,--project-prop
Sets a project property of the root project, for example - Pnypr op=mnyval ue. See Section 11.2,
“Gradle properties and system properties’.

-p,--project-dir
Specifies the start directory for Gradle. Defaults to current directory. See Section 4.5, “ Selecting which
build to execute”.

--parallel (incubating)
Build projects in parallel. Gradle will attempt to determine the optimal number of executor threads to
use. This option should only be used with decoupled projects (see Section 24.9, “Decoupled Projects’).
For limitations of this option please see Section 24.8, “Parallel project execution”.

--max-workers (i ncubating)
Sets the maximum number of workers that Gradle may use. For example- - max- wor ker s=3. The
default is the number of processors.

--profile
Profiles build execution time and generates areport in the bui | dDi r / r epor t s/ profi | e directory.
See Section 4.7.8, “Profiling a build”.

--project-cache-dir

Page 555 of 561

Specifies the project-specific cache directory. Default valueis. gr adl e inthe root project directory.

-q,--quiet
Log errorsonly. See Chapter 22, Logging.

--reconpil e-scripts
Forces scripts to be recompiled, bypassing caching.

--refresh-dependenci es
Refresh the state of dependencies. See Section 23.9.2, “Command line options to override caching”.

--rerun-tasks
Specifies that any task optimization isignored.

-S,--full-stacktrace
Print out the full (very verbose) stacktrace for any exceptions. See Chapter 22, Logging.

-s,--stacktrace
Print out the stacktrace also for user exceptions (e.g. compile error). See Chapter 22, Logging.

-t,--continuous (incubating)
Enables continuous building - Gradle will automatically re-run when changes are detected.

- u,--no-sear ch-upwar ds
Don't search in parent directoriesfor aset ti ngs. gr adl e file.

-V,--version
Prints version info.

- X,--excl ude-task
Specifies atask to be excluded from execution. See Section 4.2, “Excluding tasks”.

The above information is printed to the console when you execute gr adl e - h.

D.1. Daemon command-line options

The Chapter 6, The Gradle Daemon contains more information about the daemon. For example it includes
information how to turn on the daemon by default so that you can avoid using - - daenon al thetime.

- -daenon

Uses the Gradle daemon to run the build. Starts the daemon if not running or existing daemon busy.
Chapter 6, The Gradle Daemon contains more detailed information when new daemon processes are
started.

--foreground

Starts the Gradle daemon in the foreground. Useful for debugging or troubleshooting because you can
easily monitor the build execution.

- - no- daenon

Page 556 of 561

Do not use the Gradle daemon to run the build. Useful occasionally if you have configured Gradle to
always run with the daemon by defaullt.

--stop
Stops the Gradle daemon if it is running. You can only stop daemons that were started with the Gradle
version you use when running - - st op.

D.2. System properties

The following system properties are available for the gradle command. Note that command-line options
take precedence over system properties.

gr adl e. user. hone
Specifies the Gradle user home directory.

The Section 11.1, “Configuring the build environment via gradle.properties’ contains specific information
about Gradle configuration available via system properties.

D.3. Environment variables

The following environment variables are available for the gradle command. Note that command-line
options and system properties take precedence over environment variables.

GRADLE_OPTS
Specifies command-line arguments to use to start the VM. This can be useful for setting the system
properties to use for running Gradle. For example you could set GRADLE_OPTS="- Dor g. gr adl e. daeno
to use the Gradle daemon without needing to use the - - daenon option every time you run Gradle.
Section 11.1, “Configuring the build environment via gradle.properties’ contains more information
about ways of configuring the daemon without using environmental variables, e.g. in more maintainable
and explicit way.

GRADLE_USER_HOVE
Specifies the Gradle user home directory (which defaultsto “USER_HOME/ . gr adl e” if not set).

JAVA HOVE
Specifies the JDK installation directory to use.

Page 557 of 561

E

Documentation licenses

E.1. Gradle Documentation

Copyright © 2007-2016 Gradle, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do
not charge any fee for such copies and further provided that each copy contains this Copyright Notice,
whether distributed in print or electronically.

E.2. Header link icon

Copyright © 2011-2013 Visual Editor team.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

The Software is provided "asis", without warranty of any kind, express or implied, including but not limited
to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall
the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of
contract, tort or otherwise, arising from, out of or in connection with the Software or the use or other
dealingsin the Software.

Page 558 of 561

https://commons.wikimedia.org/wiki/File:VisualEditor_-_Icon_-_Link.svg

VI

Appendix

Artifact
”

B

Build Script
7?

C

Configuration
See Dependency Configuration.

Configuration Injection
7

D

DAG
See Directed Acyclic Graph.

Dependency
See External Dependency.

See Project Dependency.

7

Dependency Configuration
?

Dependency Resolution
”

Directed Acyclic Graph
A directed acyclic graph is a directed graph that contains no cycles. In Gradle each task to execute
represents a node in the graph. A dependsOn relation to another task will add this other task as a node (if
it is not in the graph already) and create a directed edge between those two nodes. Any dependsOn
relation will be validated for cycles. There must be no way to start at certain node, follow a sequence of
edges and end up at the original node.

Domain Specific Language
A domain-specific language is a programming language or specification language dedicated to a
particular problem domain, a particular problem representation technique, and/or a particular solution
technique. The concept isn't new—special-purpose programming languages and al kinds of
modeling/specification languages have always existed, but the term has become more popular due to the

rise of domain-specific modeling.

DSL
See Domain Specific Language.

E

External Dependency
”

Extension Object
7?

Init Script
A script that isrun before the build itself starts, to allow customization of Gradle and the build.

Initialization Script
See Init Script.

P

Plugin
7?

Project
”

Project Dependency
”

Publication
”

R

Repository
”

Source Set

Task

Transitive Dependency
?

