
1

See the light - agile, industrial strength, rapid web application development made easy

Table of contents

http://springsource.com
http://grails.org

2

The Grails Framework - Reference Documentation
Authors: Graeme Rocher, Peter Ledbrook, Marc Palmer, Jeff Brown, Luke Daley, Burt Beckwith

Version: null

Table of Contents

1 Introduction

1.1 What's new in Grails 2.0?

1.1.1 Development Environment Features

1.1.2 Core Features

1.1.3 Web Features

1.1.4 Persistence Features

1.1.5 Testing Features

2 Getting Started

2.1 Downloading and Installing

2.2 Upgrading from previous versions of Grails

2.3 Creating an Application

2.4 A Hello World Example

2.5 Using Interactive Mode

2.6 Getting Set Up in an IDE

2.7 Convention over Configuration

2.8 Running an Application

2.9 Testing an Application

2.10 Deploying an Application

2.11 Supported Java EE Containers

2.12 Generating an Application

2.13 Creating Artefacts

3 Configuration

3.1 Basic Configuration

3.1.1 Built in options

3.1.2 Logging

3.1.3 GORM

3.2 Environments

3.3 The DataSource

3.3.1 DataSources and Environments

3.3.2 JNDI DataSources

3.3.3 Automatic Database Migration

3.3.4 Transaction-aware DataSource Proxy

3

3.3.5 Database Console

3.3.6 Multiple Datasources

3.4 Externalized Configuration

3.5 Versioning

3.6 Project Documentation

3.7 Dependency Resolution

3.7.1 Configurations and Dependencies

3.7.2 Dependency Repositories

3.7.3 Debugging Resolution

3.7.4 Inherited Dependencies

3.7.5 Providing Default Dependencies

3.7.6 Dependency Reports

3.7.7 Plugin JAR Dependencies

3.7.8 Maven Integration

3.7.9 Deploying to a Maven Repository

3.7.10 Plugin Dependencies

4 The Command Line

4.1 Interactive Mode

4.2 Creating Gant Scripts

4.3 Re-using Grails scripts

4.4 Hooking into Events

4.5 Customising the build

4.6 Ant and Maven

5 Object Relational Mapping (GORM)

5.1 Quick Start Guide

5.1.1 Basic CRUD

5.2 Domain Modelling in GORM

5.2.1 Association in GORM

5.2.1.1 Many-to-one and one-to-one

5.2.1.2 One-to-many

5.2.1.3 Many-to-many

5.2.1.4 Basic Collection Types

5.2.2 Composition in GORM

5.2.3 Inheritance in GORM

5.2.4 Sets, Lists and Maps

5.3 Persistence Basics

5.3.1 Saving and Updating

4

5.3.2 Deleting Objects

5.3.3 Understanding Cascading Updates and Deletes

5.3.4 Eager and Lazy Fetching

5.3.5 Pessimistic and Optimistic Locking

5.3.6 Modification Checking

5.4 Querying with GORM

5.4.1 Dynamic Finders

5.4.2 Criteria

5.4.3 Hibernate Query Language (HQL)

5.5 Advanced GORM Features

5.5.1 Events and Auto Timestamping

5.5.2 Custom ORM Mapping

5.5.2.1 Table and Column Names

5.5.2.2 Caching Strategy

5.5.2.3 Inheritance Strategies

5.5.2.4 Custom Database Identity

5.5.2.5 Composite Primary Keys

5.5.2.6 Database Indices

5.5.2.7 Optimistic Locking and Versioning

5.5.2.8 Eager and Lazy Fetching

5.5.2.9 Custom Cascade Behaviour

5.5.2.10 Custom Hibernate Types

5.5.2.11 Derived Properties

5.5.2.12 Custom Naming Strategy

5.5.3 Default Sort Order

5.6 Programmatic Transactions

5.7 GORM and Constraints

6 The Web Layer

6.1 Controllers

6.1.1 Understanding Controllers and Actions

6.1.2 Controllers and Scopes

6.1.3 Models and Views

6.1.4 Redirects and Chaining

6.1.5 Controller Interceptors

6.1.6 Data Binding

6.1.7 XML and JSON Responses

6.1.8 More on JSONBuilder

5

6.1.9 Uploading Files

6.1.10 Command Objects

6.1.11 Handling Duplicate Form Submissions

6.1.12 Simple Type Converters

6.1.13 Asynchronous Request Processing

6.2 Groovy Server Pages

6.2.1 GSP Basics

6.2.1.1 Variables and Scopes

6.2.1.2 Logic and Iteration

6.2.1.3 Page Directives

6.2.1.4 Expressions

6.2.2 GSP Tags

6.2.2.1 Variables and Scopes

6.2.2.2 Logic and Iteration

6.2.2.3 Search and Filtering

6.2.2.4 Links and Resources

6.2.2.5 Forms and Fields

6.2.2.6 Tags as Method Calls

6.2.3 Views and Templates

6.2.4 Layouts with Sitemesh

6.2.5 Static Resources

6.2.5.1 Including resources using the resource tags

6.2.5.2 Other resource tags

6.2.5.3 Declaring resources

6.2.5.4 Overriding plugin resources

6.2.5.5 Optimizing your resources

6.2.5.6 Debugging

6.2.5.7 Preventing processing of resources

6.2.5.8 Other Resources-aware plugins

6.2.6 Sitemesh Content Blocks

6.2.7 Making Changes to a Deployed Application

6.2.8 GSP Debugging

6.3 Tag Libraries

6.3.1 Variables and Scopes

6.3.2 Simple Tags

6.3.3 Logical Tags

6.3.4 Iterative Tags

6

6.3.5 Tag Namespaces

6.3.6 Using JSP Tag Libraries

6.3.7 Tag return value

6.4 URL Mappings

6.4.1 Mapping to Controllers and Actions

6.4.2 Embedded Variables

6.4.3 Mapping to Views

6.4.4 Mapping to Response Codes

6.4.5 Mapping to HTTP methods

6.4.6 Mapping Wildcards

6.4.7 Automatic Link Re-Writing

6.4.8 Applying Constraints

6.4.9 Named URL Mappings

6.4.10 Customizing URL Formats

6.5 Web Flow

6.5.1 Start and End States

6.5.2 Action States and View States

6.5.3 Flow Execution Events

6.5.4 Flow Scopes

6.5.5 Data Binding and Validation

6.5.6 Subflows and Conversations

6.6 Filters

6.6.1 Applying Filters

6.6.2 Filter Types

6.6.3 Variables and Scopes

6.6.4 Filter Dependencies

6.7 Ajax

6.7.1 Ajax Support

6.7.1.1 Remoting Linking

6.7.1.2 Updating Content

6.7.1.3 Remote Form Submission

6.7.1.4 Ajax Events

6.7.2 Ajax with Prototype

6.7.3 Ajax with Dojo

6.7.4 Ajax with GWT

6.7.5 Ajax on the Server

6.8 Content Negotiation

7

7 Validation

7.1 Declaring Constraints

7.2 Validating Constraints

7.3 Validation on the Client

7.4 Validation and Internationalization

7.5 Validation Non Domain and Command Object Classes

8 The Service Layer

8.1 Declarative Transactions

8.1.1 Transactions Rollback and the Session

8.2 Scoped Services

8.3 Dependency Injection and Services

8.4 Using Services from Java

9 Testing

9.1 Unit Testing

9.1.1 Unit Testing Controllers

9.1.2 Unit Testing Tag Libraries

9.1.3 Unit Testing Domains

9.1.4 Unit Testing Filters

9.1.5 Unit Testing URL Mappings

9.1.6 Mocking Collaborators

9.2 Integration Testing

9.3 Functional Testing

10 Internationalization

10.1 Understanding Message Bundles

10.2 Changing Locales

10.3 Reading Messages

10.4 Scaffolding and i18n

11 Security

11.1 Securing Against Attacks

11.2 Encoding and Decoding Objects

11.3 Authentication

11.4 Security Plugins

11.4.1 Spring Security

11.4.2 Shiro

12 Plugins

12.1 Creating and Installing Plugins

12.2 Plugin Repositories

8

12.3 Understanding a Plugin's Structure

12.4 Providing Basic Artefacts

12.5 Evaluating Conventions

12.6 Hooking into Build Events

12.7 Hooking into Runtime Configuration

12.8 Adding Dynamic Methods at Runtime

12.9 Participating in Auto Reload Events

12.10 Understanding Plugin Load Order

12.11 The Artefact API

12.11.1 Asking About Available Artefacts

12.11.2 Adding Your Own Artefact Types

12.12 Binary Plugins

13 Web Services

13.1 REST

13.2 SOAP

13.3 RSS and Atom

14 Grails and Spring

14.1 The Underpinnings of Grails

14.2 Configuring Additional Beans

14.3 Runtime Spring with the Beans DSL

14.4 The BeanBuilder DSL Explained

14.5 Property Placeholder Configuration

14.6 Property Override Configuration

15 Grails and Hibernate

15.1 Using Hibernate XML Mapping Files

15.2 Mapping with Hibernate Annotations

15.3 Adding Constraints

16 Scaffolding

17 Deployment

9

1 Introduction
Java WebJavaWebDon't Repeat YourselfDRY

RailsDjangoTurboGearsWebGrailsJavaWebGrailsSpringHibernateJava

Grailsfull-stackplug-inWeb

* -(ORM) *Groovy Server Pages (GSP) * MVC * * *Spring *SpringMessageSourcei18n *SpringHibernate Spring Gant Tomcat

GroovyDomain Specific LanguageDSL

GrailsWeb

1.1 What's new in Grails 2.0?
This section covers the new features that are present in 2.0 and is broken down into sections covering the build system, core APIs, the web tier,
persistence enhancements and improvements in testing. Note there are many more small enhancements and improvements, these sections just
cover some of the highlights.

1.1.1 Development Environment Features

Interactive Mode and Console Enhancements

Grails 2.0 features brand new console output that is more concise and user friendly to consume. An example of the new output when running
tests can be seen below:

http://www.hibernate.org
http://www.springframework.org
http://groovy.codehaus.org/Gant
http://tomcat.apache.org

10

In general Grails makes its best effort to display update information on a single line and only present the information that is crucial. This means
that while in previous versions of Grails the command produced many lines of output, in Grails 2.0 only 1 line of output is produced:war

In addition simply typing 'grails' at the command line activates the new interactive mode which features TAB completion, command history and
keeps the JVM running to ensure commands execute much quicker than otherwise

11

For more information on the new features of the console refer to the section of the user guide that covers the .console and interactive mode

Reloading Agent

Grails 2.0 reloading mechanism no longer uses class loaders, but instead uses a JVM agent to reload changes to class files. This results in greatly
improved reliability when reloading changes and also ensures that the class files stored in disk remain consistent with the class files loaded in
memory, which reduces the need to run the command.clean

New Test Report and Documentation Templates

There are new templates for displaying test results that are clearer and more user friendly than the previous reports:

In addition, the Grails documentation engine has received a facelift with a new template for presenting Grails application and plugin
documentation:

12

See the section on the for more usage info.documentation engine

Use a TOC for Project Docs

The old documentation engine relied on you putting section numbers into the gdoc filenames. Although convenient, this effectively made it
difficult to restructure your user guide by inserting new chapters and sections. In addition, any such restructuring or renaming of section titles
resulted in breaking changes to the URLs.

You can now use logical names for your gdoc files and define the structure and section titles in a YAML table-of-contents file, as described in
the section on the . The logical names appear in the URLs, so as long as you don't change those, your URLs will alwaysdocumentation engine
remain the same no matter how much restructuring or changing of titles you do.

Grails 2.0 even provides a command to aid you in migrating existing gdoc user guides.migrate-docs

Enhanced Error Reporting and Diagnosis

Error reporting and problem diagnosis has been greatly improved with a new errors view that analyses stack traces and recursively displays
problem areas in your code:

13

In addition stack trace filtering has been further enhanced to display only relevant trace information:

Line | Method
->> 9 | getValue in Book.groovy
- -
| 7 | getBookValue in BookService.groovy
| 886 | runTask . . in ThreadPoolExecutor.java
| 908 | run in ''
^ 662 | run in .javaThread

H2 Database and Console

Grails 2.0 now uses the H2 database instead of HSQLDB, and enables the H2 database console in development mode (at the URI /dbconsole) so
that the in-memory database can be easily queried from the browser:

14

Plugin Usage Tracking

To enhance community awareness of the most popular plugins an opt-in plugin usage tracking system has been included where users can
participate in providing feedback to the plugin community on which plugins are most popular.

This will help drive the roadmap and increase support of key plugins while reducing the need to support older or less popular plugins thus
helping plugin development teams focus their efforts.

Dependency Resolution Improvements

There are numerous improvements to dependency resolution handling via Ivy including:

Grails now makes a best effort to cache the previous resolve and avoid resolving again unless you change .BuildConfig.groovy

Plugins dependencies now appear in the dependency report generated by grails dependency-report

Plugins published with the release plugin now publish their transitive plugin dependencies in the generated POM which are later resolved.

It is now possible to customize the ivy cache directory via BuildConfig.groovy

grails.project.dependency.resolution = {
 cacheDir "target/ivy-cache"
}

It is now possible to completely disable resolution from inherited repositories (repositories defined by other plugins):

15

grails.project.dependency.resolution = {

repositories {
 inherits // Whether to inherit repository definitions from pluginsfalse
 …
 }
 …
}

It is now possible to easily disable checksum validation errors:

grails.project.dependency.resolution = {
 checksums // whether to verify checksums or notfalse
}

1.1.2 Core Features

Binary Plugins

Grails plugins can now be packaged as JAR files and published to standard maven repositories. This even works for GSP and static resources
(with resources plugin 1.0.1). See the section on for more information.Binary plugins

Groovy 1.8

Grails 2.0 comes with Groovy 1.8 which includes many new features and enhancements

Spring 3.1 Profile Support

Grails' existing environment support has been bridged into the Spring 3.1 profile support. For example when running with a custom Grails
environment called "production", a Spring profile of "production" is activated so that you can use Spring's bean configuration APIs to configure
beans for a specific profile.

1.1.3 Web Features

Controller Actions as Methods

It is now possible to define controller actions as methods instead of using closures as in previous versions of Grails. In fact this is now the
preferred way of expressing an action. For example:

// action as a method
def index() {

}
// action as a closure
def index = {

}

Binding Primitive Method Action Arguments

http://docs.codehaus.org/display/GROOVY/Groovy+1.8+release+notes

16

It is now possible to bind form parameters to action arguments where the name of the form element matches the argument name. For example
given the following form:

<g:form name= action= >"myForm" "save"
 <input name= />"name"
 <input name= />"age"
</g:form>

You can define an action that declares arguments for each input and automatically converts the parameters to the appropriate type:

def save(name, age) {String int
 // remaining
}

Static Resource Abstraction

A new is included that allows declarative handling of JavaScript, CSS and image resources including automaticstatic resource abstraction
ordering, compression, caching and gzip handling.

Servlet 3.0 Async Features

Grails now supports Servlet 3.0 including the Asynchronous programming model defined by the specification:

def index() {
 def ctx = startAsync()
 ctx.start {
 Book(title:).save()new "The Stand"
 render template: , model:[books:Book.list()]"books"
 ctx.complete()
 }
}

Link Generation API

A general purpose class is now available that is usable anywhere within a Grails application and not just within the context ofLinkGenerator
a controller. For example if you need to generate links in a service or an asynchronous background job outside the scope of a request:

LinkGenerator grailsLinkGenerator

def generateLink() {
 grailsLinkGenerator.link(controller: , action:)"book" "list"
}

Page Rendering API

Like the the new can be used to render GSP pages outside the scope of a web request, such as in aLinkGenerator PageRenderer
scheduled job or web service. The class features a very similar API to the method found within controllers:PageRenderer render

17

grails.gsp.PageRenderer groovyPageRenderer

void welcomeUser(User user) {
 def contents = groovyPageRenderer.render(view: , model:[user: user])"/emails/welcomeLetter"
 sendEmail {
 to user.email
 body contents
 }
}

The service also allows you to pre-process GSPs into HTML templates:PageRenderer

new File().withWriter { w ->"/path/to/welcome.html"
 groovyPageRenderer.renderTo(view: , w)"/page/content"
}

Filter Exclusions

Filters may now express controller, action and uri exclusions to offer more options for expressing to which requests a particular filter should be
applied.

filter1(actionExclude: 'log*') {
 before = {
 // …
 }
}
filter2(controllerExclude: 'auth') {
 before = {
 // …
 }
}

filter3(uriExclude: '/secure*') {
 before = {
 // …
 }
}

Performance Improvements

Performance of GSP page rendering has once again been improved by optimizing the GSP compiler to inline method calls where possible.

HTML5 Scaffolding

There is a new HTML5-based scaffolding UI:

18

jQuery by Default

The jQuery plugin is now the default JavaScript library installed into a Grails application. For backwards compatibility a isPrototype plugin
available. Refer to the on the Prototype plugin for installation instructions. documentation

1.1.4 Persistence Features

The GORM API

The GORM API has been formalized into a set of classes (, and) that getGormStaticApi GormInstanceApi GormValidationApi
statically wired into every domain class at the byte code level. The result is better code completion for IDEs, better integration with Java and the
potential for more GORM implementations for other types of data stores.

New findOrCreate and findOrSave Methods

Domain classes have support for the findOrCreateWhere, findOrSaveWhere, findOrCreateBy and findOrSaveBy query methods which behave
just like findWhere and findBy methods except that they should never return null. If a matching instance cannot be found in the database then a
new instance is created, populated with values represented in the query parameters and returned. In the case of findOrSaveWhere and
findOrSaveBy, the instance is saved before being returned.

def book = Book.findOrCreateWhere(author: 'Douglas Adams', title:)"The Hitchiker's Guide To The Galaxy"
def book = Book.findOrSaveWhere(author: 'Daniel Suarez', title: 'Daemon')
def book = Book.findOrCreateByAuthorAndTitle('Daniel Suarez', 'Daemon')
def book = Book.findOrSaveByAuthorAndTitle('Daniel Suarez', 'Daemon')

Abstract Inheritance

GORM now supports abstract inheritance trees which means you can define queries and associations linking to abstract classes:

http://grails.org/plugin/prototype
http://grails.org/plugin/prototype

19

abstract class Media {
 titleString
 …
}
class Book Media {extends
}
class Album Media {extends

}
class Account {
 hasMany = [purchasedMedia:Media]static
}

..

def allMedia = Media.list()

Multiple Data Sources Support

It is now possible to define multiple datasources in and declare one or more datasources a particular domain uses byDataSource.groovy
default:

class ZipCode {

 codeString

 mapping = {static
 datasource 'ZIP_CODES'
 }
}

If multiple datasources are specified for a domain then you can use the name of a particular datasource as a namespace in front of any regular
GORM method:

def zipCode = ZipCode.auditing.get(42)

For more information see the section on in the user guide.Multiple Data Sources

Database Migrations

A new has been designed and built for Grails 2.0 allowing you to apply migrations to your database, rollback changesdatabase migration plugin
and diff your domain model with the current state of the database.

Database Reverse Engineering

A new plugin has been designed and built for Grails 2.0 that allows you to generate a domain model from andatabase reverse engineering
existing database schema.

Hibernate 3.6

Grails 2.0 is now built on Hibernate 3.6

http://grails.org/plugin/database-migration
http://www.grails.org/plugin/db-reverse-engineer

20

Bag Collections

You can now use Hibernate s for mapped collections to avoid the memory and performance issues of loading large collections to enforce Bag
 uniqueness or order.Set List

For more information see the section on in the user guide.Sets, Lists and Maps

1.1.5 Testing Features

New Unit Testing Console Output

Test output from the test-app command has been improved:

New Unit Testing API

There is a new unit testing API based on mixins that supports JUnit 3, 4 and Spock style tests (with Spock 0.6 and above). Example:

http://docs.jboss.org/hibernate/stable/core/reference/en-US/html/collections.html

21

import grails.test.mixin.TestFor

@TestFor(SimpleController)
class SimpleControllerTests {
 void testIndex() {
 controller.home()

assert view == "/simple/homePage"
 assert model.title == "Hello World"
 }
}

The has also been re-written around this new framework.documentation on testing

Unit Testing GORM

A new in-memory GORM implementation is present that supports many more features of the GORM API making unit testing of criteria queries,
named queries and other previously unsupported methods possible.

Faster Unit Testing with Interactive Mode

The new interactive mode (activated by typing 'grails') greatly improves the execution time of running unit and integration tests.

Unit Test Scaffolding

A unit test is now generated for scaffolded controllers

22

2 Getting Started

2.1 Downloading and Installing
The first step to getting up and running with Grails is to install the distribution. To do so follow these steps:

Download a binary distribution of Grails and extract the resulting zip file to a location of your choice

Set the GRAILS_HOME environment variable to the location where you extracted the zip

On Unix/Linux based systems this is typically a matter of adding something like the following export
 to your profileGRAILS_HOME=/path/to/grails

On Windows this is typically a matter of setting an environment variable under My Computer/Advanced/Environment
Variables

Then add the directory to your variable:bin PATH

On Unix/Linux based systems this can be done by adding to your profileexport PATH="$PATH:$GRAILS_HOME/bin"

On Windows this is done by modifying the environment variable under Path My Computer/Advanced/Environment
Variables

If Grails is working correctly you should now be able to type in the terminal window and see output similar to this:grails -version

Grails version: 2.0.0

2.2 Upgrading from previous versions of Grails
Although the Grails development team have tried to keep breakages to a minimum there are a number of items to consider when upgrading a
Grails 1.0.x, 1.1.x, 1.2.x, or 1.3.x applications to Grails 2.0. The major changes are described in detail below.

Upgrading from Grails 1.3.x

HSQLDB Has Been Replaced With H2

HSQLDB is still bundled with Grails but is not configured as a default runtime dependency. Upgrade options include replacing HSQLDB
references in DataSource.groovy with H2 references or adding HSQLDB as a runtime dependency for the application.

If you want to run an application with different versions of Grails, it's simplest to add HSQLDB as a runtime dependency, which you can do in
BuildConfig.groovy:

http://grails.org/Download

23

grails.project.dependency.resolution = {
 inherits() {"global"
 }
 repositories {
 grailsPlugins()
 grailsHome()
 grailsCentral()
 }

dependencies {
 // Add HSQLDB as a runtime dependency
 runtime 'hsqldb:hsqldb:1.8.0.10'
 }
}

A default DataSource.groovy which is compatible with H2 looks like this:

dataSource {
 driverClassName = "org.h2.Driver"
 username = "sa"
 password = ""
}
// environment specific settings
environments {
 development {
 dataSource {
 dbCreate = // one of 'create', 'create-drop','update'"create-drop"
 url = "jdbc:h2:mem:devDb"
 }
 }
 test {
 dataSource {
 dbCreate = "update"
 url = "jdbc:h2:mem:testDb"
 }
 }
 production {
 dataSource {
 dbCreate = "update"
 url = "jdbc:h2:prodDb"
 }
 }
}

Another significant difference between H2 and HSQLDB is in the handling of domain class properties. HSQLDB's default BLOB sizebyte[]
is large and so you typically don't need to specify a maximum size. But H2 defaults to a maximum size of 255 bytes! If you store images in the
database, the saves are likely to fail because of this. The easy fix is to add a constraint to the property:maxSize byte[]

class MyDomain {
 [] databyte

 constraints = {static
 data maxSize: 1024 * 1024 * 2 // 2MB
 }
}

This constraint influences schema generation, so in the above example H2 will have the column set to by Hibernate.data BINARY(2097152)

Abstract Inheritance Changes

24

1.

2.

In previous versions of Grails abstract classes in were not treated as persistent. This is no longer the case and has agrails-app/domain
significant impact on upgrading your application. For example consider the following domain model in a Grails 1.3.x application:

abstract class Sellable {

}
class Book Sellable {extends

}

In Grails 1.3.x you would get a BOOK table and the properties from the class would be stored within the table. However, inSellable BOOK
Grails 2.0.x you will get table and the default table-per-hierarchy inheritance rules apply with all properties of the stored in theSELLABLE Book

 table.SELLABLE

You have two options when upgrading in this scenario:

Move the abstract class into the src/groovy package. If the class is in the directory it will no longerSellable Sellable src/groovy
be regarded a persistent

Use the plugin to apply the appropriate changes to the database (typically renaming the table to the root abstract class ofdatabase migration
the inheritance tree)

Criteria Queries Default to INNER JOIN

The previous default of LEFT JOIN for criteria queries across associations is now INNER JOIN.

Logging By Convention Changes

The packages that you should use for Grails artifacts have mostly changed. In particular:

service -> services

controller -> controllers

tagLib -> (case change)taglib

bootstrap -> conf

dataSource -> conf

You can find out more about logging by convention in the of the user guide, under "Configuring loggers". This change is a side-effectmain part
of injecting the property into artefacts at compile time.log

jQuery Replaces Prototype

The Protoype Javascript library has been removed from Grails core and now new Grails applications have the jQuery plugin configured by
default. This will only impact you if you are using Prototype with the adaptive AJAX tags in your application, e.g. <g:remoteLink/> etc, because
those tags will break as soon as you upgrade.

To resolve this issue, simply install the in your application. You can also remove the prototype files from your Prototype plugin
 directory if you want.web-app/js/prototype

Access Control and Resources

http://grails.org/plugin/database-migration
http://grails.org/plugin/prototype

25

The Resources plugin is a great new feature of Grails, but you do need to be aware that it adds an extra URL at . If you have access/static
control in your application, this may mean that the static resources require an authenticated user to load them! Make sure your access rules take
account of the URL./static

Controller Public Methods

As of Grails 2.0, public methods of controllers are now treated as actions in addition to actions defined as traditional Closures. If you were
relying on the use of methods for privacy controls or as helper methods then this could result in unexpected behavior. To resolve this issue you
should mark all methods of your application that are not to be exposed as actions as methods.private

The redirect Method

The method no longer commits the response. The result of this is code that relies of this behavior will break in 2.0. For example:redirect

redirect action: "next"
 (response.committed) {if

 // somethingdo
}

In this case in Grails 1.3.x and below the property would return true and the block will execute. In Grails 2.0 thisresponse.committed if
is no longer the case and you should instead use the new method of the object:isRedirected() request

redirect action: "next"
 (request.redirected) {if

 // somethingdo
}

Another side-effect of the changes to the redirect method is that it now always uses the configuration option if it's set.grails.serverURL
Previous versions of Grails included default values for all the environments, but when upgrading to Grails 2.0 those values more often than not
break redirection. So, we recommend you remove the development and test settings for or replace them with somethinggrails.serverURL
appropriate for your application.

Content Negotiation

As of Grails 2.0 the method of controllers no longer takes into account the request content type (dictated by the withFormat CONTENT_TYPE
header), but instead deals exclusively with the response content type (dictated by the header or file extension). This means that if yourACCEPT
application has code that relies on reading XML from the request using this will no longer work:withFormat

def processBook() {
 withFormat {
 xml {
 // read request XML
 }
 html {
 // read request parameters
 }
 }
}

Instead you use the method provided on the object:withFormat request

26

def processBook() {
 request.withFormat {
 xml {
 // read request XML
 }
 html {
 // read request parameters
 }
 }
}

Command Line Output

Ant output is now hidden by default to keep the noise in the terminal to a minimum. That means if you use in your scripts toant.echo
communicate messages to the user, we recommend switching to an alternative mechanism.

For status related messages, you can use the event system:

event , []"StatusUpdate" "Some message"
event , []"StatusFinal" "Some message"
event , []"StatusError" "Some message"

For more control you can use the script variable, which gives you access to an instance of . In particular, yougrailsConsole GrailsConsole
can log information messages with or , errors and warnings with and , and request user input with log() info() error() warning()

.userInput()

Updated Underlying APIs

Grails 2.0 contains updated dependencies including Servlet 3.0, Tomcat 7, Spring 3.1, Hibernate 3.6 and Groovy 1.8. This means that certain
plugins and applications that that depend on earlier versions of these APIs may no longer work. For example the Servlet 3.0

 interface includes new methods, so if a plugin implements this interface for Servlet 2.5 but not for Servlet 3.0 thenHttpServletRequest
said plugin will break. The same can be said of any Spring interface.

Removal of release-plugin

The built in command for releases plugins to the central Grails plugin repository has been removed. The new pluginrelease-plugin release
should be used instead which provides an equivalent command.publish-plugin

Removal of Deprecated Classes

The following deprecated classes have been removed: , grails.web.JsonBuilder grails.web.OpenRicoBuilder

Upgrading from Grails 1.2.x

Plugin Repositories

As of Grails 1.3, Grails no longer natively supports resolving plugins against secured SVN repositories. The plugin resolution mechanism in
Grails 1.2 and below has been replaced by one built on , the upside of which is that you can now resolve Grails plugins against MavenIvy
repositories as well as regular Grails repositories.

http://grails.org/plugin/release
http://ant.apache.org/ivy/

27

Ivy supports a much richer setter of repository resolvers for resolving plugins, including support for Webdav, HTTP, SSH and FTP. See the
section on in the Ivy docs for all the available options and the section of in the user guide which explains how toresolvers plugin repositories
configure additional resolvers.

If you still need support for resolving plugins against secured SVN repositories then the project provides a set of resolvers for SVNIvySvn
repositories.

Upgrading from Grails 1.1.x

Plugin paths

In Grails 1.1.x typically a variable was used to establish paths to plugin resources. For example:pluginContextPath

<g:resource dir= file= />"${pluginContextPath}/images" "foo.jpg"

In Grails 1.2 views have been made plugin aware and this is no longer necessary:

<g:resource dir= file= />"images" "foo.jpg"

Additionally the above example will no longer link to an application image from a plugin view. To do so change the above to:

<g:resource contextPath= dir= file= />"" "images" "foo.jpg"

The same rules apply to the and tags.javascript render

Tag and Body return values

Tags no longer return instances but instead return a Grails instance. The java.lang.String StreamCharBuffer StreamCharBuffer
class implements all the same methods as but doesn't extend , so code like this will break:String String

def foo = body()
 (foo) {if instanceof String

 // somethingdo
}

In these cases you should check for the interface, which both and implement:java.lang.CharSequence String StreamCharBuffer

def foo = body()
 (foo CharSequence) {if instanceof

 // somethingdo
}

New JSONBuilder

http://ant.apache.org/ivy/history/trunk/settings/resolvers.html
http://code.google.com/p/ivysvn/

28

There is a new version of which is semantically different from the one used in earlier versions of Grails. However, if yourJSONBuilder
application depends on the older semantics you can still use the deprecated implementation by setting the following property to intrue
Config.groovy:

grails.json.legacy.builder=true

Validation on Flush

Grails now executes validation routines when the underlying Hibernate session is flushed to ensure that no invalid objects are persisted. If one of
your constraints (such as a custom validator) executes a query then this can cause an additional flush, resulting in a .StackOverflowError
For example:

static constraints = {
 author validator: { a ->
 assert a != Book.findByTitle().author"My Book"
 }
}

The above code can lead to a in Grails 1.2. The solution is to run the query in a new Hibernate (which isStackOverflowError session
recommended in general as doing Hibernate work during flushing can cause other issues):

static constraints = {
 author validator: { a ->
 Book.withNewSession {
 assert a != Book.findByTitle().author"My Book"
 }
 }
}

Upgrading from Grails 1.0.x

Groovy 1.6

Grails 1.1 and above ship with Groovy 1.6 and no longer supports code compiled against Groovy 1.5. If you have a library that was compiled
with Groovy 1.5 you must recompile it against Groovy 1.6 or higher before using it with Grails 1.1.

Java 5.0

Grails 1.1 now no longer supports JDK 1.4, if you wish to continue using Grails then it is recommended you stick to the Grails 1.0.x stream until
you are able to upgrade your JDK.

Configuration Changes

1) The setting has been renamed to for consistency.grails.testing.reports.destDir grails.project.test.reports.dir

2) The following settings have been moved from to grails-app/conf/Config.groovy
:grails-app/conf/BuildConfig.groovy

29

grails.config.base.webXml

grails.project.war.file (renamed from)grails.war.destFile

grails.war.dependencies

grails.war.copyToWebApp

grails.war.resources

3) The option is no longer supported, since Java 5.0 is now the baseline (see above).grails.war.java5.dependencies

4) The use of jsessionid (now considered harmful) is disabled by default. If your application requires jsessionid you can re-enable its usage by
adding the following to :grails-app/conf/Config.groovy

grails.views.enable.jsessionid=true

5) The syntax used to configure Log4j has changed. See the user guide section on for more information.Logging

Plugin Changes

As of version 1.1, Grails no longer stores plugins inside your directory by default. This may result in compilationPROJECT_HOME/plugins
errors in your application unless you either re-install all your plugins or set the following property in

:grails-app/conf/BuildConfig.groovy

grails.project.plugins.dir="./plugins"

Script Changes

1) If you were previously using Grails 1.0.3 or below the following syntax is no longer support for importing scripts from GRAILS_HOME:

Ant.property(environment:)"env"
grailsHome = Ant.antProject.properties."env.GRAILS_HOME"

includeTargets << File()new "${grailsHome}/scripts/Bootstrap.groovy"

Instead you should use the new method to import a named script:grailsScript

includeTargets << grailsScript()"_GrailsBootstrap"

2) Due to an upgrade of Gant all references to the variable should be changed to .Ant ant

3) The root directory of the project is no longer on the classpath, so loading a resource like this will no longer work:

def stream = getClass().classLoader.getResourceAsStream(
)"grails-app/conf/my-config.xml"

30

Instead you should use the Java File APIs with the property:basedir

new File().withInputStream { stream ->"${basedir}/grails-app/conf/my-config.xml"
 // read the file
}

Command Line Changes

The and commands no longer exist and have been replaced by an argument to :run-app-https run-war-https run-app

grails run-app -https

Data Mapping Changes

1) Enum types are now mapped using their String value rather than the ordinal value. You can revert to the old behavior by changing your
mapping as follows:

static mapping = {
 someEnum enumType:"ordinal"
}

2) Bidirectional one-to-one associations are now mapped with a single column on the owning side and a foreign key reference. You shouldn't
need to change anything; however you should drop column on the inverse side as it contains duplicate data.

REST Support

Incoming XML requests are now no longer automatically parsed. To enable parsing of REST requests you can do so using the parseRequest
argument inside a URL mapping:

"/book"(controller: ,parseRequest:)"book" true

Alternatively, you can use the new argument, which enables parsing by default:resource

"/book"(resource:)"book"

2.3 Creating an Application
To create a Grails application you first need to familiarize yourself with the usage of the command which is used in the followinggrails
manner:

grails [command name]

31

Run to create an application:create-app

grails create-app helloworld

This will create a new directory inside the current one that contains the project. Navigate to this directory in your console:

bc. cd helloworld

2.4 A Hello World Example
To implement the typical "hello world!" example run the command:create-controller

grails create-controller hello

This will create a new controller (Refer to the section on for more information) in the directoryControllers grails-app/controllers
called .helloworld/HelloController.groovy

If no package is specified with create-controller script, Grails automatically uses the application name as the
package name. This default is configurable with the attribute in Config.groovy.grails.project.groupId

Controllers are capable of dealing with web requests and to fulfil the "hello world!" use case our implementation needs to look like the following:

package helloworld

class HelloController {

def world() {
 render "Hello World!"
 }
}

Job done. Now start-up the container with another new command called :run-app

grails run-app

This will start-up a server on port 8080 and you should now be able to access your application with the URL:
http://localhost:8080/helloworld

The result will look something like the following screenshot:

32

This is the Grails intro page which is rendered by the file. You will note it has a detected the presence of yourweb-app/index.gsp
controller and clicking on the link to our controller we can see the text "Hello World!" printed to the browser window.

2.5 Using Interactive Mode
Grails 2.0 features an interactive mode which makes command execution faster since the JVM doesn't have to be restarted for each command. To
use interactive mode simple type 'grails' from the root of any projects and use TAB completion to get a list of available commands. See the
screenshot below for an example:

For more information on the capabilities of interactive mode refer to the section on in the user guide. Interactive Mode

2.6 Getting Set Up in an IDE

33

IntelliJ IDEA

 and the plugin offer good support for Groovy and Grails developers. Refer to the section on supportIntelliJ IDEA JetGroovy Groovy and Grails
on the JetBrains website for a feature overview.

To integrate Grails with IntelliJ run the following command to generate appropriate project files:

grails integrate-with --intellij

Eclipse

We recommend that users of looking to develop Grails application take a look at , which offers built in supportEclipse SpringSource Tool Suite
for Grails including automatic classpath management, a GSP editor and quick access to Grails commands. See the page for anSTS Integration
overview.

NetBeans

NetBeans provides a Groovy/Grails plugin that automatically recognizes Grails projects and provides the ability to run Grails applications in the
IDE, code completion and integration with the Glassfish server. For an overview of features see the guide on the GrailsNetBeans Integration
website which was written by the NetBeans team.

TextMate

Since Grails' focus is on simplicity it is often possible to utilize more simple editors and on the Mac has an excellent Groovy/GrailsTextMate
bundle available from the .Texmate bundles SVN

To integrate Grails with TextMate run the following command to generate appropriate project files:

grails integrate-with --textmate

Alternatively TextMate can easily open any project with its command line integration by issuing the following command from the root of your
project:

mate .

2.7 Convention over Configuration
Grails uses "convention over configuration" to configure itself. This typically means that the name and location of files is used instead of explicit
configuration, hence you need to familiarize yourself with the directory structure provided by Grails.

Here is a breakdown and links to the relevant sections:

http://www.jetbrains.com/idea
http://www.jetbrains.net/confluence/display/GRVY/Groovy+Home
http://www.jetbrains.com/idea/features/groovy_grails.html
http://www.eclipse.org/
http://www.springsource.com/products/sts
http://www.grails.org/STS+Integration
http://www.grails.org/NetBeans+Integration
http://macromates.com/
http://wiki.macromates.com/Main/SubversionCheckout

34

grails-app - top level directory for Groovy sources

conf - .Configuration sources

controllers - - The C in MVC.Web controllers

domain - The .application domain

i18n - Support for .internationalization (i18n)

services - The .service layer

taglib - .Tag libraries

utils - Grails specific utilities.

views - - The V in MVC.Groovy Server Pages

scripts - .Gant scripts

src - Supporting sources

groovy - Other Groovy sources

java - Other Java sources

test - .Unit and integration tests

2.8 Running an Application
Grails applications can be run with the built in Tomcat server using the command which will load a server on port 8080 by default:run-app

grails run-app

You can specify a different port by using the argument:server.port

grails -Dserver.port=8090 run-app

More information on the command can be found in the reference guide. run-app

2.9 Testing an Application
The commands in Grails automatically create unit or integration tests for you within the or create-* test/unit test/integration
directory. It is of course up to you to populate these tests with valid test logic, information on which can be found in the section on .Testing

To execute tests you run the command as follows:test-app

grails test-app

2.10 Deploying an Application

35

Grails applications are deployed as Web Application Archives (WAR files), and Grails includes the command for performing this task:war

grails war

This will produce a WAR file under the directory which can then be deployed as per your container's instructions.target

Unlike most scripts which default to the environment unless overridden, the command runs in the development war production
environment by default. You can override this like any script by specifying the environment name, for example:

grails dev war

NEVER deploy Grails using the command as this command sets Grails up for auto-reloading at runtimerun-app
which has a severe performance and scalability implications

When deploying Grails you should always run your containers JVM with the option and with sufficient memory allocation. A good-server
set of VM flags would be:

-server -Xmx512M -XX:MaxPermSize=256m

2.11 Supported Java EE Containers
Grails runs on any container that supports Servlet 2.5 and above and is known to work on the following specific container products:

36

Tomcat 7

Tomcat 6

SpringSource tc Server

Eclipse Virgo

GlassFish 3

GlassFish 2

Resin 4

Resin 3

JBoss 6

JBoss 5

Jetty 7

Jetty 6

IBM Websphere 7.0

IBM Websphere 6.1

Oracle Weblogic 10.3

Oracle Weblogic 10

Oracle Weblogic 9

Some containers have bugs however, which in most cases can be worked around. A can be found on the Grailslist of known deployment issues
wiki.

2.12 Generating an Application
To get started quickly with Grails it is often useful to use a feature called to generate the skeleton of an application. To do this useScaffolding
one of the commands such as , which will generate a (and its unit test) and the associated :generate-* generate-all controller views

grails generate-all Book

2.13 Creating Artefacts
Grails ships with a few convenience targets such as , and so on that will create and differentcreate-controller create-domain-class Controllers
artefact types for you.

These are just for your convenience and you can just as easily use an IDE or your favourite text editor.

For example to create the basis of an application you typically need a :domain model

grails create-domain-class book

http://grails.org/Deployment

37

This will result in the creation of a domain class at such as:grails-app/domain/Book.groovy

class Book {
}

There are many such commands that can be explored in the command line reference guide.create-*

To decrease the amount of time it takes to run Grails scripts, use the mode.interactive

38

3 Configuration
It may seem odd that in a framework that embraces "convention-over-configuration" that we tackle this topic now, but since what configuration
there is typically a one-off, it is best to get it out the way.

With Grails' default settings you can actually develop an application without doing any configuration whatsoever. Grails ships with an embedded
servlet container and in-memory H2 database, so there isn't even a database to set up.

However, typically you should configure a more robust database at some point and that is described in the following section.

3.1 Basic Configuration
For general configuration Grails provides a file called . This file uses Groovy's whichgrails-app/conf/Config.groovy ConfigSlurper
is very similar to Java properties files except it is pure Groovy hence you can reuse variables and use proper Java types!

You can add your own configuration in here, for example:

foo.bar.hello = "world"

Then later in your application you can access these settings in one of two ways. The most common is from the object, which isGrailsApplication
available as a variable in controllers and tag libraries:

assert == grailsApplication.config.foo.bar.hello"world"

The other way involves getting a reference to the class that holds a reference to the configuration object:ConfigurationHolder

import org.codehaus.groovy.grails.commons.*
…
def config = ConfigurationHolder.config
assert == config.foo.bar.hello"world"

ConfigurationHolder and ApplicationHolder are deprecated and will be removed in a future version of Grails, so it
is highly preferable to access the and config from the variable.GrailsApplication grailsApplication

3.1.1 Built in options
Grails also provides the following configuration options:

http://groovy.codehaus.org/ConfigSlurper

39

grails.config.locations - The location of properties files or addition Grails Config files that should be merged with main
configuration

grails.enable.native2ascii - Set this to false if you do not require native2ascii conversion of Grails i18n properties files

grails.views.default.codec - Sets the default encoding regime for GSPs - can be one of 'none', 'html', or 'base64' (default: 'none').
To reduce risk of XSS attacks, set this to 'html'.

grails.views.gsp.encoding - The file encoding used for GSP source files (default is 'utf-8')

grails.mime.file.extensions - Whether to use the file extension to dictate the mime type in Content Negotiation

grails.mime.types - A map of supported mime types used for Content Negotiation

grails.serverURL - A string specifying the server URL portion of absolute links, including server name e.g.
grails.serverURL="http://my.yourportal.com". See .createLink

War generation

grails.project.war.file - Sets the name and location of the WAR file generated by the commandwar

grails.war.dependencies - A closure containing Ant builder syntax or a list of JAR filenames. Lets you customise what libaries are
included in the WAR file.

grails.war.copyToWebApp - A closure containing Ant builder syntax that is legal inside an Ant copy, for example "fileset()". Lets
you control what gets included in the WAR file from the "web-app" directory.

grails.war.resources - A closure containing Ant builder syntax. Allows the application to do any other other work before building
the final WAR file

For more information on using these options, see the section on deployment

3.1.2 Logging

The Basics

Grails uses its common configuration mechanism to provide the settings for the underlying log system, so all you have to do is add a Log4j
 setting to the file .log4j grails-app/conf/Config.groovy

So what does this setting look like? Here's a basic example:log4j

log4j = {
 error 'org.codehaus.groovy.grails.web.servlet', // controllers
 'org.codehaus.groovy.grails.web.pages' // GSP

warn 'org.apache.catalina'
}

This says that for loggers whose name starts with 'org.codehaus.groovy.grails.web.servlet' or 'org.codehaus.groovy.grails.web.pages', only
messages logged at 'error' level and above will be shown. Loggers with names starting with 'org.apache.catalina' logger only show messages at
the 'warn' level and above. What does that mean? First of all, you have to understand how levels work.

Logging levels

http://logging.apache.org/log4j/1.2/index.html

40

1.

2.

3.

4.

5.

6.

7.

8.

1.

2.

The are several standard logging levels, which are listed here in order of descending priority:

off

fatal

error

warn

info

debug

trace

all

When you log a message, you implicitly give that message a level. For example, the method will log a message at the 'error'log.error(msg)
level. Likewise, will log it at 'debug'. Each of the above levels apart from 'off' and 'all' have a corresponding log method oflog.debug(msg)
the same name.

The logging system uses that level combined with the configuration for the logger (see next section) to determine whether the messagemessage
gets written out. For example, if you have an 'org.example.domain' logger configured like so:

warn 'org.example.domain'

then messages with a level of 'warn', 'error', or 'fatal' will be written out. Messages at other levels will be ignored.

Before we go on to loggers, a quick note about those 'off' and 'all' levels. These are special in that they can only be used in the configuration; you
can't log messages at these levels. So if you configure a logger with a level of 'off', then no messages will be written out. A level of 'all' means
that you will see all messages. Simple.

Loggers

Loggers are fundamental to the logging system, but they are a source of some confusion. For a start, what are they? Are they shared? How do you
configure them?

A logger is the object you log messages to, so in the call , is a logger instance (of type). These loggers are cachedlog.debug(msg) log Log
and uniquely identified by name, so if two separate classes use loggers with the same name, those loggers are actually the same instance.

There are two main ways to get hold of a logger:

use the instance injected into artifacts such as domain classes, controllers and services;log

use the Commons Logging API directly.

If you use the dynamic property, then the name of the logger is 'grails.app.<type>.<className>', where is the type of the artifact, forlog type
example 'controller' or 'service, and is the fully qualified name of the artifact. For example, if you have this service:className

package org.example

class MyService {
 …
}

http://commons.apache.org/logging/apidocs/org/apache/commons/logging/Log.html

41

then the name of the logger will be 'grails.app.services.org.example.MyService'.

For other classes, the typical approach is to store a logger based on the class name in a constant static field:

package org.other

 org.apache.commons.logging.LogFactoryimport

class MyClass {
 log = LogFactory.getLog()private static final this
 …
}

This will create a logger with the name 'org.other.MyClass' - note the lack of a 'grails.app.' prefix since the class isn't an artifact. You can also
pass a name to the method, such as "myLogger", but this is less common because the logging system treats names with dots ('.') in agetLog()
special way.

Configuring loggers

You have already seen how to configure loggers in Grails:

log4j = {
 error 'org.codehaus.groovy.grails.web.servlet'
}

This example configures loggers with names starting with 'org.codehaus.groovy.grails.web.servlet' to ignore any messages sent to them at a level
of 'warn' or lower. But is there a logger with this name in the application? No. So why have a configuration for it? Because the above rule applies
to any logger whose name 'org.codehaus.groovy.grails.servlet.' as well. For example, the rule applies to both the begins with

 class and the org.codehaus.groovy.grails.web.servlet.GrailsDispatcherServlet
 one.org.codehaus.groovy.grails.web.servlet.mvc.GrailsWebRequest

In other words, loggers are hierarchical. This makes configuring them by package much simpler than it would otherwise be.

The most common things that you will want to capture log output from are your controllers, services, and other artifacts. Use the convention
mentioned earlier to do that: . In particular the class name must be fully qualifed, i.e. with the packagegrails.app.<artifactType>.<className>
if there is one:

log4j = {
 // Set level all application artifactsfor
 info "grails.app"

// Set a specific controller in the for default package
 debug "grails.app.controllers.YourController"

// Set a specific domain classfor
 debug "grails.app.domain.org.example.Book"

// Set all taglibsfor
 info "grails.app.taglib"
}

The standard artifact names used in the logging configuration are:

42

conf - For anything under such as (but excluding filters)grails-app/conf BootStrap.groovy

filters - For filters

taglib - For tag libraries

services - For service classes

controllers - For controllers

domain - For domain entities

Grails itself generates plenty of logging information and it can sometimes be helpful to see that. Here are some useful loggers from Grails
internals that you can use, especially when tracking down problems with your application:

org.codehaus.groovy.grails.commons - Core artifact information such as class loading etc.

org.codehaus.groovy.grails.web - Grails web request processing

org.codehaus.groovy.grails.web.mapping - URL mapping debugging

org.codehaus.groovy.grails.plugins - Log plugin activity

grails.spring - See what Spring beans Grails and plugins are defining

org.springframework - See what Spring is doing

org.hibernate - See what Hibernate is doing

So far, we've only looked at explicit configuration of loggers. But what about all those loggers that have an explicit configuration? Are theydon't
simply ignored? The answer lies with the root logger.

The Root Logger

All logger objects inherit their configuration from the root logger, so if no explicit configuration is provided for a given logger, then any
messages that go to that logger are subject to the rules defined for the root logger. In other words, the root logger provides the default
configuration for the logging system.

Grails automatically configures the root logger to only handle messages at 'error' level and above, and all the messages are directed to the console
(stdout for those with a C background). You can customise this behaviour by specifying a 'root' section in your logging configuration like so:

log4j = {
 root {
 info()
 }
 …
}

The above example configures the root logger to log messages at 'info' level and above to the default console appender. You can also configure
the root logger to log to one or more named appenders (which we'll talk more about shortly):

43

log4j = {
 appenders {
 file name:'file', file:'/ /logs/mylog.log'var
 }
 root {
 debug 'stdout', 'file'
 }
}

In the above example, the root logger will log to two appenders - the default 'stdout' (console) appender and a custom 'file' appender.

For power users there is an alternative syntax for configuring the root logger: the root instance is passed as anorg.apache.log4j.Logger
argument to the log4j closure. This lets you work with the logger directly:

log4j = { root ->
 root.level = org.apache.log4j.Level.DEBUG
 …
}

For more information on what you can do with this instance, refer to the Log4j API documentation.Logger

Those are the basics of logging pretty well covered and they are sufficient if you're happy to only send log messages to the console. But what if
you want to send them to a file? How do you make sure that messages from a particular logger go to a file but not the console? These questions
and more will be answered as we look into appenders.

Appenders

Loggers are a useful mechanism for filtering messages, but they don't physically write the messages anywhere. That's the job of the appender, of
which there are various types. For example, there is the default one that writes messages to the console, another that writes them to a file, and
several others. You can even create your own appender implementations!

This diagram shows how they fit into the logging pipeline:

As you can see, a single logger may have several appenders attached to it. In a standard Grails configuration, the console appender named 'stdout'
is attached to all loggers through the default root logger configuration. But that's the only one. Adding more appenders can be done within an
'appenders' block:

44

log4j = {
 appenders {
 rollingFile name: ,"myAppender"
 maxFileSize: 1024,
 file: "/tmp/logs/myApp.log"
 }
}

The following appenders are available by default:

Name Class Description

jdbc JDBCAppender Logs to a JDBC connection.

console ConsoleAppender Logs to the console.

file FileAppender Logs to a single file.

rollingFile RollingFileAppender Logs to rolling files, for example a new file each day.

Each named argument passed to an appender maps to a property of the underlying implementation. So the previous example sets the Appender
, and properties of the instance.name maxFileSize file RollingFileAppender

You can have as many appenders as you like - just make sure that they all have unique names. You can even have multiple instances of the same
appender type, for example several file appenders that log to different files.

If you prefer to create the appender programmatically or if you want to use an appender implementation that's not available in the above syntax,
simply declare an entry with an instance of the appender you want:appender

import org.apache.log4j.*

log4j = {
 appenders {
 appender RollingFileAppender(new
 name: ,"myAppender"
 maxFileSize: 1024,
 file:)"/tmp/logs/myApp.log"
 }
}

This approach can be used to configure , , , and more.JMSAppender SocketAppender SMTPAppender

Once you have declared your extra appenders, you can attach them to specific loggers by passing the name as a key to one of the log level
methods from the previous section:

error myAppender: "grails.app.controllers.BookController"

This will ensure that the 'grails.app.controllers.BookController' logger sends log messages to 'myAppender' as well as any appenders configured
for the root logger. To add more than one appender to the logger, then add them to the same level declaration:

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/jdbc/JDBCAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/ConsoleAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/FileAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/RollingFileAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Appender.html

45

error myAppender: ,"grails.app.controllers.BookController"
 myFileAppender: [,"grails.app.controllers.BookController"
],"grails.app.services.BookService"
 rollingFile: "grails.app.controllers.BookController"

The above example also shows how you can configure more than one logger at a time for a given appender () by using a list.myFileAppender

Be aware that you can only configure a single level for a logger, so if you tried this code:

error myAppender: "grails.app.controllers.BookController"
debug myFileAppender: "grails.app.controllers.BookController"
fatal rollingFile: "grails.app.controllers.BookController"

you'd find that only 'fatal' level messages get logged for 'grails.app.controllers.BookController'. That's because the last level declared for a given
logger wins. What you probably want to do is limit what level of messages an appender writes.

An appender that is attached to a logger configured with the 'all' level will generate a lot of logging information. That may be fine in a file, but it
makes working at the console difficult. So we configure the console appender to only write out messages at 'info' level or above:

log4j = {
 appenders {
 console name: , threshold: org.apache.log4j.Level.INFO"stdout"
 }
}

The key here is the argument which determines the cut-off for log messages. This argument is available for all appenders, but dothreshold
note that you currently have to specify a instance - a string such as "info" will not work.Level

Custom Layouts

By default the Log4j DSL assumes that you want to use a . However, there are other layouts available including:PatternLayout

xml - Create an XML log file

html - Creates an HTML log file

simple - A simple textual log

pattern - A Pattern layout

You can specify custom patterns to an appender using the setting:layout

log4j = {
 appenders {
 console name: ,"customAppender"
 layout: pattern(conversionPattern:)"%c{2} %m%n"
 }
}

This also works for the built-in appender "stdout", which logs to the console:

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

46

log4j = {
 appenders {
 console name: ,"stdout"
 layout: pattern(conversionPattern:)"%c{2} %m%n"
 }
}

Environment-specific configuration

Since the logging configuration is inside , you can put it inside an environment-specific block. However, there is a problemConfig.groovy
with this approach: you have to provide the full logging configuration each time you define the setting. In other words, you cannotlog4j
selectively override parts of the configuration - it's all or nothing.

To get around this, the logging DSL provides its own environment blocks that you can put anywhere in the configuration:

log4j = {
 appenders {
 console name: ,"stdout"
 layout: pattern(conversionPattern:)"%c{2} %m%n"

environments {
 production {
 rollingFile name: , maxFileSize: 1024,"myAppender"
 file: "/tmp/logs/myApp.log"
 }
 }
 }

root {
 //…
 }

// other shared config
 info "grails.app.controller"

environments {
 production {
 // Override previous setting 'grails.app.controller'for
 error "grails.app.controller"
 }
 }
}

The one place you can't put an environment block is the definition, but you can put the definition inside an environmentinside root root
block.

Full stacktraces

When exceptions occur, there can be an awful lot of noise in the stacktrace from Java and Groovy internals. Grails filters these typically
irrelevant details and restricts traces to non-core Grails/Groovy class packages.

When this happens, the full trace is always logged to the logger, which by default writes its output to a file called StackTrace
. As with other loggers though, you can change its behaviour in the configuration. For example if you prefer full stack tracesstacktrace.log

to go to the console, add this entry:

error stdout: "StackTrace"

47

This won't stop Grails from attempting to create the stacktrace.log file - it just redirects where stack traces are written to. An alternative approach
is to change the location of the 'stacktrace' appender's file:

log4j = {
 appenders {
 rollingFile name: , maxFileSize: 1024,"stacktrace"
 file: "/ /tmp/logs/myApp-stacktrace.log"var
 }
}

or, if you don't want to the 'stacktrace' appender at all, configure it as a 'null' appender:

log4j = {
 appenders {
 ' ' name: null "stacktrace"
 }
}

You can of course combine this with attaching the 'stdout' appender to the 'StackTrace' logger if you want all the output in the console.

Finally, you can completely disable stacktrace filtering by setting the VM property to :grails.full.stacktrace true

grails -Dgrails.full.stacktrace= run-apptrue

Masking Request Parameters From Stacktrace Logs

When Grails logs a stacktrace, the log message may include the names and values of all of the request parameters for the current request. To
mask out the values of secure request parameters, specify the parameter names in the grails.exceptionresolver.params.exclude
config property:

grails.exceptionresolver.params.exclude = ['password', 'creditCard']

Request parameter logging may be turned off altogether by setting the configgrails.exceptionresolver.logRequestParameters
property to . The default value is when the application is running in DEVELOPMENT mode and for all other modes.false true false

grails.exceptionresolver.logRequestParameters=false

Logger inheritance

Earlier, we mentioned that all loggers inherit from the root logger and that loggers are hierarchical based on '.'-separated terms. What this means
is that unless you override a parent setting, a logger retains the level and the appenders configured for that parent. So with this configuration:

48

log4j = {
 appenders {
 file name:'file', file:'/ /logs/mylog.log'var
 }
 root {
 debug 'stdout', 'file'
 }
}

all loggers in the application will have a level of 'debug' and will log to both the 'stdout' and 'file' appenders. What if you only want to log to
'stdout' for a particular logger? Change the 'additivity' for a logger in that case.

Additivity simply determines whether a logger inherits the configuration from its parent. If additivity is false, then its not inherited. The default
for all loggers is true, i.e. they inherit the configuration. So how do you change this setting? Here's an example:

log4j = {
 appenders {
 …
 }
 root {
 …
 }

info additivity: false
 stdout: [,"grails.app.controllers.BookController"
]"grails.app.services.BookService"
}

So when you specify a log level, add an 'additivity' named argument. Note that you when you specify the additivity, you must configure the
loggers for a named appender. The following syntax will work:not

info additivity: , [,false "grails.app.controllers.BookController"
]"grails.app.services.BookService"

Customizing stack trace printing and filtering

Stacktraces in general and those generated when using Groovy in particular are quite verbose and contain many stack frames that aren't
interesting when diagnosing problems. So Grails uses a implementation of the

 interface to filter out irrelevant stack frames. To customizeorg.codehaus.groovy.grails.exceptions.StackTraceFilterer
the approach used for filtering, implement that interface in a class in src/groovy or src/java and register it in :Config.groovy

grails.logging.stackTraceFiltererClass =
 'com.yourcompany.yourapp.MyStackTraceFilterer'

In addition, Grails customizes the display of the filtered stacktrace to make the information more readable. To customize this, implement the
 interface in a class in src/groovy or src/java and register it in org.codehaus.groovy.grails.exceptions.StackTracePrinter

:Config.groovy

49

grails.logging.stackTracePrinterClass =
 'com.yourcompany.yourapp.MyStackTracePrinter'

Finally, to render error information in the error GSP, an HTML-generating printer implementation is needed. The default implementation is
 and it's registered as a Spring bean. To use yourorg.codehaus.groovy.grails.web.errors.ErrorsViewStackTracePrinter

own implementation, either implement the directly ororg.codehaus.groovy.grails.exceptions.StackTraceFilterer
subclass and register it in as:ErrorsViewStackTracePrinter grails-app/conf/spring/resources.groovy

import com.yourcompany.yourapp.MyErrorsViewStackTracePrinter

beans = {

errorsViewStackTracePrinter(MyErrorsViewStackTracePrinter,
 ref('grailsResourceLocator'))
}

3.1.3 GORM
Grails provides the following GORM configuration options:

grails.gorm.failOnError - If set to , causes the method on domain classes to throw a true save()
 if fails during a save. This option may also be assigned a list of Stringsgrails.validation.ValidationException validation

representing package names. If the value is a list of Strings then the failOnError behavior will only be applied to domain classes in those
packages (including sub-packages). See the method docs for more information.save

For example, to enable failOnError for all domain classes:

grails.gorm.failOnError=true

and to enable failOnError for domain classes by package:

grails.gorm.failOnError = ['com.companyname.somepackage',
 'com.companyname.someotherpackage']

grails.gorm.autoFlush = If set to , causes the , and methods to flush the session, replacing the need totrue merge save delete
explicitly flush using .save(flush: true)

3.2 Environments

Per Environment Configuration

Grails supports the concept of per environment configuration. The , , and Config.groovy DataSource.groovy BootStrap.groovy
files in the directory can use per-environment configuration using the syntax provided by . As an examplegrails-app/conf ConfigSlurper
consider the following default definition provided by Grails:DataSource

http://groovy.codehaus.org/ConfigSlurper

50

dataSource {
 pooled = false
 driverClassName = "org.h2.Driver"
 username = "sa"
 password = ""
}
environments {
 development {
 dataSource {
 dbCreate = "create-drop"
 url = "jdbc:h2:mem:devDb"
 }
 }
 test {
 dataSource {
 dbCreate = "update"
 url = "jdbc:h2:mem:testDb"
 }
 }
 production {
 dataSource {
 dbCreate = "update"
 url = "jdbc:h2:prodDb"
 }
 }
}

Notice how the common configuration is provided at the top level and then an block specifies per environment settings for the environments
 and properties of the .dbCreate url DataSource

Packaging and Running for Different Environments

Grails' has built in capabilities to execute any command within the context of a specific environment. The format is:command line

grails [environment] [command name]

In addition, there are 3 preset environments known to Grails: , , and for , and . Fordev prod test development production test
example to create a WAR for the environment you wound run:test

grails test war

To target other environments you can pass a variable to any command:grails.env

grails -Dgrails.env=UAT run-app

Programmatic Environment Detection

Within your code, such as in a Gant script or a bootstrap class you can detect the environment using the class:Environment

51

import grails.util.Environment

...

 (Environment.current) {switch
 Environment.DEVELOPMENT:case
 configureForDevelopment()
 break
 Environment.PRODUCTION:case
 configureForProduction()
 break
}

Per Environment Bootstrapping

Its often desirable to run code when your application starts up on a per-environment basis. To do so you can use the
 file's support for per-environment execution:grails-app/conf/BootStrap.groovy

def init = { ServletContext ctx ->
 environments {
 production {
 ctx.setAttribute(,)"env" "prod"
 }
 development {
 ctx.setAttribute(,)"env" "dev"
 }
 }
 ctx.setAttribute(,)"foo" "bar"
}

Generic Per Environment Execution

The previous example uses the class internally to execute. You can also use this class yourselfBootStrap grails.util.Environment
to execute your own environment specific logic:

Environment.executeForCurrentEnvironment {
 production {
 // something in productiondo
 }
 development {
 // something only in developmentdo
 }
}

3.3 The DataSource
Since Grails is built on Java technology setting up a data source requires some knowledge of JDBC (the technology that doesn't stand for Java
Database Connectivity).

If you use a database other than H2 you need a JDBC driver. For example for MySQL you would need Connector/J

Drivers typically come in the form of a JAR archive. It's best to use Ivy to resolve the jar if it's available in a Maven repository, for example you
could add a dependency for the MySQL driver like this:

http://www.mysql.com/downloads/connector/j/

52

grails.project.dependency.resolution = {
 inherits()"global"
 log "warn"
 repositories {
 grailsPlugins()
 grailsHome()
 grailsCentral()
 mavenCentral()
 }
 dependencies {
 runtime 'mysql:mysql-connector-java:5.1.16'
 }
}

Note that the built-in repository is included here since that's a reliable location for this library.mavenCentral()

If you can't use Ivy then just put the JAR in your project's directory.lib

Once you have the JAR resolved you need to get familiar Grails' DataSource descriptor file located at
. This file contains the dataSource definition which includes the following settings:grails-app/conf/DataSource.groovy

driverClassName - The class name of the JDBC driver

username - The username used to establish a JDBC connection

password - The password used to establish a JDBC connection

url - The JDBC URL of the database

dbCreate - Whether to auto-generate the database from the domain model - one of 'create-drop', 'create', 'update' or 'validate'

pooled - Whether to use a pool of connections (defaults to true)

logSql - Enable SQL logging to stdout

formatSql - Format logged SQL

dialect - A String or Class that represents the Hibernate dialect used to communicate with the database. See the org.hibernate.dialect
package for available dialects.

readOnly - If makes the DataSource read-only, which results in the connection pool calling on each true setReadOnly(true)
Connection

properties - Extra properties to set on the DataSource bean. See the documentation.Commons DBCP BasicDataSource

A typical configuration for MySQL may be something like:

dataSource {
 pooled = true
 dbCreate = "update"
 url = "jdbc:mysql://localhost/yourDB"
 driverClassName = "com.mysql.jdbc.Driver"
 dialect = org.hibernate.dialect.MySQL5InnoDBDialect
 username = "yourUser"
 password = "yourPassword"
}

http://docs.jboss.org/hibernate/stable/core/javadocs/org/hibernate/dialect/package-summary.html
http://commons.apache.org/dbcp/api-1.2.2/org/apache/commons/dbcp/BasicDataSource.html

53

When configuring the DataSource do not include the type or the def keyword before any of the configuration
settings as Groovy will treat these as local variable definitions and they will not be processed. For example the
following is invalid:

dataSource {
 pooled = // type declaration results in ignored local variableboolean true
 …
}

Example of advanced configuration using extra properties:

dataSource {
 pooled = true
 dbCreate = "update"
 url = "jdbc:mysql://localhost/yourDB"
 driverClassName = "com.mysql.jdbc.Driver"
 dialect = org.hibernate.dialect.MySQL5InnoDBDialect
 username = "yourUser"
 password = "yourPassword"
 properties {
 maxActive = 50
 maxIdle = 25
 minIdle = 5
 initialSize = 5
 minEvictableIdleTimeMillis = 60000
 timeBetweenEvictionRunsMillis = 60000
 maxWait = 10000
 validationQuery = "/* ping */"
 }
}

More on dbCreate

Hibernate can automatically create the database tables required for your domain model. You have some control over when and how it does this
through the property, which can take these values:dbCreate

create - Drops the existing schemaCreates the schema on startup, dropping existing tables, indexes, etc. first.

create-drop - Same as , but also drops the tables when the application shuts down cleanly.create

update - Creates missing tables and indexes, and updates the current schema without dropping any tables or data. Note that this can't
properly handle many schema changes like column renames (you're left with the old column containing the existing data).

validate - Makes no changes to your database. Compares the configuration with the existing database schema and reports warnings.

any other value - does nothing

You can also remove the setting completely, which is recommended once your schema is relatively stable and definitely when yourdbCreate
application and database are deployed in production. Database changes are then managed through proper migrations, either with SQL scripts or a
migration tool like (the plugin uses Liquibase and is tightly integrated with Grails and GORM). Liquibase Database Migration

3.3.1 DataSources and Environments
The previous example configuration assumes you want the same config for all environments: production, test, development etc.

http://www.liquibase.org/
http://grails.org/plugin/database-migration

54

Grails' DataSource definition is "environment aware", however, so you can do:

dataSource {
 pooled = true
 driverClassName = "com.mysql.jdbc.Driver"
 dialect = org.hibernate.dialect.MySQL5InnoDBDialect
 // other common settings here
}

environments {
 production {
 dataSource {
 url = "jdbc:mysql://liveip.com/liveDb"
 // other environment-specific settings here
 }
 }
}

3.3.2 JNDI DataSources

Referring to a JNDI DataSource

Most Java EE containers supply instances via (JNDI). Grails supports the definition of JNDIDataSource Java Naming and Directory Interface
data sources as follows:

dataSource {
 jndiName = "java:comp/env/myDataSource"
}

The format on the JNDI name may vary from container to container, but the way you define the in Grails remains the same.DataSource

Configuring a Development time JNDI resource

The way in which you configure JNDI data sources at development time is plugin dependent. Using the plugin you can define JNDITomcat
resources using the setting in :grails.naming.entries grails-app/conf/Config.groovy

http://www.oracle.com/technetwork/java/jndi/index.html
http://grails.org/plugin/tomcat

55

grails.naming.entries = [
 : ["bean/MyBeanFactory"
 auth: ,"Container"
 type: ,"com.mycompany.MyBean"
 factory: ,"org.apache.naming.factory.BeanFactory"
 bar: "23"
],
 : ["jdbc/EmployeeDB"
 type: , //required"javax.sql.DataSource"
 auth: , // optional"Container"
 description: , //optional"Data source Foo"for
 driverClassName: ,"org.h2.Driver"
 url: ,"jdbc:h2:mem:database"
 username: ,"dbusername"
 password: ,"dbpassword"
 maxActive: ,"8"
 maxIdle: "4"
],
 : ["mail/session"
 type: "javax.mail.Session,

Container auth: " ",
mail.smtp.host localhost" " ": "

]
]

3.3.3 Automatic Database Migration
The property of the definition is important as it dictates what Grails should do at runtime with regards todbCreate DataSource
automatically generating the database tables from classes. The options are described in the section:GORM DataSource

create

create-drop

update

validate

no value

In mode is by default set to "create-drop", but at some point in development (and certainly once you go to production)development dbCreate
you'll need to stop dropping and re-creating the database every time you start up your server.

It's tempting to switch to so you retain existing data and only update the schema when your code changes, but Hibernate's updateupdate
support is very conservative. It won't make any changes that could result in data loss, and doesn't detect renamed columns or tables, so you'll be
left with the old one and will also have the new one.

Grails supports Rails-style migrations via the plugin which can be installed by runningDatabase Migration

grails install-plugin database-migration

The plugin uses and and provides access to all of its functionality, and also has support for GORM (for example generating a changeLiquibase
set by comparing your domain classes to a database).

3.3.4 Transaction-aware DataSource Proxy
The actual bean is wrapped in a transaction-aware proxy so you will be given the connection that's being used by the currentdataSource
transaction or Hibernate if one is active.Session

http://grails.org/plugin/database-migration
http://www.liquibase.org/

56

If this were not the case, then retrieving a connection from the would be a new connection, and you wouldn't be able to seedataSource
changes that haven't been committed yet (assuming you have a sensible transaction isolation setting, e.g. or better).READ_COMMITTED

The "real" unproxied is still available to you if you need access to it; its bean name is .dataSource dataSourceUnproxied

You can access this bean like any other Spring bean, i.e. using dependency injection:

class MyService {

def dataSourceUnproxied
 …
}

or by pulling it from the :ApplicationContext

def dataSourceUnproxied = ctx.dataSourceUnproxied

3.3.5 Database Console
The is a convenient feature of H2 that provides a web-based interface to any database that you have a JDBC driver for, andH2 database console
it's very useful to view the database you're developing against. It's especially useful when running against an in-memory database.

You can access the console by navigating to in a browser. The URI can be configured using the http://localhost:8080/appname/dbconsole
 attribute in Config.groovy and defaults to .grails.dbconsole.urlRoot '/dbconsole'

The console is enabled by default in development mode and can be disabled or enabled in other environments by using the
 attribute in Config.groovy. For example you could enable the console in production usinggrails.dbconsole.enabled

environments {
 production {
 grails.serverURL = "http://www.changeme.com"
 grails.dbconsole.enabled = true
 grails.dbconsole.urlRoot = '/admin/dbconsole'
 }
 development {
 grails.serverURL = "http://localhost:8080/${appName}"
 }
 test {
 grails.serverURL = "http://localhost:8080/${appName}"
 }
}

If you enable the console in production be sure to guard access to it using a trusted security framework.

Configuration

By default the console is configured for an H2 database which will work with the default settings if you haven't configured an external database -
you just need to change the JDBC URL to . If you've configured an external database (e.g. MySQL, Oracle, etc.) thenjdbc:h2:mem:devDB
you can use the Saved Settings dropdown to choose a settings template and fill in the url and username/password information from your
DataSource.groovy.

http://h2database.com/html/quickstart.html#h2_console

57

3.3.6 Multiple Datasources
By default all domain classes share a single and a single database, but you have the option to partition your domain classes intoDataSource
two or more s.DataSource

Configuring Additional DataSources

The default configuration in looks something like this:DataSource grails-app/conf/DataSource.groovy

dataSource {
 pooled = true
 driverClassName = "org.h2.Driver"
 username = "sa"
 password = ""
}
hibernate {
 cache.use_second_level_cache = true
 cache.use_query_cache = true
 cache.provider_class = 'net.sf.ehcache.hibernate.EhCacheProvider'
}

environments {
 development {
 dataSource {
 dbCreate = "create-drop"
 url = "jdbc:h2:mem:devDb"
 }
 }
 test {
 dataSource {
 dbCreate = "update"
 url = "jdbc:h2:mem:testDb"
 }
 }
 production {
 dataSource {
 dbCreate = "update"
 url = "jdbc:h2:prodDb"
 }
 }
}

This configures a single with the Spring bean named . To configure extra s, add another DataSource dataSource DataSource
 block (at the top level, in an environment block, or both, just like the standard definition) with a custom name,dataSource DataSource

separated by an underscore. For example, this configuration adds a second , using MySQL in the development environment andDataSource
Oracle in production:

58

environments {
 development {
 dataSource {
 dbCreate = "create-drop"
 url = "jdbc:h2:mem:devDb"
 }
 dataSource_lookup {
 dialect = org.hibernate.dialect.MySQLInnoDBDialect
 driverClassName = 'com.mysql.jdbc.Driver'
 username = 'lookup'
 password = 'secret'
 url = 'jdbc:mysql://localhost/lookup'
 dbCreate = 'update'
 }
 }
 test {
 dataSource {
 dbCreate = "update"
 url = "jdbc:h2:mem:testDb"
 }
 }
 production {
 dataSource {
 dbCreate = "update"
 url = "jdbc:h2:prodDb"
 }
 dataSource_lookup {
 dialect = org.hibernate.dialect.Oracle10gDialect
 driverClassName = 'oracle.jdbc.driver.OracleDriver'
 username = 'lookup'
 password = 'secret'
 url = 'jdbc:oracle:thin:@localhost:1521:lookup'
 dbCreate = 'update'
 }
 }
}

You can use the same or different databases as long as they're supported by Hibernate.

Configuring Domain Classes

If a domain class has no configuration, it defaults to the standard . Set the property in the DataSource 'dataSource' datasource
 block to configure a non-default . For example, if you want to use the domain to use the mapping DataSource ZipCode 'lookup'

, configure it like this;DataSource

class ZipCode {

 codeString

 mapping = {static
 datasource 'lookup'
 }
}

A domain class can also use two or more s. Use the property with a list of names to configure more than one, forDataSource datasources
example:

59

class ZipCode {

 codeString

 mapping = {static
 datasources(['lookup', 'auditing'])
 }
}

If a domain class uses the default and one or more others, use the special name to indicate the default DataSource 'DEFAULT'
:DataSource

class ZipCode {

 codeString

 mapping = {static
 datasources(['lookup', 'DEFAULT'])
 }
}

If a domain class uses all configured s use the special value :DataSource 'ALL'

class ZipCode {

 codeString

 mapping = {static
 datasource 'ALL'
 }
}

Namespaces and GORM Methods

If a domain class uses more than one then you can use the namespace implied by each name to make GORM callsDataSource DataSource
for a particular . For example, consider this class which uses two s:DataSource DataSource

class ZipCode {

 codeString

 mapping = {static
 datasources(['lookup', 'auditing'])
 }
}

The first specified is the default when not using an explicit namespace, so in this case we default to 'lookup'. But you can callDataSource
GORM methods on the 'auditing' with the name, for example:DataSource DataSource

def zipCode = ZipCode.auditing.get(42)
…
zipCode.auditing.save()

60

As you can see, you add the to the method call in both the static case and the instance case.DataSource

Services

Like Domain classes, by default Services use the default and . To configure a Service toDataSource PlatformTransactionManager
use a different , use the static property, for example:DataSource datasource

class DataService {

 datasource = 'lookup'static

void someMethod(...) {
 …
 }
}

A transactional service can only use a single , so be sure to only make changes for domain classes whose is theDataSource DataSource
same as the Service.

Note that the datasource specified in a service has no bearing on which datasources are used for domain classes; that's determined by their
declared datasources in the domain classes themselves. It's used to declare which transaction manager to use.

What you'll see is that if you have a Foo domain class in dataSource1 and a Bar domain class in dataSource2, and WahooService uses
dataSource1, a service method that saves a new Foo and a new Bar will only be transactional for Foo since they share the datasource. The
transaction won't affect the Bar instance. If you want both to be transactional you'd need to use two services and XA datasources for two-phase
commit, e.g. with the Atomikos plugin.

XA and Two-phase Commit

Grails has no native support for s or , but the makes it easy. See the plugin documentationXA DataSource two-phase commit Atomikos plugin
for the simple changes needed in your definitions to reconfigure them as XA s.DataSource DataSource

3.4 Externalized Configuration
Some deployments require that configuration be sourced from more than one place and be changeable without requiring a rebuild of the
application. In order to support deployment scenarios such as these the configuration can be externalized. To do so, point Grails at the locations
of the configuration files that should be used by adding a setting in , for example:grails.config.locations Config.groovy

grails.config.locations = [
 ,"classpath:${appName}-config.properties"
 ,"classpath:${appName}-config.groovy"
 ,"file:${userHome}/.grails/${appName}-config.properties"
]"file:${userHome}/.grails/${appName}-config.groovy"

In the above example we're loading configuration files (both Java Properties files and configurations) from different places on theConfigSlurper
classpath and files located in .USER_HOME

It is also possible to load config by specifying a class that is a config script.

grails.config.locations = [com.my.app.MyConfig]

https://secure.wikimedia.org/wikipedia/en/wiki/X/Open_XA
https://secure.wikimedia.org/wikipedia/en/wiki/Two-phase_commit
http://grails.org/plugin/atomikos
http://groovy.codehaus.org/ConfigSlurper

61

This can be useful in situations where the config is either coming from a plugin or some other part of your application. A typical use for this is
re-using configuration provided by plugins across multiple applications.

Ultimately all configuration files get merged into the property of the object and are hence obtainable from there.config GrailsApplication

Values that have the same name as previously defined values will overwrite the existing values, and the pointed to configuration sources are
loaded in the order in which they are defined.

Config Defaults

The configuration values contained in the locations described by the property will any valuesgrails.config.locations override
defined in your application file which may not be what you want. You may want to have a set of values be be loadedConfig.groovy default
that can be overridden in either your application's file or in a named config location. For this you can use the Config.groovy

 property.grails.config.defaults.locations

This property supports the same values as the property (i.e. paths to config scripts, property files or classes),grails.config.locations
but the config described by will be loaded all other values and can therefore begrails.config.defaults.locations before
overridden. Some plugins use this mechanism to supply one or more sets of default configuration that you can choose to include in your
application config.

Grails also supports the concept of property place holders and property override configurers as defined in ForSpring
more information on these see the section on Grails and Spring

3.5 Versioning

Versioning Basics

Grails has built in support for application versioning. The version of the application is set to when you first create an application with the 0.1
 command. The version is stored in the application meta data file in the root of the project.create-app application.properties

To change the version of your application you can edit the file manually, or run the command:set-version

grails set-version 0.2

The version is used in various commands including the command which will append the application version to the end of the created WARwar
file.

Detecting Versions at Runtime

You can detect the application version using Grails' support for application metadata using the class. For example within GrailsApplication
 there is an implicit variable that can be used:controllers grailsApplication

def version = grailsApplication.metadata['app.version']

You can retrieve the the version of Grails that is running with:

http://www.springframework.org.

62

def grailsVersion = grailsApplication.metadata['app.grails.version']

or the class:GrailsUtil

import grails.util.GrailsUtil
…
def grailsVersion = GrailsUtil.grailsVersion

3.6 Project Documentation
Since Grails 1.2, the documentation engine that powers the creation of this documentation has been available for your own Grails projects.

The documentation engine uses a variation on the syntax to automatically create project documentation with smart linking, formatting etc.Textile

Creating project documentation

To use the engine you need to follow a few conventions. First, you need to create a directory where your documentationsrc/docs/guide
source files will go. Then, you need to create the source docs themselves. Each chapter should have its own gdoc file as should all numbered
sub-sections. You will end up with something like:

+ src/docs/guide/introduction.gdoc
+ src/docs/guide/introduction/changes.gdoc
+ src/docs/guide/gettingStarted.gdoc
+ src/docs/guide/configuration.gdoc
+ src/docs/guide/configuration/build.gdoc
+ src/docs/guide/configuration/build/controllers.gdoc

Note that you can have all your gdoc files in the top-level directory if you want, but you can also put sub-sections in sub-directories named after
the parent section - as the above example shows.

Once you have your source files, you still need to tell the documentation engine what the structure of your user guide is going to be. To do that,
you add a file that contains the structure and titles for each section. This file is in format and basicallysrc/docs/guide/toc.yml YAML
represents the structure of the user guide in tree form. For example, the above files could be represented as:

introduction:
 title: Introduction
 changes: Change Log
gettingStarted: Getting Started
configuration:
 title: Configuration
 build:
 title: Build Config
 controllers: Specifying Controllers

The format is pretty straightforward. Any section that has sub-sections is represented with the corresponding filename (minus the .gdoc
extension) followed by a colon. The next line should contain plus the title of the section as seen by the end user. Every sub-section thentitle:
has its own line after the title. Leaf nodes, i.e. those without any sub-sections, declare their title on the same line as the section name but after the
colon.

http://textile.sitemonks.com/
http://www.yaml.org/

63

That's it. You can easily add, remove, and move sections within the to restructure the generated user guide. You should also make suretoc.yml
that all section names, i.e. the gdoc filenames, should be unique since they are used for creating internal links and for the HTML filenames. Don't
worry though, the documentation engine will warn you of duplicate section names.

Creating reference items

Reference items appear in the Quick Reference section of the documentation. Each reference item belongs to a category and a category is a
directory located in the directory. For example, suppose you have defined a new controller method called . Thatsrc/docs/ref renderPDF
belongs to the category so you would create a gdoc text file at the following location:Controllers

+ src/docs/ref/Controllers/renderPDF.gdoc

Configuring Output Properties

There are various properties you can set within your file that customize the output of thegrails-app/conf/Config.groovy
documentation such as:

grails.doc.title - The title of the documentation

grails.doc.subtitle - The subtitle of the documentation

grails.doc.authors - The authors of the documentation

grails.doc.license - The license of the software

grails.doc.copyright - The copyright message to display

grails.doc.footer - The footer to use

Other properties such as the version are pulled from your project itself. If a title is not specified, the application name is used.

Generating Documentation

Once you have created some documentation (refer to the syntax guide in the next chapter) you can generate an HTML version of the
documentation using the command:

grails doc

This command will output an which can be opened in a browser to view your documentation.docs/manual/index.html

Documentation Syntax

As mentioned the syntax is largely similar to Textile or Confluence style wiki markup. The following sections walk you through the syntax
basics.

Basic Formatting

Monospace: monospace

64

@monospace@

Italic: italic

italic

Bold: bold

bold

Image:

!http://grails.org/images/new/grailslogo_topNav.png!

Linking

There are several ways to create links with the documentation generator. A basic external link can either be defined using confluence or textile
style markup:

[SpringSource|http://www.springsource.com/]

or

"SpringSource":http://www.springsource.com/

For links to other sections inside the user guide you can use the prefix with the name of the section you want to link to:guide:

[Intro|guide:introduction]

The section name comes from the corresponding gdoc filename. The documentation engine will warn you if any links to sections in your guide
break.

To link to reference items you can use a special syntax:

[controllers|renderPDF]

In this case the category of the reference item is on the left hand side of the | and the name of the reference item on the right.

65

Finally, to link to external APIs you can use the prefix. For example:api:

[|api:java.lang.]String String

The documentation engine will automatically create the appropriate javadoc link in this case. To add additional APIs to the engine you can
configure them in . For example:grails-app/conf/Config.groovy

grails.doc.api.org.hibernate=
 "http://docs.jboss.org/hibernate/stable/core/javadocs"

The above example configures classes within the package to link to the Hibernate website's API docs.org.hibernate

Lists and Headings

Headings can be created by specifying the letter 'h' followed by a number and then a dot:

h3.<space>Heading3
h4.<space>Heading4

Unordered lists are defined with the use of the * character:

* item 1
** subitem 1
** subitem 2
* item 2

Numbered lists can be defined with the # character:

item 1

Tables can be created using the macro:table

Name Number

Albert 46

Wilma 1348

James 12

{table}
 Name | * *Number
 Albert | 46
 Wilma | 1348
 James | 12
{table}

66

Code and Notes

You can define code blocks with the macro:code

class Book {
 titleString
}

{code}
class Book {
 titleString
}
{code}

The example above provides syntax highlighting for Java and Groovy code, but you can also highlight XML markup:

<hello>world</hello>

{code:xml}
<hello>world</hello>
{code}

There are also a couple of macros for displaying notes and warnings:

Note:

This is a note!

{note}
This is a note!
{note}

Warning:

This is a warning!

{warning}
This is a warning!
{warning}

67

3.7 Dependency Resolution
Grails features a dependency resolution DSL that lets you control how plugins and JAR dependencies are resolved.

You specify a property inside the filegrails.project.dependency.resolution grails-app/conf/BuildConfig.groovy
that configures how dependencies are resolved:

grails.project.dependency.resolution = {
 // config here
}

The default configuration looks like the following:

grails.project.class.dir = "target/classes"
grails.project.test.class.dir = "target/test-classes"
grails.project.test.reports.dir = "target/test-reports"
//grails.project.war.file = "target/${appName}-${appVersion}.war"

grails.project.dependency.resolution = {
 // inherit Grails' dependenciesdefault
 inherits() {"global"
 // uncomment to disable ehcache
 // excludes 'ehcache'
 }
 log "warn"
 repositories {
 grailsPlugins()
 grailsHome()
 grailsCentral()

// uncomment these to enable remote dependency resolution
 // from Maven repositoriespublic
 //mavenCentral()
 //mavenLocal()
 //mavenRepo "http://snapshots.repository.codehaus.org"
 //mavenRepo "http://repository.codehaus.org"
 //mavenRepo "http://download.java.net/maven/2/"
 //mavenRepo "http://repository.jboss.com/maven2/"
 }
 dependencies {
 // specify dependencies here under either 'build', 'compile',
 // 'runtime', 'test' or 'provided' scopes eg.

// runtime 'mysql:mysql-connector-java:5.1.16'
 }

plugins {
 compile ":hibernate:$grailsVersion"
 compile ":jquery:1.6.1.1"
 compile ":resources:1.0"

build ":tomcat:$grailsVersion"
 }
}

The details of the above will be explained in the next few sections.

3.7.1 Configurations and Dependencies
Grails features five dependency resolution configurations (or 'scopes'):

68

: Dependencies for the build system onlybuild

: Dependencies for the compile stepcompile

: Dependencies needed at runtime but not for compilation (see above)runtime

: Dependencies needed for testing but not at runtime (see above)test

: Dependencies needed at development time, but not during WAR deploymentprovided

Within the block you can specify a dependency that falls into one of these configurations by calling the equivalent method. Fordependencies
example if your application requires the MySQL driver to function at you can specify that like this:runtime

runtime 'com.mysql:mysql-connector-java:5.1.16'

This uses the string syntax: . You can also use a Map-based syntax:group:name:version

runtime group: 'com.mysql',
 name: 'mysql-connector-java',
 version: '5.1.16'

In Maven terminology, corresponds to an artifact's and corresponds to its .group groupId name artifactId

Multiple dependencies can be specified by passing multiple arguments:

runtime 'com.mysql:mysql-connector-java:5.1.16',
 'net.sf.ehcache:ehcache:1.6.1'

// Or

runtime(
 [group:'com.mysql', name:'mysql-connector-java', version:'5.1.16'],
 [group:'net.sf.ehcache', name:'ehcache', version:'1.6.1']
)

Disabling transitive dependency resolution

By default, Grails will not only get the JARs and plugins that you declare, but it will also get their transitive dependencies. This is usually what
you want, but there are occasions where you want a dependency without all its baggage. In such cases, you can disable transitive dependency
resolution on a case-by-case basis:

runtime('com.mysql:mysql-connector-java:5.1.16',
 'net.sf.ehcache:ehcache:1.6.1') {
 transitive = false
}

// Or
runtime group:'com.mysql',
 name:'mysql-connector-java',
 version:'5.1.16',
 transitive:false

69

Excluding specific transitive dependencies

A far more common scenario is where you want the transitive dependencies, but some of them cause issues with your own dependencies or are
unnecessary. For example, many Apache projects have 'commons-logging' as a transitive dependency, but it shouldn't be included in a Grails
project (we use SLF4J). That's where the option comes in:excludes

runtime('com.mysql:mysql-connector-java:5.1.16',
 'net.sf.ehcache:ehcache:1.6.1') {
 excludes , "xml-apis" "commons-logging"
}

// Or
runtime(group:'com.mysql', name:'mysql-connector-java', version:'5.1.16') {
 excludes([group: 'xml-apis', name: 'xml-apis'],
 [group: 'org.apache.httpcomponents'],
 [name: 'commons-logging'])

As you can see, you can either exclude dependencies by their artifact ID (also known as a module name) or any combination of group and artifact
IDs (if you use the Map notation). You may also come across as well, but that can only accept a single string or Map:exclude

runtime('com.mysql:mysql-connector-java:5.1.16',
 'net.sf.ehcache:ehcache:1.6.1') {
 exclude "xml-apis"
}

Using Ivy module configurations

If you use Ivy module configurations and wish to depend on a specific configuration of a module, you can use the
 method to specify the configuration to use.dependencyConfiguration

provided() {"my.org:web-service:1.0"
 dependencyConfiguration "api"
}

If the dependency configuration is not explicitly set, the configuration named will be used (which is also the correct value for"default"
dependencies coming from Maven style repositories).

3.7.2 Dependency Repositories

Remote Repositories

Initially your BuildConfig.groovy does not use any remote public Maven repositories. There is a default repository that willgrailsHome()
locate the JAR files Grails needs from your Grails installation. To use a public repository, specify it in the block:repositories

repositories {
 mavenCentral()
}

70

In this case the default public Maven repository is specified. To use the SpringSource Enterprise Bundle Repository you can use the ebr()
method:

repositories {
 ebr()
}

You can also specify a specific Maven repository to use by URL:

repositories {
 mavenRepo "http://repository.codehaus.org"
}

Controlling Repositories Inherited from Plugins

A plugin you have installed may define a reference to a remote repository just as an application can. By default your application will inherit this
repository definition when you install the plugin.

If you do not wish to inherit repository definitions from plugins then you can disable repository inheritance:

repositories {
 inherit false
}

In this case your application will not inherit any repository definitions from plugins and it is down to you to provide appropriate (possibly
internal) repository definitions.

Local Resolvers

If you do not wish to use a public Maven repository you can specify a flat file repository:

repositories {
 flatDir name:'myRepo', dirs:'/path/to/repo'
}

To specify your local Maven cache () as a repository:~/.m2/repository

repositories {
 mavenLocal()
}

Custom Resolvers

If all else fails since Grails builds on Apache Ivy you can specify an Ivy resolver:

71

/*
 * Configure our resolver.
 */
def libResolver = org.apache.ivy.plugins.resolver.URLResolver()new
['libraries', 'builds'].each {

libResolver.addArtifactPattern(
 +"http://my.repository/${it}/"
)"[organisation]/[module]/[revision]/[type]s/[artifact].[ext]"

libResolver.addIvyPattern(
 +"http://my.repository/${it}/"
)"[organisation]/[module]/[revision]/[type]s/[artifact].[ext]"
}

libResolver.name = "my-repository"
libResolver.settings = ivySettings

resolver libResolver

It's also possible to pull dependencies from a repository using SSH. Ivy comes with a dedicated resolver that you can configure and include in
your project like so:

import org.apache.ivy.plugins.resolver.SshResolver
…
repositories {
 ...

def sshResolver = SshResolver(new
 name: ,"myRepo"
 user: ,"username"
 host: ,"dev.x.com"
 keyFile: File(),new "/home/username/.ssh/id_rsa"
 m2compatible:)true

sshResolver.addArtifactPattern(
 +"/home/grails/repo/[organisation]/[artifact]/"
)"[revision]/[artifact]-[revision].[ext]"

sshResolver.latestStrategy =
 org.apache.ivy.plugins.latest.LatestTimeStrategy()new

sshResolver.changingPattern = ".*SNAPSHOT"

sshResolver.setCheckmodified()true

resolver sshResolver
}

Download the JAR and add it to Grails' classpath to use the SSH resolver. You can do this by passing the path in the Grails command line:JSch

grails -classpath /path/to/jsch compile|run-app|etc.

You can also add its path to the environment variable but be aware this it affects many Java applications. An alternative on Unix isCLASSPATH
to create an alias for so that you don't have to type the extra arguments each time.grails -classpath ...

Authentication

If your repository requires authentication you can configure this using a block:credentials

http://www.jcraft.com/jsch/

72

credentials {
 realm = ".."
 host = "localhost"
 username = "myuser"
 password = "mypass"
}

This can be placed in your file using the USER_HOME/.grails/settings.groovy grails.project.ivy.authentication
setting:

grails.project.ivy.authentication = {
 credentials {
 realm = ".."
 host = "localhost"
 username = "myuser"
 password = "mypass"
 }
}

3.7.3 Debugging Resolution
If you are having trouble getting a dependency to resolve you can enable more verbose debugging from the underlying engine using the log
method:

// log level of Ivy resolver, either 'error', 'warn',
// 'info', 'debug' or 'verbose'
log "warn"

3.7.4 Inherited Dependencies
By default every Grails application inherits several framework dependencies. This is done through the line:

inherits "global"

Inside the file. To exclude specific inherited dependencies you use the method:BuildConfig.groovy excludes

inherits() {"global"
 excludes , "oscache" "ehcache"
}

3.7.5 Providing Default Dependencies
Most Grails applications have runtime dependencies on several jar files that are provided by the Grails framework. These include libraries like
Spring, Sitemesh, Hibernate etc. When a war file is created, all of these dependencies will be included in it. But, an application may choose to
exclude these jar files from the war. This is useful when the jar files will be provided by the container, as would normally be the case if multiple
Grails applications are deployed to the same container.

73

The dependency resolution DSL provides a mechanism to express that all of the default dependencies will be provided by the container. This is
done by invoking the method and passing as an argument:defaultDependenciesProvided true

grails.project.dependency.resolution = {

defaultDependenciesProvided // all of the dependencies willtrue default
 // be by the container"provided"

inherits // inherit Grails' dependencies"global" default

repositories {
 grailsHome()
 …
 }
 dependencies {
 …
 }
}

 must come before , otherwise the Grails dependencies will bedefaultDependenciesProvided inherits
included in the war.

3.7.6 Dependency Reports
As mentioned in the previous section a Grails application consists of dependencies inherited from the framework, the plugins installed and the
application dependencies itself.

To obtain a report of an application's dependencies you can run the command:dependency-report

grails dependency-report

By default this will generate reports in the directory. You can specify which configuration (scope) you wanttarget/dependency-report
a report for by passing an argument containing the configuration name:

grails dependency-report runtime

3.7.7 Plugin JAR Dependencies

Specifying Plugin JAR dependencies

The way in which you specify dependencies for a is identical to how you specify dependencies in an application. When a plugin isplugin
installed into an application the application automatically inherits the dependencies of the plugin.

To define a dependency that is resolved for use with the plugin but not to the application then you can set the property of theexported export
dependency:

test('org.spockframework:spock-core:0.5-groovy-1.8') {
 export = false
}

74

In this case the Spock dependency will be available only to the plugin and not resolved as an application dependency. Alternatively, if you're
using the Map syntax:

test group: 'org.spockframework', name: 'spock-core',
 version: '0.5-groovy-1.8', export: false

You can use instead of , but we recommend the latter because it'sexported = false export = false
consistent with the Map argument.

Overriding Plugin JAR Dependencies in Your Application

If a plugin is using a JAR which conflicts with another plugin, or an application dependency then you can override how a plugin resolves its
dependencies inside an application using exclusions. For example:

plugins {
 compile() {":hibernate:$grailsVersion"
 excludes "javassist"
 }
}

dependencies {
 runtime "javassist:javassist:3.4.GA"
}

In this case the application explicitly declares a dependency on the "hibernate" plugin and specifies an exclusion using the method,excludes
effectively excluding the javassist library as a dependency.

3.7.8 Maven Integration
When using the Grails Maven plugin, Grails' dependency resolution mechanics are disabled as it is assumed that you will manage dependencies
with Maven's file.pom.xml

However, if you would like to continue using Grails regular commands like , and so on then you can tell Grails' command line torun-app test-app
load dependencies from the Maven file instead.pom.xml

To do so simply add the following line to your :BuildConfig.groovy

grails.project.dependency.resolution = {
 pom true
 ..
}

The line tells Grails to parse Maven's and load dependencies from there. pom true pom.xml

3.7.9 Deploying to a Maven Repository
If you use Maven to build your Grails project, you can use the standard Maven targets and . If not, you canmvn install mvn deploy
deploy a Grails project or plugin to a Maven repository using the plugin.maven-publisher

http://grails.org/plugin/maven-publisher

75

The plugin provides the ability to publish Grails projects and plugins to local and remote Maven repositories. There are two key additional targets
added by the plugin:

maven-install - Installs a Grails project or plugin into your local Maven cache

maven-deploy - Deploys a Grails project or plugin to a remote Maven repository

By default this plugin will automatically generate a valid for you unless a is already present in the root of the project, inpom.xml pom.xml
which case this file will be used.pom.xml

maven-install

The command will install the Grails project or plugin artifact into your local Maven cache:maven-install

grails maven-install

In the case of plugins, the plugin zip file will be installed, whilst for application the application WAR file will be installed.

maven-deploy

The command will deploy a Grails project or plugin into a remote Maven repository:maven-deploy

grails maven-deploy

It is assumed that you have specified the necessary configuration within a or that you specify the <distributionManagement> pom.xml
 of the remote repository to deploy to:id

grails maven-deploy --repository=myRepo

The argument specifies the 'id' for the repository. Configure the details of the repository specified by this 'id' within your repository
 file or in your file:grails-app/conf/BuildConfig.groovy $USER_HOME/.grails/settings.groovy

grails.project.dependency.distribution = {
 localRepository = "/path/to/my/local"
 remoteRepository(id: , url:)"myRepo" "http://myserver/path/to/repo"
}

The syntax for configuring remote repositories matches the syntax from the element in the Ant Maven tasks. For example theremoteRepository
following XML:

<remoteRepository id= url= >"myRepo" "scp://localhost/www/repository"
 <authentication username= privateKey= />"..." "${user.home}/.ssh/id_dsa"
</remoteRepository>

Can be expressed as:

http://maven.apache.org/ant-tasks/reference.html#remoteRepository

76

remoteRepository(id: , url:) {"myRepo" "scp://localhost/www/repository"
 authentication username: , privateKey: "..." "${userHome}/.ssh/id_dsa"
}

By default the plugin will try to detect the protocol to use from the URL of the repository (ie "http" from "http://.." etc.), however to specify a
different protocol you can do:

grails maven-deploy --repository=myRepo --protocol=webdav

The available protocols are:

http

scp

scpexe

ftp

webdav

Groups, Artifacts and Versions

Maven defines the notion of a 'groupId', 'artifactId' and a 'version'. This plugin pulls this information from the Grails project conventions or
plugin descriptor.

Projects

For applications this plugin will use the Grails application name and version provided by Grails when generating the file. To changepom.xml
the version you can run the command:set-version

grails set-version 0.2

The Maven will be the same as the project name, unless you specify a different one in Config.groovy:groupId

grails.project.groupId="com.mycompany"

Plugins

With a Grails plugin the and are taken from the following properties in the *GrailsPlugin.groovy descriptor:groupId version

String groupId = 'myOrg'
 version = '0.1'String

77

The 'artifactId' is taken from the plugin name. For example if you have a plugin called the will beFeedsGrailsPlugin artifactId
"feeds". If your plugin does not specify a then this defaults to "org.grails.plugins". groupId

3.7.10 Plugin Dependencies
As of Grails 1.3 you can declaratively specify plugins as dependencies via the dependency DSL instead of using the command:install-plugin

grails.project.dependency.resolution = {
 …
 repositories {
 …
 }

plugins {
 runtime ':hibernate:1.2.1'
 }

dependencies {
 …
 }
 …
}

If you don't specify a group id the default plugin group id of is used. You can specify to use the latest version of aorg.grails.plugins
particular plugin by using "latest.integration" as the version number:

plugins {
 runtime ':hibernate:latest.integration'
}

Integration vs. Release

The "latest.integration" version label will also include resolving snapshot versions. To not include snapshot versions then use the "latest.release"
label:

plugins {
 runtime ':hibernate:latest.release'
}

The "latest.release" label only works with Maven compatible repositories. If you have a regular SVN-based Grails
repository then you should use "latest.integration".

And of course if you use a Maven repository with an alternative group id you can specify a group id:

plugins {
 runtime 'mycompany:hibernate:latest.integration'
}

Plugin Exclusions

78

You can control how plugins transitively resolves both plugin and JAR dependencies using exclusions. For example:

plugins {
 runtime(':weceem:0.8') {
 excludes "searchable"
 }
}

Here we have defined a dependency on the "weceem" plugin which transitively depends on the "searchable" plugin. By using the excludes
method you can tell Grails to transitively install the searchable plugin. You can combine this technique to specify an alternative version of anot
plugin:

plugins {
 runtime(':weceem:0.8') {
 excludes // excludes most recent version"searchable"
 }
 runtime ':searchable:0.5.4' // specifies a fixed searchable version
}

You can also completely disable transitive plugin installs, in which case no transitive dependencies will be resolved:

plugins {
 runtime(':weceem:0.8') {
 transitive = false
 }
 runtime ':searchable:0.5.4' // specifies a fixed searchable version
}

79

4 The Command Line
Grails' command line system is built on - a simple Groovy wrapper around .Gant Apache Ant

However, Grails takes it further through the use of convention and the command. When you type:grails

grails [command name]

Grails searches in the following directories for Gant scripts to execute:

USER_HOME/.grails/scripts

PROJECT_HOME/scripts

PROJECT_HOME/plugins/*/scripts

GRAILS_HOME/scripts

Grails will also convert command names that are in lower case form such as run-app into camel case. So typing

grails run-app

Results in a search for the following files:

USER_HOME/.grails/scripts/RunApp.groovy

PROJECT_HOME/scripts/RunApp.groovy

PLUGINS_HOME/*/scripts/RunApp.groovy

GLOBAL_PLUGINS_HOME/*/scripts/RunApp.groovy

GRAILS_HOME/scripts/RunApp.groovy

If multiple matches are found Grails will give you a choice of which one to execute.

When Grails executes a Gant script, it invokes the "default" target defined in that script. If there is no default, Grails will quit with an error.

To get a list of all commands and some help about the available commands type:

grails help

which outputs usage instructions and the list of commands Grails is aware of:

http://gant.codehaus.org/
http://ant.apache.org

80

Usage (optionals marked with *):
grails [environment]* [target] [arguments]*

Examples:
grails dev run-app
grails create-app books

Available Targets (type grails help 'target-name' more info):for
grails bootstrap
grails bug-report
grails clean
grails compile
...

Refer to the Command Line reference in the Quick Reference menu of the reference guide for more information
about individual commands

It's often useful to provide custom arguments to the JVM when running Grails commands, in particular with where you may forrun-app
example want to set a higher maximum heap size. The Grails command will use any JVM options provided in the general JAVA_OPTS
environment variable, but you can also specify a Grails-specific environment variable too:

export GRAILS_OPTS="-Xmx1G -Xms256m -XX:MaxPermSize=256m"
grails run-app

non-interactive mode

When you run a script manually and it prompts you for information, you can answer the questions and continue running the script. But when you
run a script as part of an automated process, for example a continuous integration build server, there's no way to "answer" the questions. So you
can pass the switch to the script command to tell Grails to accept the default answer for any questions, for example--non-interactive
whether to install a missing plugin.

For example:

grails war --non-interactive

4.1 Interactive Mode
Interactive mode is the a feature of the Grails command line which keeps the JVM running and allows for quicker execution of commands. To
activate interactive mode type 'grails' at the command line and then use TAB completion to get a list of commands:

81

If you need to open a file whilst within interactive mode you can use the command which will TAB complete file paths:open

TAB completion also works for class names after the commands:create-*

82

If you need to run an external process whilst interactive mode is running you can do so by starting the command with a !:

4.2 Creating Gant Scripts
You can create your own Gant scripts by running the command from the root of your project. For example the following command:create-script

grails create-script compile-sources

Will create a script called . A Gant script itself is similar to a regular Groovy script except that itscripts/CompileSources.groovy
supports the concept of "targets" and dependencies between them:

target(:) {default "The target is the one that gets executed by Grails"default
 depends(clean, compile)
}

target(clean:) {"Clean out things"
 ant.delete(dir:)"output"
}

target(compile:) {"Compile some sources"
 ant.mkdir(dir:)"mkdir"
 ant.javac(srcdir: , destdir:)"src/java" "output"
}

As demonstrated in the script above, there is an implicit variable (an instance of) that allows access to the ant groovy.util.AntBuilder
.Apache Ant API

http://ant.apache.org/manual/index.html

83

In previous versions of Grails (1.0.3 and below), the variable was , i.e. with a capital first letter.Ant

You can also "depend" on other targets using the method demonstrated in the target above.depends default

The default target

In the example above, we specified a target with the explicit name "default". This is one way of defining the default target for a script. An
alternative approach is to use the method:setDefaultTarget()

target(:) {"clean-compile" "Performs a clean compilation on the app source"
 depends(clean, compile)
}

target(clean:) {"Clean out things"
 ant.delete(dir:)"output"
}

target(compile:) {"Compile some sources"
 ant.mkdir(dir:)"mkdir"
 ant.javac(srcdir: , destdir:)"src/java" "output"
}

setDefaultTarget()"clean-compile"

This lets you call the default target directly from other scripts if you wish. Also, although we have put the call to atsetDefaultTarget()
the end of the script in this example, it can go anywhere as long as it comes the target it refers to ("clean-compile" in this case).after

Which approach is better? To be honest, you can use whichever you prefer - there don't seem to be any major advantages in either case. One
thing we would say is that if you want to allow other scripts to call your "default" target, you should move it into a shared script that doesn't have
a default target at all. We'll talk some more about this in the next section.

4.3 Re-using Grails scripts
Grails ships with a lot of command line functionality out of the box that you may find useful in your own scripts (See the command line
reference in the reference guide for info on all the commands). Of particular use are the , and scripts.compile package bootstrap

The script for example lets you bootstrap a Spring instance to get access to the data source and so on (thebootstrap ApplicationContext
integration tests use this):

includeTargets << grailsScript()"_GrailsBootstrap"

target (' ':) {default "Database stuff"
 depends(configureProxy, packageApp, classpath, loadApp, configureApp)

Connection c
 {try
 c = appCtx.getBean('dataSource').getConnection()
 // something with connectiondo
 }
 {finally
 c?.close()
 }
}

Pulling in targets from other scripts

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/ApplicationContext.html

84

Gant lets you pull in all targets (except "default") from another Gant script. You can then depend upon or invoke those targets as if they had been
defined in the current script. The mechanism for doing this is the property. Simply "append" a file or class to it using theincludeTargets
left-shift operator:

includeTargets << File()new "/path/to/my/script.groovy"
includeTargets << gant.tools.Ivy

Don't worry too much about the syntax using a class, it's quite specialised. If you're interested, look into the Gant documentation.

Core Grails targets

As you saw in the example at the beginning of this section, you use neither the File- nor the class-based syntax for whenincludeTargets
including core Grails targets. Instead, you should use the special method that is provided by the Grails command launchergrailsScript()
(note that this is not available in normal Gant scripts, just Grails ones).

The syntax for the method is pretty straightforward: simply pass it the name of the Grails script to include, without any pathgrailsScript()
information. Here is a list of Grails scripts that you could reuse:

Script Description

_GrailsSettings
You really should include this! Fortunately, it is included automatically by all other Grails scripts except _GrailsProxy, so
you usually don't have to include it explicitly.

_GrailsEvents
Include this to fire events. Adds an method. Again, included by almostevent(String eventName, List args)
all other Grails scripts.

_GrailsClasspath
Configures compilation, test, and runtime classpaths. If you want to use or play with them, include this script. Again,
included by almost all other Grails scripts.

_GrailsProxy If you don't have direct access to the internet and use a proxy, include this script to configure access through your proxy.

_GrailsArgParsing
Provides a target that does what it says on the tin: parses the arguments provided by the user whenparseArguments
they run your script. Adds them to the property.argsMap

_GrailsTest Contains all the shared test code. Useful if you want to add any extra tests.

_GrailsRun
Provides all you need to run the application in the configured servlet container, either normally (/)runApp runAppHttps
or from a WAR file (/).runWar runWarHttps

There are many more scripts provided by Grails, so it is worth digging into the scripts themselves to find out what kind of targets are available.
Anything that starts with an " " is designed for reuse.

Script architecture

You maybe wondering what those underscores are doing in the names of the Grails scripts. That is Grails' way of determining that a script is
 , or in other words that it has not corresponding "command". So you can't run "grails _grails-settings" for example. That is also why_internal

they don't have a default target.

Internal scripts are all about code sharing and reuse. In fact, we recommend you take a similar approach in your own scripts: put all your targets
into an internal script that can be easily shared, and provide simple command scripts that parse any command line arguments and delegate to the
targets in the internal script. For example if you have a script that runs some functional tests, you can split it like this:

85

./scripts/FunctionalTests.groovy:

includeTargets << File()new "${basedir}/scripts/_FunctionalTests.groovy"

target(:) {default "Runs the functional tests project."for this
 depends(runFunctionalTests)
}

./scripts/_FunctionalTests.groovy:

includeTargets << grailsScript()"_GrailsTest"

target(runFunctionalTests:) {"Run functional tests."
 depends(...)
 …
}

Here are a few general guidelines on writing scripts:

Split scripts into a "command" script and an internal one.

Put the bulk of the implementation in the internal script.

Put argument parsing into the "command" script.

To pass arguments to a target, create some script variables and initialise them before calling the target.

Avoid name clashes by using closures assigned to script variables instead of targets. You can then pass arguments direct to the closures.

4.4 Hooking into Events
Grails provides the ability to hook into scripting events. These are events triggered during execution of Grails target and plugin scripts.

The mechanism is deliberately simple and loosely specified. The list of possible events is not fixed in any way, so it is possible to hook into
events triggered by plugin scripts, for which there is no equivalent event in the core target scripts.

Defining event handlers

Event handlers are defined in scripts called . Grails searches for these scripts in the following locations:_Events.groovy

USER_HOME/.grails/scripts - user-specific event handlers

PROJECT_HOME/scripts - applicaton-specific event handlers

PLUGINS_HOME/*/scripts - plugin-specific event handlers

GLOBAL_PLUGINS_HOME/*/scripts - event handlers provided by global plugins

Whenever an event is fired, the registered handlers for that event are executed. Note that the registration of handlers is performedall
automatically by Grails, so you just need to declare them in the relevant file._Events.groovy

Event handlers are blocks defined in , with a name beginning with "event". The following example can be put in your_Events.groovy
/scripts directory to demonstrate the feature:

86

eventCreatedArtefact = { type, name ->
 println "Created $type $name"
}

eventStatusUpdate = { msg ->
 println msg
}

eventStatusFinal = { msg ->
 println msg
}

You can see here the three handlers , , . Grails provides someeventCreatedArtefact eventStatusUpdate eventStatusFinal
standard events, which are documented in the command line reference guide. For example the command fires the following events:compile

CompileStart - Called when compilation starts, passing the kind of compile - source or tests

CompileEnd - Called when compilation is finished, passing the kind of compile - source or tests

Triggering events

To trigger an event simply include the Init.groovy script and call the event() closure:

includeTargets << grailsScript()"_GrailsEvents"

event(, [])"StatusFinal" "Super duper plugin action complete!"

Common Events

Below is a table of some of the common events that can be leveraged:

87

Event Parameters Description

StatusUpdate message Passed a string indicating current script status/progress

StatusError message Passed a string indicating an error message from the current script

StatusFinal message
Passed a string indicating the final script status message, i.e. when completing a target, even if the
target does not exit the scripting environment

CreatedArtefact artefactType,artefactName Called when a create-xxxx script has completed and created an artefact

CreatedFile fileName Called whenever a project source filed is created, not including files constantly managed by Grails

Exiting returnCode Called when the scripting environment is about to exit cleanly

PluginInstalled pluginName Called after a plugin has been installed

CompileStart kind Called when compilation starts, passing the kind of compile - source or tests

CompileEnd kind Called when compilation is finished, passing the kind of compile - source or tests

DocStart kind Called when documentation generation is about to start - javadoc or groovydoc

DocEnd kind Called when documentation generation has ended - javadoc or groovydoc

SetClasspath rootLoader

Called during classpath initialization so plugins can augment the classpath with
rootLoader.addURL(...). Note that this augments the classpath event scripts are loaded soafter
you cannot use this to load a class that your event script needs to import, although you can do this
if you load the class by name.

PackagingEnd none
Called at the end of packaging (which is called prior to the Tomcat server being started and after
web.xml is generated)

4.5 Customising the build
Grails is most definitely an opinionated framework and it prefers convention to configuration, but this doesn't mean you configure it. In thiscan't
section, we look at how you can influence and modify the standard Grails build.

The defaults

The core of the Grails build configuration is the class, which contains quite a bit of useful information. Itgrails.util.BuildSettings
controls where classes are compiled to, what dependencies the application has, and other such settings.

Here is a selection of the configuration options and their default values:

88

Property Config option Default value

grailsWorkDir grails.work.dir $USER_HOME/.grails/<grailsVersion>

projectWorkDir grails.project.work.dir <grailsWorkDir>/projects/<baseDirName>

classesDir grails.project.class.dir <projectWorkDir>/classes

testClassesDir grails.project.test.class.dir <projectWorkDir>/test-classes

testReportsDir grails.project.test.reports.dir <projectWorkDir>/test/reports

resourcesDir grails.project.resource.dir <projectWorkDir>/resources

projectPluginsDir grails.project.plugins.dir <projectWorkDir>/plugins

globalPluginsDir grails.global.plugins.dir <grailsWorkDir>/global-plugins

verboseCompile grails.project.compile.verbose false

The class has some other properties too, but they should be treated as read-only:BuildSettings

Property Description

baseDir The location of the project.

userHome The user's home directory.

grailsHome The location of the Grails installation in use (may be).null

grailsVersion The version of Grails being used by the project.

grailsEnv The current Grails environment.

compileDependencies A list of compile-time project dependencies as instances.File

testDependencies A list of test-time project dependencies as instances.File

runtimeDependencies A list of runtime-time project dependencies as instances.File

Of course, these properties aren't much good if you can't get hold of them. Fortunately that's easy to do: an instance of isBuildSettings
available to your scripts as the script variable. You can also access it from your code by using the grailsSettings

 class, but this isn't recommended.grails.util.BuildSettingsHolder

Overriding the defaults

All of the properties in the first table can be overridden by a system property or a configuration option - simply use the "config option" name. For
example, to change the project working directory, you could either run this command:

grails -Dgrails.project.work.dir=work compile

or add this option to your file:grails-app/conf/BuildConfig.groovy

grails.project.work.dir = "work"

Note that the default values take account of the property values they depend on, so setting the project working directory like this would also
relocate the compiled classes, test classes, resources, and plugins.

89

What happens if you use both a system property and a configuration option? Then the system property wins because it takes precedence over the
 file, which in turn takes precedence over the default values.BuildConfig.groovy

The file is a sibling of - the former contains options that only affect theBuildConfig.groovy grails-app/conf/Config.groovy
build, whereas the latter contains those that affect the application at runtime. It's not limited to the options in the first table either: you will find
build configuration options dotted around the documentation, such as ones for specifying the port that the embedded servlet container runs on or
for determining what files get packaged in the WAR file.

Available build settings

Name Description

grails.server.port.http Port to run the embedded servlet container on ("run-app" and "run-war"). Integer.

grails.server.port.https Port to run the embedded servlet container on for HTTPS ("run-app --https" and "run-war --https"). Integer.

grails.config.base.webXml Path to a custom web.xml file to use for the application (alternative to using the web.xml template).

grails.compiler.dependencies

Legacy approach to adding extra dependencies to the compiler classpath. Set it to a closure containing "fileset()"
entries. These entries will be processed by an so the syntax is the Groovy form of theAntBuilder
corresponding XML elements in an Ant build file, e.g. fileset(dir: "$basedir/lib", include:

."**/*.class)

grails.testing.patterns
A list of Ant path patterns that let you control which files are included in the tests. The patterns should not
include the test case suffix, which is set by the next property.

grails.testing.nameSuffix
By default, tests are assumed to have a suffix of "Tests". You can change it to anything you like but setting this
option. For example, another common suffix is "Test".

grails.project.war.file
A string containing the file path of the generated WAR file, along with its full name (include extension). For
example, "target/my-app.war".

grails.war.dependencies
A closure containing "fileset()" entries that allows you complete control over what goes in the WAR's
"WEB-INF/lib" directory.

grails.war.copyToWebApp
A closure containing "fileset()" entries that allows you complete control over what goes in the root of the WAR.
It overrides the default behaviour of including everything under "web-app".

grails.war.resources
A closure that takes the location of the staging directory as its first argument. You can use any Ant tasks to do
anything you like. It is typically used to remove files from the staging directory before that directory is jar'd up
into a WAR.

grails.project.web.xml The location to generate Grails' web.xml to

4.6 Ant and Maven
If all the other projects in your team or company are built using a standard build tool such as Ant or Maven, you become the black sheep of the
family when you use the Grails command line to build your application. Fortunately, you can easily integrate the Grails build system into the
main build tools in use today (well, the ones in use in Java projects at least).

Ant Integration

When you create a Grails application with the command, Grails doesn't automatically create an Ant file but you cancreate-app build.xml
generate one with the command:integrate-with

90

grails integrate-with --ant

This creates a file containing the following targets:build.xml

clean - Cleans the Grails application

compile - Compiles your application's source code

test - Runs the unit tests

run - Equivalent to "grails run-app"

war - Creates a WAR file

deploy - Empty by default, but can be used to implement automatic deployment

Each of these can be run by Ant, for example:

ant war

The build file is configured to use for dependency management, which means that it will automatically download all the requisiteApache Ivy
Grails JAR files and other dependencies on demand. You don't even have to install Grails locally to use it! That makes it particularly useful for
continuous integration systems such as or .CruiseControl Jenkins

It uses the Grails to hook into the existing Grails build system. The task lets you run any Grails script that's available, not just the onesAnt task
used by the generated build file. To use the task, you must first declare it:

<taskdef name="grailsTask"
 classname="grails.ant.GrailsTask"
 classpathref= />"grails.classpath"

This raises the question: what should be in "grails.classpath"? The task itself is in the "grails-bootstrap" JAR artifact, so that needs to be on the
classpath at least. You should also include the "groovy-all" JAR. With the task defined, you just need to use it! The following table shows you
what attributes are available:

Attribute Description Required

home The location of the Grails installation directory to use for the build. Yes, unless classpath is specified.

classpathref
Classpath to load Grails from. Must include the "grails-bootstrap" artifact
and should include "grails-scripts".

Yes, unless is set or you use a home
 element.classpath

script The name of the Grails script to run, e.g. "TestApp". Yes.

args The arguments to pass to the script, e.g. "-unit -xml". No. Defaults to "".

environment The Grails environment to run the script in. No. Defaults to the script default.

includeRuntimeClasspath
Advanced setting: adds the application's runtime classpath to the build
classpath if true.

No. Defaults to .true

The task also supports the following nested elements, all of which are standard Ant path structures:

http://ant.apache.org/ivy/
http://cruisecontrol.sourceforge.net/
http://jenkins-ci.org/

91

classpath - The build classpath (used to load Gant and the Grails scripts).

compileClasspath - Classpath used to compile the application's classes.

runtimeClasspath - Classpath used to run the application and package the WAR. Typically includes everything in
@compileClasspath.

testClasspath - Classpath used to compile and run the tests. Typically includes everything in .runtimeClasspath

How you populate these paths is up to you. If you use the attribute and put your own dependencies in the directory, then you don'thome lib
even need to use any of them. For an example of their use, take a look at the generated Ant build file for new apps.

Maven Integration

Grails provides integration with with a Maven plugin. The current Maven plugin is based on but supersedes the version created by ,Maven 2 Octo
who did a great job with the original.

Preparation

In order to use the new plugin, all you need is Maven 2 installed and set up. This is because you no longer need to install Grails separately to
use it with Maven!

The Maven 2 integration for Grails has been designed and tested for Maven 2.0.9 and above. It will not work with
earlier versions.

The default mvn setup DOES NOT supply sufficient memory to run the Grails environment. We recommend that
you add the following environment variable setting to prevent poor performance:

export MAVEN_OPTS="-Xmx512m -XX:MaxPermSize=256"

Creating a Grails Maven Project

To create a Mavenized Grails project simply run the following command:

mvn archetype:generate -DarchetypeGroupId=org.grails \
 -DarchetypeArtifactId=grails-maven-archetype \
 -DarchetypeVersion=1.3.2 \
 -DgroupId=example -DartifactId=my-app

Choose whichever grails version, group ID and artifact ID you want for your application, but everything else must be as written. This will create
a new Maven project with a POM and a couple of other files. What you won't see is anything that looks like a Grails application. So, the next
step is to create the project structure that you're used to. But first, to set target JDK to Java 6, do that now. Open my-app/pom.xml and change

http://maven.apache.org
http://forge.octo.com/

92

<plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
</plugin>

to

<plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
</plugin>

Then you're ready to create the project structure:

cd my-app
mvn initialize

if you see a message similar to this:

Resolving plugin JAR dependencies …
:: problems summary ::
:::: WARNINGS
 module not found: org.hibernate#hibernate-core;3.3.1.GA

you need to add the plugins manually to application.properties:

plugins.hibernate=2.0.0
plugins.tomcat=2.0.0

then run

mvn compile

and the hibernate and tomcat plugins will be installed.

Now you have a Grails application all ready to go. The plugin integrates into the standard build cycle, so you can use the standard Maven phases
to build and package your app: , , , , .mvn clean mvn compile mvn test mvn package mvn install

You can also use some of the Grails commands that have been wrapped as Maven goals:

93

grails:create-controller - Calls the commandcreate-controller

grails:create-domain-class - Calls the commandcreate-domain-class

grails:create-integration-test - Calls the commandcreate-integration-test

grails:create-pom - Creates a new Maven POM for an existing Grails project

grails:create-script - Calls the commandcreate-script

grails:create-service - Calls the commandcreate-service

grails:create-taglib - Calls the commandcreate-tag-lib

grails:create-unit-test - Calls the commandcreate-unit-test

grails:exec - Executes an arbitrary Grails command line script

grails:generate-all - Calls the commandgenerate-all

grails:generate-controller - Calls the commandgenerate-controller

grails:generate-views - Calls the commandgenerate-views

grails:install-plugin - Calls the commandinstall-plugin

grails:install-templates - Calls the commandinstall-templates

grails:list-plugins - Calls the commandlist-plugins

grails:package - Calls the commandpackage

grails:run-app - Calls the commandrun-app

grails:uninstall-plugin - Calls the commanduninstall-plugin

For a complete, up to date list, run mvn grails:help

Mavenizing an existing project

Creating a new project is great way to start, but what if you already have one? You don't want to create a new project and then copy the contents
of the old one over. The solution is to create a POM for the existing project using this Maven command (substitute the version number with the
grails version of your existing project):

mvn org.grails:grails-maven-plugin:1.3.2:create-pom -DgroupId=com.mycompany

When this command has finished, you can immediately start using the standard phases, such as . Note that you have to specify amvn package
group ID when creating the POM.

You may also want to set target JDK to Java 6; see above.

Adding Grails commands to phases

The standard POM created for you by Grails already attaches the appropriate core Grails commands to their corresponding build phases, so
"compile" goes in the "compile" phase and "war" goes in the "package" phase. That doesn't help though when you want to attach a plugin's
command to a particular phase. The classic example is functional tests. How do you make sure that your functional tests (using which ever plugin
you have decided on) are run during the "integration-test" phase?

94

Fear not: all things are possible. In this case, you can associate the command to a phase using an extra "execution" block:

<plugin>
 org.grails<groupId> </groupId>
 grails-maven-plugin<artifactId> </artifactId>
 1.3.2<version> </version>
 true<extensions> </extensions>
 <executions>
 <execution>
 <goals>
 …
 </goals>
 </execution>
 <!-- Add the command to the phase -->"functional-tests" "integration-test"
 <execution>
 functional-tests<id> </id>
 integration-test<phase> </phase>
 <goals>
 exec<goal> </goal>
 </goals>
 <configuration>
 functional-tests<command> </command>
 </configuration>
 </execution>
 </executions>
</plugin>

This also demonstrates the goal, which can be used to run any Grails command. Simply pass the name of the command as the grails:exec
 system property, and optionally specify the arguments with the property:command args

mvn grails:exec -Dcommand=create-webtest -Dargs=Book

Debugging a Grails Maven Project

Maven can be launched in debug mode using the "mvnDebug" command. To launch your Grails application in debug, simply run:

mvnDebug grails:run-app

The process will be suspended on startup and listening for a debugger on port 8000.

If you need more control of the debugger, this can be specified using the MAVEN_OPTS environment variable, and launch Maven with the
default "mvn" command:

MAVEN_OPTS="-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=5005"
mvn grails:run-app

Raising issues

If you come across any problems with the Maven integration, please raise a JIRA issue as a sub-task of . GRAILS-3547

http://jira.codehaus.org/browse/GRAILS-3547

95

5 Object Relational Mapping (GORM)
Domain classes are core to any business application. They hold state about business processes and hopefully also implement behavior. They are
linked together through relationships; one-to-one, one-to-many, or many-to-many.

GORM is Grails' object relational mapping (ORM) implementation. Under the hood it uses Hibernate 3 (a very popular and flexible open source
ORM solution) and thanks to the dynamic nature of Groovy with its static and dynamic typing, along with the convention of Grails, there is far
less configuration involved in creating Grails domain classes.

You can also write Grails domain classes in Java. See the section on Hibernate Integration for how to write domain classes in Java but still use
dynamic persistent methods. Below is a preview of GORM in action:

def book = Book.findByTitle()"Groovy in Action"

book
 .addToAuthors(name:)"Dierk Koenig"
 .addToAuthors(name:)"Guillaume LaForge"
 .save()

5.1 Quick Start Guide
A domain class can be created with the command:create-domain-class

grails create-domain-class helloworld.Person

If no package is specified with the create-domain-class script, Grails automatically uses the application name as the
package name.

This will create a class at the location such as the one below:grails-app/domain/helloworld/Person.groovy

package helloworld

class Person {
}

If you have the property set to "update", "create" or "create-drop" on your , Grails willdbCreate DataSource
automatically generate/modify the database tables for you.

You can customize the class by adding properties:

class Person {
 nameString
 ageInteger
 Date lastVisit
}

96

Once you have a domain class try and manipulate it with the or by typing:shell console

grails console

This loads an interactive GUI where you can run Groovy commands with access to the Spring ApplicationContext, GORM, etc.

5.1.1 Basic CRUD
Try performing some basic CRUD (Create/Read/Update/Delete) operations.

Create

To create a domain class use Map constructor to set its properties and call :save

def p = Person(name: , age: 40, lastVisit: Date())new "Fred" new
p.save()

The method will persist your class to the database using the underlying Hibernate ORM layer.save

Read

Grails transparently adds an implicit property to your domain class which you can use for retrieval:id

def p = Person.get(1)
assert 1 == p.id

This uses the method that expects a database identifier to read the object back from the database. You can also load an object in aget Person
read-only state by using the method:read

def p = Person.read(1)

In this case the underlying Hibernate engine will not do any dirty checking and the object will not be persisted. Note that if you explicitly call the
 method then the object is placed back into a read-write state.save

In addition, you can also load a proxy for an instance by using the method:load

def p = Person.load(1)

This incurs no database access until a method other than getId() is called. Hibernate then initializes the proxied instance, or throws an exception
if no record is found for the specified id.

Update

97

To update an instance, change some properties and then call again:save

def p = Person.get(1)
p.name = "Bob"
p.save()

Delete

To delete an instance use the method:delete

def p = Person.get(1)
p.delete()

5.2 Domain Modelling in GORM
When building Grails applications you have to consider the problem domain you are trying to solve. For example if you were building an

-style bookstore you would be thinking about books, authors, customers and publishers to name a few.Amazon

These are modeled in GORM as Groovy classes, so a class may have a title, a release date, an ISBN number and so on. The next fewBook
sections show how to model the domain in GORM.

To create a domain class you run the command as follows:create-domain-class

grails create-domain-class org.bookstore.Book

The result will be a class at :grails-app/domain/org/bookstore/Book.groovy

package org.bookstore

class Book {
}

This class will map automatically to a table in the database called (the same name as the class). This behaviour is customizable through thebook
ORM Domain Specific Language

Now that you have a domain class you can define its properties as Java types. For example:

package org.bookstore

class Book {
 titleString
 Date releaseDate
 ISBNString
}

Each property is mapped to a column in the database, where the convention for column names is all lower case separated by underscores. For
example maps onto a column . The SQL types are auto-detected from the Java types, but can be customizedreleaseDate release_date
with or the . Constraints ORM DSL

http://www.amazon.com/

98

5.2.1 Association in GORM
Relationships define how domain classes interact with each other. Unless specified explicitly at both ends, a relationship exists only in the
direction it is defined.

5.2.1.1 Many-to-one and one-to-one
A many-to-one relationship is the simplest kind, and is defined with a property of the type of another domain class. Consider this example:

Example A

class Face {
 Nose nose
}

class Nose {
}

In this case we have a unidirectional many-to-one relationship from to . To make this relationship bidirectional define the other sideFace Nose
as follows:

Example B

class Face {
 Nose nose
}

class Nose {
 belongsTo = [face:Face]static
}

In this case we use the setting to say that "belongs to" . The result of this is that we can create a , attach a belongsTo Nose Face Face Nose
instance to it and when we save or delete the instance, GORM will save or delete the . In other words, saves and deletes will cascadeFace Nose
from to the associated :Face Nose

new Face(nose: Nose()).save()new

The example above will save both face and nose. Note that the inverse true and will result in an error due to a transient :is not Face

new Nose(face: Face()).save() // will cause an errornew

Now if we delete the instance, the will go too:Face Nose

99

def f = Face.get(1)
f.delete() // both Face and Nose deleted

To make the relationship a true one-to-one, use the property on the owning side, e.g. :hasOne Face

Example C

class Face {
 hasOne = [nose:Nose]static
}

class Nose {
 Face face
}

Note that using this property puts the foreign key on the inverse table to the previous example, so in this case the foreign key column is stored in
the table inside a column called . Also, only works with bidirectional relationships.nose face_id hasOne

Finally, it's a good idea to add a unique constraint on one side of the one-to-one relationship:

class Face {
 hasOne = [nose:Nose]static

 constraints = {static
 nose unique: true
 }
}

class Nose {
 Face face
}

5.2.1.2 One-to-many
A one-to-many relationship is when one class, example , has many instances of a another class, example . With Grails you defineAuthor Book
such a relationship with the setting:hasMany

class Author {
 hasMany = [books: Book]static

 nameString
}

100

class Book {
 titleString
}

In this case we have a unidirectional one-to-many. Grails will, by default, map this kind of relationship with a join table.

The allows mapping unidirectional relationships using a foreign key association insteadORM DSL

Grails will automatically inject a property of type into the domain class based on the setting. This can be used tojava.util.Set hasMany
iterate over the collection:

def a = Author.get(1)

 (book in a.books) {for
 println book.title
}

The default fetch strategy used by Grails is "lazy", which means that the collection will be lazily initialized on first
access. This can lead to the if you are not careful.n+1 problem

If you need "eager" fetching you can use the or specify eager fetching as part of a ORM DSL query

The default cascading behaviour is to cascade saves and updates, but not deletes unless a is also specified:belongsTo

class Author {
 hasMany = [books: Book]static

 nameString
}

class Book {
 belongsTo = [author: Author]static
 titleString
}

If you have two properties of the same type on the many side of a one-to-many you have to use to specify which the collection ismappedBy
mapped:

class Airport {
 hasMany = [flights: Flight]static
 mappedBy = [flights:]static "departureAirport"
}

http://www.javalobby.org/java/forums/t20533.html

101

class Flight {
 Airport departureAirport
 Airport destinationAirport
}

This is also true if you have multiple collections that map to different properties on the many side:

class Airport {
 hasMany = [outboundFlights: Flight, inboundFlights: Flight]static
 mappedBy = [outboundFlights: ,static "departureAirport"
 inboundFlights:]"destinationAirport"
}

class Flight {
 Airport departureAirport
 Airport destinationAirport
}

5.2.1.3 Many-to-many
Grails supports many-to-many relationships by defining a on both sides of the relationship and having a on the ownedhasMany belongsTo
side of the relationship:

class Book {
 belongsTo = Authorstatic
 hasMany = [authors:Author]static
 titleString
}

class Author {
 hasMany = [books:Book]static
 nameString
}

Grails maps a many-to-many using a join table at the database level. The owning side of the relationship, in this case , takesAuthor
responsibility for persisting the relationship and is the only side that can cascade saves across.

For example this will work and cascade saves:

new Author(name:)"Stephen King"
 .addToBooks(Book(title:))new "The Stand"
 .addToBooks(Book(title:))new "The Shining"
 .save()

However this will only save the and not the authors!Book

102

new Book(name:)"Groovy in Action"
 .addToAuthors(Author(name:))new "Dierk Koenig"
 .addToAuthors(Author(name:))new "Guillaume Laforge"
 .save()

This is the expected behaviour as, just like Hibernate, only one side of a many-to-many can take responsibility for managing the relationship.

Grails' feature currently support many-to-many relationship and hence you must write the codeScaffolding does not
to manage the relationship yourself

5.2.1.4 Basic Collection Types
As well as associations between different domain classes, GORM also supports mapping of basic collection types. For example, the following
class creates a association that is a of instances:nicknames Set String

class Person {
 hasMany = [nicknames:]static String
}

GORM will map an association like the above using a join table. You can alter various aspects of how the join table is mapped using the
 argument:joinTable

class Person {

 hasMany = [nicknames:]static String

 mapping = {static
 hasMany joinTable: [name: 'bunch_o_nicknames',
 key: 'person_id',
 column: 'nickname',
 type:]"text"
 }
}

The example above will map to a table that looks like the following:

bunch_o_nicknames Table

| person_id | nickname |

| 1 | Fred |

5.2.2 Composition in GORM
As well as , Grails supports the notion of composition. In this case instead of mapping classes onto separate tables a class can beassociation
"embedded" within the current table. For example:

103

class Person {
 Address homeAddress
 Address workAddress
 embedded = ['homeAddress', 'workAddress']static
}

class Address {
 numberString
 codeString
}

The resulting mapping would looking like this:

If you define the class in a separate Groovy file in the directory you will alsoAddress grails-app/domain
get an table. If you don't want this to happen use Groovy's ability to define multiple classes per file andaddress
include the class below the class in the fileAddress Person grails-app/domain/Person.groovy

5.2.3 Inheritance in GORM
GORM supports inheritance both from abstract base classes and concrete persistent GORM entities. For example:

class Content {
 authorString
}

class BlogEntry Content {extends
 URL url
}

class Book Content {extends
 ISBNString
}

class PodCast Content {extends
 [] audioStreambyte
}

104

In the above example we have a parent class and then various child classes with more specific behaviour.Content

Considerations

At the database level Grails by default uses table-per-hierarchy mapping with a discriminator column called so the parent class (class
) and its subclasses (, etc.), share the table.Content BlogEntry Book same

Table-per-hierarchy mapping has a down side in that you have non-nullable properties with inheritance mapping. An alternative is to usecannot
table-per-subclass which can be enabled with the ORM DSL

However, excessive use of inheritance and table-per-subclass can result in poor query performance due to the use of outer join queries. In general
our advice is if you're going to use inheritance, don't abuse it and don't make your inheritance hierarchy too deep.

Polymorphic Queries

The upshot of inheritance is that you get the ability to polymorphically query. For example using the method on the super classlist Content
will return all subclasses of :Content

def content = Content.list() // list all blog entries, books and podcasts
content = Content.findAllByAuthor('Joe Bloggs') // find all by author

def podCasts = PodCast.list() // list only podcasts

5.2.4 Sets, Lists and Maps

Sets of Objects

By default when you define a relationship with GORM it is a which is an unordered collection that cannot contain duplicates.java.util.Set
In other words when you have:

class Author {
 hasMany = [books: Book]static
}

The books property that GORM injects is a . Sets guarantee uniquenes but not order, which may not be what you want. Tojava.util.Set
have custom ordering you configure the Set as a :SortedSet

class Author {

SortedSet books

 hasMany = [books: Book]static
}

In this case a implementation is used which means you must implement in your Bookjava.util.SortedSet java.lang.Comparable
class:

105

class Book Comparable {implements

 titleString
 Date releaseDate = Date()new

 compareTo(obj) {int
 releaseDate.compareTo(obj.releaseDate)
 }
}

The result of the above class is that the Book instances in the books collection of the Author class will be ordered by their release date.

Lists of Objects

To keep objects in the order which they were added and to be able to reference them by index like an array you can define your collection type as
a :List

class Author {

List books

 hasMany = [books: Book]static
}

In this case when you add new elements to the books collection the order is retained in a sequential list indexed from 0 so you can do:

author.books[0] // get the first book

The way this works at the database level is Hibernate creates a column where it saves the index of the elements in the collection tobooks_idx
retain this order at the database level.

When using a , elements must be added to the collection before being saved, otherwise Hibernate will throw an exception (List
: null index column for collection):org.hibernate.HibernateException

// This won't work!
def book = Book(title: 'The Shining')new
book.save()
author.addToBooks(book)

// Do it way instead.this
def book = Book(title: 'Misery')new
author.addToBooks(book)
author.save()

Bags of Objects

If ordering and uniqueness aren't a concern (or if you manage these explicitly) then you can use the Hibernate type to represent mappedBag
collections.

The only change required for this is to define the collection type as a :Collection

http://docs.jboss.org/hibernate/stable/core/reference/en-US/html/collections.html

106

class Author {

Collection books

 hasMany = [books: Book]static
}

Since uniqueness and order aren't managed by Hibernate, adding to or removing from collections mapped as a Bag don't trigger a load of all
existing instances from the database, so this approach will perform better and require less memory than using a or a .Set List

Maps of Objects

If you want a simple map of string/value pairs GORM can map this with the following:

class Author {
 Map books // map of ISBN:book names
}

def a = Author()new
a.books = [:]"1590597583" "Grails Book"
a.save()

In this case the key and value of the map MUST be strings.

If you want a Map of objects then you can do this:

class Book {

Map authors

 hasMany = [authors: Author]static
}

def a = Author(name:)new "Stephen King"

def book = Book()new
book.authors = [stephen:a]
book.save()

The static property defines the type of the elements within the Map. The keys for the map be strings.hasMany must

A Note on Collection Types and Performance

The Java type doesn't allow duplicates. To ensure uniqueness when adding an entry to a association Hibernate has to load the entireSet Set
associations from the database. If you have a large numbers of entries in the association this can be costly in terms of performance.

The same behavior is required for types, since Hibernate needs to load the entire association to maintain order. Therefore it isList
recommended that if you anticipate a large numbers of records in the association that you make the association bidirectional so that the link can
be created on the inverse side. For example consider the following code:

def book = Book(title:)new "New Grails Book"
def author = Author.get(1)
book.author = author
book.save()

107

In this example the association link is being created by the child (Book) and hence it is not necessary to manipulate the collection directly
resulting in fewer queries and more efficient code. Given an with a large number of associated instances if you were to writeAuthor Book
code like the following you would see an impact on performance:

def book = Book(title:)new "New Grails Book"
def author = Author.get(1)
author.addToBooks(book)
author.save()

You could also model the collection as a Hibernate Bag as described above.

5.3 Persistence Basics
A key thing to remember about Grails is that under the surface Grails is using for persistence. If you are coming from a background ofHibernate
using or Hibernate's "session" model may feel a little strange.ActiveRecord iBatis

Grails automatically binds a Hibernate session to the currently executing request. This lets you use the and methods as well as othersave delete
GORM methods transparently.

Transactional Write-Behind

A useful feature of Hibernate over direct JDBC calls and even other frameworks is that when you call or it does not necessarilysave delete
perform any SQL operations . Hibernate batches up SQL statements and executes them as late as possible, often at the end of theat that point
request when flushing and closing the session. This is typically done for you automatically by Grails, which manages your Hibernate session.

Hibernate caches database updates where possible, only actually pushing the changes when it knows that a flush is required, or when a flush is
triggered programmatically. One common case where Hibernate will flush cached updates is when performing queries since the cached
information might be included in the query results. But as long as you're doing non-conflicting saves, updates, and deletes, they'll be batched
until the session is flushed. This can be a significant performance boost for applications that do a lot of database writes.

Note that flushing is not the same as committing a transaction. If your actions are performed in the context of a transaction, flushing will execute
SQL updates but the database will save the changes in its transaction queue and only finalize the updates when the transaction commits.

5.3.1 Saving and Updating
An example of using the method can be seen below:save

def p = Person.get(1)
p.save()

This save will be not be pushed to the database immediately - it will be pushed when the next flush occurs. But there are occasions when you
want to control when those statements are executed or, in Hibernate terminology, when the session is "flushed". To do so you can use the flush
argument to the save method:

def p = Person.get(1)
p.save(flush:)true

Note that in this case pending SQL statements including previous saves, deletes, etc. will be synchronized with the database. This also letsall
you catch any exceptions, which is typically useful in highly concurrent scenarios involving :optimistic locking

http://www.hibernate.org/
http://wiki.rubyonrails.org/rails/pages/ActiveRecord
http://ibatis.apache.org/,

108

def p = Person.get(1)
 {try

 p.save(flush:)true
}

 (org.springframework.dao.DataIntegrityViolationException e) {catch
 // deal with exception
}

Another thing to bear in mind is that Grails a domain instance every time you save it. If that validation fails the domain instance will validates not
be persisted to the database. By default, will simply return in this case, but if you would prefer it to throw an exception you cansave() null
use the argument:failOnError

def p = Person.get(1)
 {try

 p.save(failOnError:)true
}

 (ValidationException e) {catch
 // deal with exception
}

You can even change the default behaviour with a setting in , as described in the . Just remember thatConfig.groovy section on configuration
when you are saving domain instances that have been bound with data provided by the user, the likelihood of validation exceptions is quite high
and you won't want those exceptions propagating to the end user.

You can find out more about the subtleties of saving data in - a must read! this article

5.3.2 Deleting Objects
An example of the method can be seen below:delete

def p = Person.get(1)
p.delete()

As with saves, Hibernate will use transactional write-behind to perform the delete; to perform the delete in-place you can use the flush
argument:

def p = Person.get(1)
p.delete(flush:)true

Using the argument lets you catch any errors that occur during a delete. A common error that may occur is if you violate a databaseflush
constraint, although this is normally down to a programming or schema error. The following example shows how to catch a

 that is thrown when you violate the database constraints:DataIntegrityViolationException

http://blog.springsource.com/2010/06/23/gorm-gotchas-part-1/

109

def p = Person.get(1)

 {try
 p.delete(flush:)true
}

 (org.springframework.dao.DataIntegrityViolationException e) {catch
 flash.message = "Could not delete person ${p.name}"
 redirect(action: , id: p.id)"show"
}

Note that Grails does not supply a method as deleting data is discouraged and can often be avoided through boolean flags/logic.deleteAll

If you really need to batch delete data you can use the method to do batch DML statements:executeUpdate

Customer.executeUpdate(,"delete Customer c where c.name = :oldName"
 [oldName:])"Fred"

5.3.3 Understanding Cascading Updates and Deletes
It is critical that you understand how cascading updates and deletes work when using GORM. The key part to remember is the belongsTo
setting which controls which class "owns" a relationship.

Whether it is a one-to-one, one-to-many or many-to-many, defining will result in updates cascading from the owning class to itsbelongsTo
dependant (the other side of the relationship), and for many-/one-to-one and one-to-many relationships deletes will also cascade.

If you define then no cascades will happen and you will have to manually save each object (except in the case of thedo not belongsTo
one-to-many, in which case saves will cascade automatically if a new instance is in a collection).hasMany

Here is an example:

class Airport {
 nameString
 hasMany = [flights: Flight]static
}

class Flight {
 numberString
 belongsTo = [airport: Airport]static
}

If I now create an and add some s to it I can save the and have the updates cascaded down to each flight, henceAirport Flight Airport
saving the whole object graph:

new Airport(name:)"Gatwick"
 .addToFlights(Flight(number:))new "BA3430"
 .addToFlights(Flight(number:))new "EZ0938"
 .save()

Conversely if I later delete the all s associated with it will also be deleted:Airport Flight

110

def airport = Airport.findByName()"Gatwick"
airport.delete()

However, if I were to remove then the above cascading deletion code . To understand this better take a look at thebelongsTo would not work
summaries below that describe the default behaviour of GORM with regards to specific associations. Also read of the GORM Gotchaspart 2
series of articles to get a deeper understanding of relationships and cascading.

Bidirectional one-to-many with belongsTo

class A { hasMany = [bees: B] }static

class B { belongsTo = [a: A] }static

In the case of a bidirectional one-to-many where the many side defines a then the cascade strategy is set to "ALL" for the one sidebelongsTo
and "NONE" for the many side.

Unidirectional one-to-many

class A { hasMany = [bees: B] }static

class B { }

In the case of a unidirectional one-to-many where the many side defines no belongsTo then the cascade strategy is set to "SAVE-UPDATE".

Bidirectional one-to-many, no belongsTo

class A { hasMany = [bees: B] }static

class B { A a }

In the case of a bidirectional one-to-many where the many side does not define a then the cascade strategy is set tobelongsTo
"SAVE-UPDATE" for the one side and "NONE" for the many side.

Unidirectional one-to-one with belongsTo

class A { }

http://blog.springsource.com/2010/07/02/gorm-gotchas-part-2/

111

class B { belongsTo = [a: A] }static

In the case of a unidirectional one-to-one association that defines a then the cascade strategy is set to "ALL" for the owning side ofbelongsTo
the relationship (A->B) and "NONE" from the side that defines the (B->A)belongsTo

Note that if you need further control over cascading behaviour, you can use the . ORM DSL

5.3.4 Eager and Lazy Fetching
Associations in GORM are by default lazy. This is best explained by example:

class Airport {
 nameString
 hasMany = [flights: Flight]static
}

class Flight {
 numberString
 Location destination
 belongsTo = [airport: Airport]static
}

class Location {
 cityString
 countryString
}

Given the above domain classes and the following code:

def airport = Airport.findByName()"Gatwick"
 (flight in airport.flights) {for

 println flight.destination.city
}

GORM will execute a single SQL query to fetch the instance, another to get its flights, and then 1 extra query for overAirport each iteration
the association to get the current flight's destination. In other words you get N+1 queries (if you exclude the original one to get theflights
airport).

Configuring Eager Fetching

An alternative approach that avoids the N+1 queries is to use eager fetching, which can be specified as follows:

112

class Airport {
 nameString
 hasMany = [flights: Flight]static
 mapping = {static
 flights lazy: false
 }
}

In this case the association will be loaded at the same time as its instance, although a second query will be executed toflights Airport
fetch the collection. You can also use instead of , in which case GORM will only execute a single query tofetch: 'join' lazy: false
get the airports and their flights. This works well for single-ended associations, but you need to be careful with one-to-manys. Queries will work
as you'd expect right up to the moment you add a limit to the number of results you want. At that point, you will likely end up with fewer results
than you were expecting. The reason for this is quite technical but ultimately the problem arises from GORM using a left outer join.

So, the recommendation is currently to use for single-ended associations and for one-to-manys.fetch: 'join' lazy: false

Be careful how and where you use eager loading because you could load your entire database into memory with too many eager associations.
You can find more information on the mapping options in the .section on the ORM DSL

Using Batch Fetching

Although eager fetching is appropriate for some cases, it is not always desirable. If you made everything eager you could quite possibly load your
entire database into memory resulting in performance and memory problems. An alternative to eager fetching is to use batch fetching. You can
configure Hibernate to lazily fetch results in "batches". For example:

class Airport {
 nameString
 hasMany = [flights: Flight]static
 mapping = {static
 flights batchSize: 10
 }
}

In this case, due to the argument, when you iterate over the association, Hibernate will fetch results in batches of 10. ForbatchSize flights
example if you had an that had 30 flights, if you didn't configure batch fetching you would get 1 query to fetch the and thenAirport Airport

 queries to fetch each flight. With batch fetching you get 1 query to fetch the and 3 queries to fetch each in batches of 10.30 Airport Flight
In other words, batch fetching is an optimization of the lazy fetching strategy. Batch fetching can also be configured at the class level as follows:

class Flight {
 …
 mapping = {static
 batchSize 10
 }
}

Check out of the GORM Gotchas series for more in-depth coverage of this tricky topic. part 3

5.3.5 Pessimistic and Optimistic Locking

Optimistic Locking

http://blog.springsource.com/2010/07/28/gorm-gotchas-part-3/

113

By default GORM classes are configured for optimistic locking. Optimistic locking is a feature of Hibernate which involves storing a version
value in a special column in the database that is incremented after each update.version

The column gets read into a property that contains the current versioned state of persistent instance which you can access:version version

def airport = Airport.get(10)

println airport.version

When you perform updates Hibernate will automatically check the version property against the version column in the database and if they differ
will throw a . This will roll back the transaction if one is active.StaleObjectException

This is useful as it allows a certain level of atomicity without resorting to pessimistic locking that has an inherit performance penalty. The
downside is that you have to deal with this exception if you have highly concurrent writes. This requires flushing the session:

def airport = Airport.get(10)

 {try
 airport.name = "Heathrow"
 airport.save(flush:)true
}

 (org.springframework.dao.OptimisticLockingFailureException e) {catch
 // deal with exception
}

The way you deal with the exception depends on the application. You could attempt a programmatic merge of the data or go back to the user and
ask them to resolve the conflict.

Alternatively, if it becomes a problem you can resort to pessimistic locking.

The will only be updated after flushing the session.version

Pessimistic Locking

Pessimistic locking is equivalent to doing a SQL "SELECT * FOR UPDATE" statement and locking a row in the database. This has the
implication that other read operations will be blocking until the lock is released.

In Grails pessimistic locking is performed on an existing instance with the method:lock

def airport = Airport.get(10)
airport.lock() // lock updatefor
airport.name = "Heathrow"
airport.save()

Grails will automatically deal with releasing the lock for you once the transaction has been committed. However, in the above case what we are
doing is "upgrading" from a regular SELECT to a SELECT..FOR UPDATE and another thread could still have updated the record in between the
call to and the call to .get() lock()

To get around this problem you can use the static method that takes an id just like :lock get

http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/StaleObjectStateException.html

114

def airport = Airport.lock(10) // lock updatefor
airport.name = "Heathrow"
airport.save()

In this case only SELECT..FOR UPDATE is issued.

As well as the method you can also obtain a pessimistic locking using queries. For example using a dynamic finder:lock

def airport = Airport.findByName(, [lock:])"Heathrow" true

Or using criteria:

def airport = Airport.createCriteria().get {
 eq('name', 'Heathrow')
 lock true
}

5.3.6 Modification Checking
Once you have loaded and possibly modified a persistent domain class instance, it isn't straightforward to retrieve the original values. If you try
to reload the instance using Hibernate will return the current modified instance from its Session cache. Reloading using another query wouldget
trigger a flush which could cause problems if your data isn't ready to be flushed yet. So GORM provides some methods to retrieve the original
values that Hibernate caches when it loads the instance (which it uses for dirty checking).

isDirty

You can use the method to check if any field has been modified:isDirty

def airport = Airport.get(10)
assert !airport.isDirty()

airport.properties = params
 (airport.isDirty()) {if

 // something based on changed statedo
}

 does not currently check collection associations, but it does check all other persistent properties andisDirty()
associations.

You can also check if individual fields have been modified:

115

def airport = Airport.get(10)
assert !airport.isDirty()

airport.properties = params
 (airport.isDirty('name')) {if

 // something based on changed namedo
}

getDirtyPropertyNames

You can use the method to retrieve the names of modified fields; this may be empty but will not be null:getDirtyPropertyNames

def airport = Airport.get(10)
assert !airport.isDirty()

airport.properties = params
def modifiedFieldNames = airport.getDirtyPropertyNames()

 (fieldName in modifiedFieldNames) {for
 // something based on changed valuedo
}

getPersistentValue

You can use the method to retrieve the value of a modified field:getPersistentValue

def airport = Airport.get(10)
assert !airport.isDirty()

airport.properties = params
def modifiedFieldNames = airport.getDirtyPropertyNames()

 (fieldName in modifiedFieldNames) {for
 def currentValue = airport."$fieldName"
 def originalValue = airport.getPersistentValue(fieldName)
 (currentValue != originalValue) {if
 // something based on changed valuedo
 }
}

5.4 Querying with GORM
GORM supports a number of powerful ways to query from dynamic finders, to criteria to Hibernate's object oriented query language HQL.

Groovy's ability to manipulate collections with and methods like sort, findAll and so on combined with GORM results in a powerfulGPath
combination.

However, let's start with the basics.

Listing instances

Use the method to obtain all instances of a given class:list

http://groovy.codehaus.org/GPath

116

def books = Book.list()

The method supports arguments to perform pagination:list

def books = Book.list(offset:10, max:20)

as well as sorting:

def books = Book.list(sort: , order:)"title" "asc"

Here, the argument is the name of the domain class property that you wish to sort on, and the argument is either for endingsort order asc asc
or for ending.desc desc

Retrieval by Database Identifier

The second basic form of retrieval is by database identifier using the method:get

def book = Book.get(23)

You can also obtain a list of instances for a set of identifiers using :getAll

def books = Book.getAll(23, 93, 81)

5.4.1 Dynamic Finders
GORM supports the concept of . A dynamic finder looks like a static method invocation, but the methods themselves don'tdynamic finders
actually exist in any form at the code level.

Instead, a method is auto-magically generated using code synthesis at runtime, based on the properties of a given class. Take for example the
 class:Book

class Book {
 titleString
 Date releaseDate
 Author author
}

class Author {
 nameString
}

117

The class has properties such as , and . These can be used by the and methods in theBook title releaseDate author findBy findAllBy
form of "method expressions":

def book = Book.findByTitle()"The Stand"

book = Book.findByTitleLike()"Harry Pot%"

book = Book.findByReleaseDateBetween(firstDate, secondDate)

book = Book.findByReleaseDateGreaterThan(someDate)

book = Book.findByTitleLikeOrReleaseDateLessThan(, someDate)"%Something%"

Method Expressions

A method expression in GORM is made up of the prefix such as followed by an expression that combines one or more properties. ThefindBy
basic form is:

Book.findBy([Property][Comparator][Operator])?[Property][Comparator]Boolean

The tokens marked with a '?' are optional. Each comparator changes the nature of the query. For example:

def book = Book.findByTitle()"The Stand"

book = Book.findByTitleLike()"Harry Pot%"

In the above example the first query is equivalent to equality whilst the latter, due to the comparator, is equivalent to a SQL Like like
expression.

The possible comparators include:

InList - In the list of given values

LessThan - less than a given value

LessThanEquals - less than or equal a give value

GreaterThan - greater than a given value

GreaterThanEquals - greater than or equal a given value

Like - Equivalent to a SQL like expression

Ilike - Similar to a , except case insensitiveLike

NotEqual - Negates equality

Between - Between two values (requires two arguments)

IsNotNull - Not a null value (doesn't take an argument)

IsNull - Is a null value (doesn't take an argument)

Notice that the last three require different numbers of method arguments compared to the rest, as demonstrated in the following example:

118

def now = Date()new
def lastWeek = now - 7
def book = Book.findByReleaseDateBetween(lastWeek, now)

books = Book.findAllByReleaseDateIsNull()
books = Book.findAllByReleaseDateIsNotNull()

Boolean logic (AND/OR)

Method expressions can also use a boolean operator to combine two or more criteria:

def books = Book.findAllByTitleLikeAndReleaseDateGreaterThan(
 , Date() - 30)"%Java%" new

In this case we're using in the middle of the query to make sure both conditions are satisfied, but you could equally use :And Or

def books = Book.findAllByTitleLikeOrReleaseDateGreaterThan(
 , Date() - 30)"%Java%" new

You can combine as many criteria as you like, but they must all be combined with or all . If you need to combine and or if theAnd Or And Or
number of criteria creates a very long method name, just convert the query to a or query.Criteria HQL

Querying Associations

Associations can also be used within queries:

def author = Author.findByName()"Stephen King"

def books = author ? Book.findAllByAuthor(author) : []

In this case if the instance is not null we use it in a query to obtain all the instances for the given .Author Book Author

Pagination and Sorting

The same pagination and sorting parameters available on the method can also be used with dynamic finders by supplying a map as the finallist
parameter:

def books = Book.findAllByTitleLike(,"Harry Pot%"
 [max: 3, offset: 2, sort: , order:])"title" "desc"

5.4.2 Criteria
Criteria is a type safe, advanced way to query that uses a Groovy builder to construct potentially complex queries. It is a much better approach
than building up query strings using a .StringBuffer

119

Criteria can be used either with the or methods. The builder uses Hibernate's Criteria API. The nodes on this buildercreateCriteria withCriteria
map the static methods found in the class of the Hibernate Criteria API. For example:Restrictions

def c = Account.createCriteria()
def results = c {
 between(, 500, 1000)"balance"
 eq(,)"branch" "London"
 or {
 like(,)"holderFirstName" "Fred%"
 like(,)"holderFirstName" "Barney%"
 }
 maxResults(10)
 order(,)"holderLastName" "desc"
}

This criteria will select up to 10 objects in a List matching the following criteria:Account

balance is between 500 and 1000

branch is 'London'

holderFirstName starts with 'Fred' or 'Barney'

The results will be sorted in descending order by .holderLastName

If no records are found with the above criteria, an empty List is returned.

Conjunctions and Disjunctions

As demonstrated in the previous example you can group criteria in a logical OR using an block:or { }

or {
 between(, 500, 1000)"balance"
 eq(,)"branch" "London"
}

This also works with logical AND:

and {
 between(, 500, 1000)"balance"
 eq(,)"branch" "London"
}

And you can also negate using logical NOT:

not {
 between(, 500, 1000)"balance"
 eq(,)"branch" "London"
}

All top level conditions are implied to be AND'd together.

http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/criterion/Restrictions.html

120

Querying Associations

Associations can be queried by having a node that matches the property name. For example say the class had many Account Transaction
objects:

class Account {
 …
 hasMany = [transactions: Transaction]static
 …
}

We can query this association by using the property name as a builder node:transaction

def c = Account.createCriteria()
def now = Date()new
def results = c.list {
 transactions {
 between('date', now - 10, now)
 }
}

The above code will find all the instances that have performed within the last 10 days. You can also nest suchAccount transactions
association queries within logical blocks:

def c = Account.createCriteria()
def now = Date()new
def results = c.list {
 or {
 between('created', now - 10, now)
 transactions {
 between('date', now - 10, now)
 }
 }
}

Here we find all accounts that have either performed transactions in the last 10 days OR have been recently created in the last 10 days.

Querying with Projections

Projections may be used to customise the results. Define a "projections" node within the criteria builder tree to use projections. There are
equivalent methods within the projections node to the methods found in the Hibernate class:Projections

def c = Account.createCriteria()

def numberOfBranches = c.get {
 projections {
 countDistinct('branch')
 }
}

When multiple fields are specified in the projection, a List of values will be returned. A single value will be returned otherwise.

http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/criterion/Projections.html

121

Using SQL Restrictions

You can access Hibernate's SQL Restrictions capabilities.

def c = Person.createCriteria()

def peopleWithShortFirstNames = c.list {
 sqlRestriction "char_length(first_name) <= 4"
}

Note that the parameter there is SQL. The attribute referenced in the example refers to thefirst_name
persistence model, not the object model like in HQL queries. The property named is mappedPerson firstName
to the column in the database and you must refer to that in the string.first_name sqlRestriction

Also note that the SQL used here is not necessarily portable across databases.

Using Scrollable Results

You can use Hibernate's feature by calling the scroll method:ScrollableResults

def results = crit.scroll {
 maxResults(10)
}
def f = results.first()
def l = results.last()
def n = results.next()
def p = results.previous()

def = results.scroll(10)future
def accountNumber = results.getLong('number')

To quote the documentation of Hibernate ScrollableResults:

A result iterator that allows moving around within the results by arbitrary increments. The Query / ScrollableResults pattern is very
similar to the JDBC PreparedStatement/ ResultSet pattern and the semantics of methods of this interface are similar to the similarly
named methods on ResultSet.

Contrary to JDBC, columns of results are numbered from zero.

Setting properties in the Criteria instance

If a node within the builder tree doesn't match a particular criterion it will attempt to set a property on the Criteria object itself. This allows full
access to all the properties in this class. This example calls and on the instance:setMaxResults setFirstResult Criteria

http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/ScrollableResults.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/Criteria.html

122

import org.hibernate.FetchMode as FM
…
def results = c.list {
 maxResults(10)
 firstResult(50)
 fetchMode(, FM.JOIN)"aRelationship"
}

Querying with Eager Fetching

In the section on we discussed how to declaratively specify fetching to avoid the N+1 SELECT problem. However, thisEager and Lazy Fetching
can also be achieved using a criteria query:

def criteria = Task.createCriteria()
def tasks = criteria.list{
 eq , task.assignee.id"assignee.id"
 join 'assignee'
 join 'project'
 order 'priority', 'asc'
}

Notice the usage of the method: it tells the criteria API to use a to fetch the named associations with the instances. It'sjoin JOIN Task
probably best not to use this for one-to-many associations though, because you will most likely end up with duplicate results. Instead, use the
'select' fetch mode:

import org.hibernate.FetchMode as FM
…
def results = Airport.withCriteria {
 eq , "region" "EMEA"
 fetchMode , FM.SELECT"flights"
}

Although this approach triggers a second query to get the association, you will get reliable results - even with the flights maxResults
option.

 and are general settings of the query and can only be specified at the top-level, i.e. you cannotfetchMode join
use them inside projections or association constraints.

An important point to bear in mind is that if you include associations in the query constraints, those associations will automatically be eagerly
loaded. For example, in this query:

def results = Airport.withCriteria {
 eq , "region" "EMEA"
 flights {
 like , "number" "BA%"
 }
}

the collection would be loaded eagerly via a join even though the fetch mode has not been explicitly set.flights

Method Reference

123

If you invoke the builder with no method name such as:

c { … }

The build defaults to listing all the results and hence the above is equivalent to:

c.list { … }

Method Description

list This is the default method. It returns all matching rows.

get
Returns a unique result set, i.e. just one row. The criteria has to be formed that way, that it only queries one row. This method is
not to be confused with a limit to just the first row.

scroll Returns a scrollable result set.

listDistinct
If subqueries or associations are used, one may end up with the same row multiple times in the result set, this allows listing only
distinct entities and is equivalent to of the class.DISTINCT_ROOT_ENTITY CriteriaSpecification

count Returns the number of matching rows.

5.4.3 Hibernate Query Language (HQL)
GORM classes also support Hibernate's query language HQL, a very complete reference for which can be found in the Hibernate documentation
of the Hibernate documentation.

GORM provides a number of methods that work with HQL including , and . An example of a query can be seen below:find findAll executeQuery

def results =
 Book.findAll()"from Book as b where b.title like 'Lord of the%'"

Positional and Named Parameters

In this case the value passed to the query is hard coded, however you can equally use positional parameters:

def results =
 Book.findAll(, [])"from Book as b where b.title like ?" "The Shi%"

def author = Author.findByName()"Stephen King"
def books = Book.findAll(,"from Book as book where book.author = ?"
 [author])

Or even named parameters:

http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/criterion/CriteriaSpecification.html
http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/queryhql.html

124

def results =
 Book.findAll(+"from Book as b "
 ,"where b.title like :search or b.author like :search"
 [search:])"The Shi%"

def author = Author.findByName()"Stephen King"
def books = Book.findAll(,"from Book as book where book.author = :author"
 [author: author])

Multiline Queries

Use the line continuation character to separate the query across multiple lines:

def results = Book.findAll("\
from Book as b, \
 Author as a \

, ['Smith'])where b.author = a and a.surname = ?"

Triple-quoted Groovy multiline Strings will NOT work with HQL queries.

Pagination and Sorting

You can also perform pagination and sorting whilst using HQL queries. To do so simply specify the pagination options as a Map at the end of the
method call and include an "ORDER BY" clause in the HQL:

def results =
 Book.findAll(+"from Book as b where "
 +"b.title like 'Lord of the%' "
 ,"order by b.title asc"
 [max: 10, offset: 20])

5.5 Advanced GORM Features
The following sections cover more advanced usages of GORM including caching, custom mapping and events.

5.5.1 Events and Auto Timestamping
GORM supports the registration of events as methods that get fired when certain events occurs such as deletes, inserts and updates. The
following is a list of supported events:

125

beforeInsert - Executed before an object is initially persisted to the database

beforeUpdate - Executed before an object is updated

beforeDelete - Executed before an object is deleted

beforeValidate - Executed before an object is validated

afterInsert - Executed after an object is persisted to the database

afterUpdate - Executed after an object has been updated

afterDelete - Executed after an object has been deleted

onLoad - Executed when an object is loaded from the database

To add an event simply register the relevant closure with your domain class.

Do not attempt to flush the session within an event (such as with obj.save(flush:true)). Since events are fired during
flushing this will cause a StackOverflowError.

Event types

The beforeInsert event

Fired before an object is saved to the database

class Person {
 Date dateCreated

def beforeInsert() {
 dateCreated = Date()new
 }
}

The beforeUpdate event

Fired before an existing object is updated

class Person {
 Date dateCreated
 Date lastUpdated

def beforeInsert() {
 dateCreated = Date()new
 }
 def beforeUpdate() {
 lastUpdated = Date()new
 }
}

126

The beforeDelete event

Fired before an object is deleted.

class Person {
 nameString
 Date dateCreated
 Date lastUpdated

def beforeDelete() {
 ActivityTrace.withNewSession {
 ActivityTrace(eventName: ,data:name).save()new "Person Deleted"
 }
 }
}

Notice the usage of method above. Since events are triggered whilst Hibernate is flushing using persistence methods like withNewSession
 and won't result in objects being saved unless you run your operations with a new .save() delete() Session

Fortunately the method lets you share the same transactional JDBC connection even though you're using a differentwithNewSession
underlying .Session

The beforeValidate event

Fired before an object is validated.

class Person {
 nameString

 constraints = {static
 name size: 5..45
 }

def beforeValidate() {
 name = name?.trim()
 }
}

The method is run before any validators are run.beforeValidate

GORM supports an overloaded version of which accepts a parameter which may include the names of the propertiesbeforeValidate List
which are about to be validated. This version of will be called when the method has been invoked and passed a beforeValidate validate

 of property names as an argument.List

127

class Person {
 nameString
 townString
 ageInteger

 constraints = {static
 name size: 5..45
 age range: 4..99
 }

def beforeValidate(List propertiesBeingValidated) {
 // pre validation work based on propertiesBeingValidateddo
 }
}

def p = Person(name: 'Jacob Brown', age: 10)new
p.validate(['age', 'name'])

Note that when is triggered indirectly because of a call to the method that the validate save validate
method is being invoked with no arguments, not a that includes all of the property names.List

Either or both versions of may be defined in a domain class. GORM will prefer the version if a is passed to beforeValidate List List
 but will fall back on the no-arg version if the version does not exist. Likewise, GORM will prefer the no-arg version if novalidate List

arguments are passed to but will fall back on the version if the no-arg version does not exist. In that case, is passed to validate List null
.beforeValidate

The onLoad/beforeLoad event

Fired immediately before an object is loaded from the database:

class Person {
 nameString
 Date dateCreated
 Date lastUpdated

def onLoad() {
 log.debug "Loading ${id}"
 }
}

 is effectively a synonym for , so only declare one or the other.beforeLoad() onLoad()

The afterLoad event

Fired immediately after an object is loaded from the database:

128

class Person {
 nameString
 Date dateCreated
 Date lastUpdated

def afterLoad() {
 name = "I'm loaded"
 }
}

Custom Event Listeners

You can also register event handler classes in an application's or in the grails-app/conf/spring/resources.groovy
 closure in a plugin descriptor by registering a Spring bean named . This bean has onedoWithSpring hibernateEventListeners

property, which specifies the listeners to register for various Hibernate events.listenerMap

The values of the Map are instances of classes that implement one or more Hibernate listener interfaces. You can use one class that implements
all of the required interfaces, or one concrete class per interface, or any combination. The valid Map keys and corresponding interfaces are listed
here:

129

Name Interface

auto-flush AutoFlushEventListener

merge MergeEventListener

create PersistEventListener

create-onflush PersistEventListener

delete DeleteEventListener

dirty-check DirtyCheckEventListener

evict EvictEventListener

flush FlushEventListener

flush-entity FlushEntityEventListener

load LoadEventListener

load-collection InitializeCollectionEventListener

lock LockEventListener

refresh RefreshEventListener

replicate ReplicateEventListener

save-update SaveOrUpdateEventListener

save SaveOrUpdateEventListener

update SaveOrUpdateEventListener

pre-load PreLoadEventListener

pre-update PreUpdateEventListener

pre-delete PreDeleteEventListener

pre-insert PreInsertEventListener

pre-collection-recreate PreCollectionRecreateEventListener

pre-collection-remove PreCollectionRemoveEventListener

pre-collection-update PreCollectionUpdateEventListener

post-load PostLoadEventListener

post-update PostUpdateEventListener

post-delete PostDeleteEventListener

post-insert PostInsertEventListener

post-commit-update PostUpdateEventListener

post-commit-delete PostDeleteEventListener

post-commit-insert PostInsertEventListener

post-collection-recreate PostCollectionRecreateEventListener

post-collection-remove PostCollectionRemoveEventListener

post-collection-update PostCollectionUpdateEventListener

http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/AutoFlushEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/MergeEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PersistEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PersistEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/DeleteEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/DirtyCheckEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/EvictEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/FlushEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/FlushEntityEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/LoadEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/InitializeCollectionEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/LockEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/RefreshEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/ReplicateEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/SaveOrUpdateEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/SaveOrUpdateEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/SaveOrUpdateEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PreLoadEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PreUpdateEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PreDeleteEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PreInsertEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PreCollectionRecreateEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PreCollectionRemoveEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PreCollectionUpdateEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PostLoadEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PostUpdateEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PostDeleteEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PostInsertEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PostUpdateEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PostDeleteEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PostInsertEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PostCollectionRecreateEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PostCollectionRemoveEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PostCollectionUpdateEventListener.html

130

For example, you could register a class which implements , AuditEventListener PostInsertEventListener
, and using the following in an application:PostUpdateEventListener PostDeleteEventListener

beans = {

auditListener(AuditEventListener)

hibernateEventListeners(HibernateEventListeners) {
 listenerMap = ['post-insert': auditListener,
 'post-update': auditListener,
 'post-delete': auditListener]
 }
}

or use this in a plugin:

def doWithSpring = {

auditListener(AuditEventListener)

hibernateEventListeners(HibernateEventListeners) {
 listenerMap = ['post-insert': auditListener,
 'post-update': auditListener,
 'post-delete': auditListener]
 }
}

Automatic timestamping

The examples above demonstrated using events to update a and property to keep track of updates to objects.lastUpdated dateCreated
However, this is actually not necessary. By defining a and property these will be automatically updated for youlastUpdated dateCreated
by GORM.

If this is not the behaviour you want you can disable this feature with:

class Person {
 Date dateCreated
 Date lastUpdated
 mapping = {static
 autoTimestamp false
 }
}

If you put constraints on either or , your domain instancesnullable: false dateCreated lastUpdated
will fail validation - probably not what you want. Leave constraints off these properties unless you have disabled
automatic timestamping.

5.5.2 Custom ORM Mapping
Grails domain classes can be mapped onto many legacy schemas with an Object Relational Mapping DSL (domain specific language). The
following sections takes you through what is possible with the ORM DSL.

131

None of this is necessary if you are happy to stick to the conventions defined by GORM for table names, column
names and so on. You only needs this functionality if you need to tailor the way GORM maps onto legacy schemas
or configures caching

Custom mappings are defined using a a static block defined within your domain class:mapping

class Person {
 …
 mapping = {static

}
}

5.5.2.1 Table and Column Names

Table names

The database table name which the class maps to can be customized using the method:table

class Person {
 …
 mapping = {static
 table 'people'
 }
}

In this case the class would be mapped to a table called instead of the default name of .people person

Column names

It is also possible to customize the mapping for individual columns onto the database. For example to change the name you can do:

class Person {

 firstNameString

 mapping = {static
 table 'people'
 firstName column: 'First_Name'
 }
}

Here is a dynamic method within the Closure that has a single Map parameter. Since its name corresponds to a domainfirstName mapping
class persistent field, the parameter values (in this case just) are used to configure the mapping for that property."column"

Column type

GORM supports configuration of Hibernate types with the DSL using the type attribute. This includes specifing user types that implement the
Hibernate interface, which allows complete customization of how a type is persisted. As an example if you hadorg.hibernate.usertype.UserType
a you could use it as follows:PostCodeType

http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/usertype/UserType.html

132

class Address {

 numberString
 postCodeString

 mapping = {static
 postCode type: PostCodeType
 }
}

Alternatively if you just wanted to map it to one of Hibernate's basic types other than the default chosen by Grails you could use:

class Address {

 numberString
 postCodeString

 mapping = {static
 postCode type: 'text'
 }
}

This would make the column map to the default large-text type for the database you're using (for example TEXT or CLOB).postCode

See the Hibernate documentation regarding for further information.Basic Types

Many-to-One/One-to-One Mappings

In the case of associations it is also possible to configure the foreign keys used to map associations. In the case of a many-to-one or one-to-one
association this is exactly the same as any regular column. For example consider the following:

class Person {

 firstNameString
 Address address

 mapping = {static
 table 'people'
 firstName column: 'First_Name'
 address column: 'Person_Address_Id'
 }
}

By default the association would map to a foreign key column called . By using the above mapping we have changedaddress address_id
the name of the foreign key column to .Person_Adress_Id

One-to-Many Mapping

With a bidirectional one-to-many you can change the foreign key column used by changing the column name on the many side of the association
as per the example in the previous section on one-to-one associations. However, with unidirectional associations the foreign key needs to be
specified on the association itself. For example given a unidirectional one-to-many relationship between and the followingPerson Address
code will change the foreign key in the table:address

http://docs.jboss.org/hibernate/stable/core/reference/en-US/html/mapping.html#mapping-types-basictypes

133

class Person {

 firstNameString

 hasMany = [addresses: Address]static

 mapping = {static
 table 'people'
 firstName column: 'First_Name'
 addresses column: 'Person_Address_Id'
 }
}

If you don't want the column to be in the table, but instead some intermediate join table you can use the parameter:address joinTable

class Person {

 firstNameString

 hasMany = [addresses: Address]static

 mapping = {static
 table 'people'
 firstName column: 'First_Name'
 addresses joinTable: [name: 'Person_Addresses',
 key: 'Person_Id',
 column: 'Address_Id']
 }
}

Many-to-Many Mapping

Grails, by default maps a many-to-many association using a join table. For example consider this many-to-many association:

class Group {
 …
 hasMany = [people: Person]static
}

class Person {
 …
 belongsTo = Groupstatic
 hasMany = [groups: Group]static
}

In this case Grails will create a join table called containing foreign keys called and referencing the group_person person_id group_id
 and tables. To change the column names you can specify a column within the mappings for each class.person group

134

class Group {
 …
 mapping = {static
 people column: 'Group_Person_Id'
 }
}
class Person {
 …
 mapping = {static
 groups column: 'Group_Group_Id'
 }
}

You can also specify the name of the join table to use:

class Group {
 …
 mapping = {static
 people column: 'Group_Person_Id',
 joinTable: 'PERSON_GROUP_ASSOCIATIONS'
 }
}
class Person {
 …
 mapping = {static
 groups column: 'Group_Group_Id',
 joinTable: 'PERSON_GROUP_ASSOCIATIONS'
 }
}

5.5.2.2 Caching Strategy

Setting up caching

 features a second-level cache with a customizable cache provider. This needs to be configured in the Hibernate
 file as follows:grails-app/conf/DataSource.groovy

hibernate {
 cache.use_second_level_cache=true
 cache.use_query_cache=true
 cache.provider_class='org.hibernate.cache.EhCacheProvider'
}

You can customize any of these settings, for example to use a distributed caching mechanism.

For further reading on caching and in particular Hibernate's second-level cache, refer to the Hibernate
 on the subject.documentation

Caching instances

Call the method in your mapping block to enable caching with the default settings:cache

http://www.hibernate.org/
http://docs.jboss.org/hibernate/stable/core/reference/en-US/html/performance.html#performance-cache
http://docs.jboss.org/hibernate/stable/core/reference/en-US/html/performance.html#performance-cache

135

class Person {
 …
 mapping = {static
 table 'people'
 cache true
 }
}

This will configure a 'read-write' cache that includes both lazy and non-lazy properties. You can customize this further:

class Person {
 …
 mapping = {static
 table 'people'
 cache usage: 'read-only', include: 'non-lazy'
 }
}

Caching associations

As well as the ability to use Hibernate's second level cache to cache instances you can also cache collections (associations) of objects. For
example:

class Person {

 firstNameString

 hasMany = [addresses: Address]static

 mapping = {static
 table 'people'
 version false
 addresses column: 'Address', cache: true
 }
}

class Address {
 numberString
 postCodeString
}

This will enable a 'read-write' caching mechanism on the collection. You can also use:addresses

cache: 'read-write' // or 'read-only' or 'transactional'

to further configure the cache usage.

Caching Queries

You can cache queries such as dynamic finders and criteria. To do so using a dynamic finder you can pass the argument:cache

136

def person = Person.findByFirstName(, [cache:])"Fred" true

In order for the results of the query to be cached, you must enable caching in your mapping as discussed in the
previous section.

You can also cache criteria queries:

def people = Person.withCriteria {
 like('firstName', 'Fr%')
 cache true
}

Cache usages

Below is a description of the different cache settings and their usages:

read-only - If your application needs to read but never modify instances of a persistent class, a read-only cache may be used.

read-write - If the application needs to update data, a read-write cache might be appropriate.

nonstrict-read-write - If the application only occasionally needs to update data (ie. if it is very unlikely that two transactions would
try to update the same item simultaneously) and strict transaction isolation is not required, a cache might benonstrict-read-write
appropriate.

transactional - The cache strategy provides support for fully transactional cache providers such as JBosstransactional
TreeCache. Such a cache may only be used in a JTA environment and you must specify

 in the file's hibernate.transaction.manager_lookup_class grails-app/conf/DataSource.groovy hibernate
config.

5.5.2.3 Inheritance Strategies
By default GORM classes use inheritance mapping. This has the disadvantage that columns cannot have a table-per-hierarchy

 constraint applied to them at the database level. If you would prefer to use a inheritance strategy you canNOT-NULL table-per-subclass
do so as follows:

class Payment {
 amountInteger

 mapping = {static
 tablePerHierarchy false
 }
}

class CreditCardPayment Payment {extends
 cardNumberString
}

The mapping of the root class specifies that it will not be using mapping for all child classes. Payment table-per-hierarchy

137

5.5.2.4 Custom Database Identity
You can customize how GORM generates identifiers for the database using the DSL. By default GORM relies on the native database mechanism
for generating ids. This is by far the best approach, but there are still many schemas that have different approaches to identity.

To deal with this Hibernate defines the concept of an id generator. You can customize the id generator and the column it maps to as follows:

class Person {
 …
 mapping = {static
 table 'people'
 version false
 id generator: 'hilo',
 params: [table: 'hi_value',
 column: 'next_value',
 max_lo: 100]
 }
}

In this case we're using one of Hibernate's built in 'hilo' generators that uses a separate table to generate ids.

For more information on the different Hibernate generators refer to the Hibernate reference documentation

Although you don't typically specify the field (Grails adds it for you) you can still configure its mapping like the other properties. Forid
example to customise the column for the id property you can do:

class Person {
 …
 mapping = {static
 table 'people'
 version false
 id column: 'person_id'
 }
}

5.5.2.5 Composite Primary Keys
GORM supports the concept of composite identifiers (identifiers composed from 2 or more properties). It is not an approach we recommend, but
is available to you if you need it:

http://docs.jboss.org/hibernate/stable/core/reference/en-US/html/mapping.html#mapping-declaration-id-generator

138

import org.apache.commons.lang.builder.HashCodeBuilder

class Person Serializable {implements

 firstNameString
 lastNameString

 equals(other) {boolean
 (!(other Person)) {if instanceof
 return false
 }

other.firstName == firstName && other.lastName == lastName
 }

 hashCode() {int
 def builder = HashCodeBuilder()new
 builder.append firstName
 builder.append lastName
 builder.toHashCode()
 }

 mapping = {static
 id composite: ['firstName', 'lastName']
 }
}

The above will create a composite id of the and properties of the Person class. To retrieve an instance by id you use afirstName lastName
prototype of the object itself:

def p = Person.get(Person(firstName: , lastName:))new "Fred" "Flintstone"
println p.firstName

Domain classes mapped with composite primary keys must implement the interface and override the and Serializable equals hashCode
methods, using the properties in the composite key for the calculations. The example above uses a for convenience but it'sHashCodeBuilder
fine to implement it yourself.

Another important consideration when using composite primary keys is associations. If for example you have a many-to-one association where
the foreign keys are stored in the associated table then 2 columns will be present in the associated table.

For example consider the following domain class:

class Address {
 Person person
}

In this case the table will have an additional two columns called and . If you wishaddress person_first_name person_last_name
the change the mapping of these columns then you can do so using the following technique:

139

class Address {
 Person person
 mapping = {static
 person {
 column: "FirstName"
 column: "LastName"
 }
 }
}

5.5.2.6 Database Indices
To get the best performance out of your queries it is often necessary to tailor the table index definitions. How you tailor them is domain specific
and a matter of monitoring usage patterns of your queries. With GORM's DSL you can specify which columns are used in which indexes:

class Person {
 firstNameString
 addressString
 mapping = {static
 table 'people'
 version false
 id column: 'person_id'
 firstName column: 'First_Name', index: 'Name_Idx'
 address column: 'Address', index: 'Name_Idx,Address_Index'
 }
}

Note that you cannot have any spaces in the value of the attribute; in this example willindex index:'Name_Idx, Address_Index'
cause an error.

5.5.2.7 Optimistic Locking and Versioning
As discussed in the section on , by default GORM uses optimistic locking and automatically injects a Optimistic and Pessimistic Locking

 property into every class which is in turn mapped to a column at the database level.version version

If you're mapping to a legacy schema that doesn't have version columns (or there's some other reason why you don't want/need this feature) you
can disable this with the method:version

class Person {
 …
 mapping = {static
 table 'people'
 version false
 }
}

If you disable optimistic locking you are essentially on your own with regards to concurrent updates and are open to
the risk of users losing data (due to data overriding) unless you use pessimistic locking

Version columns types

140

By default Grails maps the property as a that gets incremented by one each time an instance is updated. But Hibernate alsoversion Long
supports using a , for example:Timestamp

import java.sql.Timestamp

class Person {

…
 Timestamp version

 mapping = {static
 table 'people'
 }
}

There's a slight risk that two updates occurring at nearly the same time on a fast server can end up with the same timestamp value but this risk is
very low. One benefit of using a instead of a is that you combine the optimistic locking and last-updated semantics into aTimestamp Long
single column.

5.5.2.8 Eager and Lazy Fetching

Lazy Collections

As discussed in the section on , GORM collections are lazily loaded by default but you can change this behaviour withEager and Lazy fetching
the ORM DSL. There are several options available to you, but the most common ones are:

lazy: false

fetch: 'join'

and they're used like this:

class Person {

 firstNameString
 Pet pet

 hasMany = [addresses: Address]static

 mapping = {static
 addresses lazy: false
 pet fetch: 'join'
 }
}

class Address {
 streetString
 postCodeString
}

class Pet {
 nameString
}

141

1.

2.

The first option, , ensures that when a instance is loaded, its collection is loaded at the same time with alazy: false Person addresses
second SELECT. The second option is basically the same, except the collection is loaded with a JOIN rather than another SELECT. Typically
you want to reduce the number of queries, so is the more appropriate option. On the other hand, it could feasibly be the morefetch: 'join'
expensive approach if your domain model and data result in more and larger results than would otherwise be necessary.

For more advanced users, the other settings available are:

batchSize: N

lazy: false, batchSize: N

where N is an integer. These let you fetch results in batches, with one query per batch. As a simple example, consider this mapping for :Person

class Person {

 firstNameString
 Pet pet

 mapping = {static
 pet batchSize: 5
 }
}

If a query returns multiple instances, then when we access the first property, Hibernate will fetch that plus the four next ones.Person pet Pet
You can get the same behaviour with eager loading by combining with the option. You can find out more aboutbatchSize lazy: false
these options in the and this . Note that ORM DSL does not currently support the "subselect"Hibernate user guide primer on fetching strategies
fetching strategy.

Lazy Single-Ended Associations

In GORM, one-to-one and many-to-one associations are by default lazy. Non-lazy single ended associations can be problematic when you load
many entities because each non-lazy association will result in an extra SELECT statement. If the associated entities also have non-lazy
associations, the number of queries grows significantly!

Use the same technique as for lazy collections to make a one-to-one or many-to-one association non-lazy/eager:

class Person {
 firstNameString
}

class Address {

 streetString
 postCodeString

 belongsTo = [person: Person]static

 mapping = {static
 person lazy: false
 }
}

Here we configure GORM to load the associated instance (through the property) whenever an is loaded.Person person Address

Lazy Single-Ended Associations and Proxies

http://docs.jboss.org/hibernate/core/3.3/reference/en/html/performance.html#performance-fetching
http://community.jboss.org/wiki/AShortPrimerOnFetchingStrategies

142

Lazy Single-Ended Associations and Proxies

Hibernate uses runtime-generated proxies to facilitate single-ended lazy associations; Hibernate dynamically subclasses the entity class to create
the proxy.

Consider the previous example but with a lazily-loaded association: Hibernate will set the property to a proxy that is aperson person
subclass of . When you call any of the getters (except for the property) or setters on that proxy, Hibernate will load the entity fromPerson id
the database.

Unfortunately this technique can produce surprising results. Consider the following example classes:

class Pet {
 nameString
}

class Dog Pet {extends
}

class Person {
 nameString
 Pet pet
}

and assume that we have a single instance with a as the . The following code will work as you would expect:Person Dog pet

def person = Person.get(1)
assert person.pet Doginstanceof
assert Pet.get(person.petId) Doginstanceof

But this won't:

def person = Person.get(1)
assert person.pet Doginstanceof
assert Pet.list()[0] Doginstanceof

The second assertion fails, and to add to the confusion, this will work:

assert Pet.list()[0] Doginstanceof

What's going on here? It's down to a combination of how proxies work and the guarantees that the Hibernate session makes. When you load the
 instance, Hibernate creates a proxy for its relation and attaches it to the session. Once that happens, whenever you retrieve that Person pet

 instance with a query, a , or the relation , Hibernate gives you the proxy.Pet get() pet within the same session

Fortunately for us, GORM automatically unwraps the proxy when you use and , or when you directly access the relation.get() findBy*()
That means you don't have to worry at all about proxies in the majority of cases. But GORM doesn't do that for objects returned with a query that
returns a list, such as and . However, if Hibernate hasn't attached the proxy to the session, those queries will return thelist() findAllBy*()
real instances - hence why the last example works.

143

You can protect yourself to a degree from this problem by using the method by GORM:instanceOf

def person = Person.get(1)
assert Pet.list()[0].instanceOf(Dog)

However, it won't help here if casting is involved. For example, the following code will throw a because the first petClassCastException
in the list is a proxy instance with a class that is neither nor a sub-class of :Dog Dog

def person = Person.get(1)
Dog pet = Pet.list()[0]

Of course, it's best not to use static types in this situation. If you use an untyped variable for the pet instead, you can access any properties orDog
methods on the instance without any problems.

These days it's rare that you will come across this issue, but it's best to be aware of it just in case. At least you will know why such an error
occurs and be able to work around it.

5.5.2.9 Custom Cascade Behaviour
As described in the section on , the primary mechanism to control the way updates and deletes cascade from one association tocascading updates
another is the static property.belongsTo

However, the ORM DSL gives you complete access to Hibernate's capabilities using the attribute.transitive persistence cascade

Valid settings for the cascade attribute include:

merge - merges the state of a detached association

save-update - cascades only saves and updates to an association

delete - cascades only deletes to an association

lock - useful if a pessimistic lock should be cascaded to its associations

refresh - cascades refreshes to an association

evict - cascades evictions (equivalent to in GORM) to associations if setdiscard()

all - cascade operations to associationsall

all-delete-orphan - Applies only to one-to-many associations and indicates that when a child is removed from an association then it
should be automatically deleted. Children are also deleted when the parent is.

It is advisable to read the section in the Hibernate documentation on to obtain a bettertransitive persistence
understanding of the different cascade styles and recommendations for their usage

To specify the cascade attribute simply define one or more (comma-separated) of the aforementioned settings as its value:

http://docs.jboss.org/hibernate/stable/core/reference/en-US/html/objectstate.html#objectstate-transitive
http://docs.jboss.org/hibernate/stable/core/reference/en-US/html/objectstate.html#objectstate-transitive

144

class Person {

 firstNameString

 hasMany = [addresses: Address]static

 mapping = {static
 addresses cascade: "all-delete-orphan"
 }
}

class Address {
 streetString
 postCodeString
}

5.5.2.10 Custom Hibernate Types
You saw in an earlier section that you can use composition (with the property) to break a table into multiple objects. You canembedded
achieve a similar effect with Hibernate's custom user types. These are not domain classes themselves, but plain Java or Groovy classes. Each of
these types also has a corresponding "meta-type" class that implements .org.hibernate.usertype.UserType

The has some information on custom types, but here we will focus on how to map them in Grails. Let's start byHibernate reference manual
taking a look at a simple domain class that uses an old-fashioned (pre-Java 1.5) type-safe enum class:

class Book {

 titleString
 authorString
 Rating rating

 mapping = {static
 rating type: RatingUserType
 }
}

All we have done is declare the field the enum type and set the property's type in the custom mapping to the corresponding rating UserType
implementation. That's all you have to do to start using your custom type. If you want, you can also use the other column settings such as
"column" to change the column name and "index" to add it to an index.

Custom types aren't limited to just a single column - they can be mapped to as many columns as you want. In such cases you explicitly define in
the mapping what columns to use, since Hibernate can only use the property name for a single column. Fortunately, Grails lets you map multiple
columns to a property using this syntax:

http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/usertype/UserType.html
http://docs.jboss.org/hibernate/stable/core/reference/en-US/html/mapping.html#mapping-types-custom

145

class Book {

 titleString
 Name author
 Rating rating

 mapping = {static
 name type: NameUserType, {
 column name: "first_name"
 column name: "last_name"
 }
 rating type: RatingUserType
 }
}

The above example will create "first_name" and "last_name" columns for the property. You'll be pleased to know that you can also useauthor
some of the normal column/property mapping attributes in the column definitions. For example:

column name: , index: , unique: "first_name" "my_idx" true

The column definitions do support the following attributes: , , , , and .not type cascade lazy cache joinTable

One thing to bear in mind with custom types is that they define the for the corresponding database columns. That helps take the burdenSQL types
of configuring them yourself, but what happens if you have a legacy database that uses a different SQL type for one of the columns? In that case,
override the column's SQL type using the attribute:sqlType

class Book {

 titleString
 Name author
 Rating rating

 mapping = {static
 name type: NameUserType, {
 column name: , sqlType: "first_name" "text"
 column name: , sqlType: "last_name" "text"
 }
 rating type: RatingUserType, sqlType: "text"
 }
}

Mind you, the SQL type you specify needs to still work with the custom type. So overriding a default of "varchar" with "text" is fine, but
overriding "text" with "yes_no" isn't going to work.

5.5.2.11 Derived Properties
A derived property is one that takes its value from a SQL expression, often but not necessarily based on the value of one or more other persistent
properties. Consider a Product class like this:

class Product {
 priceFloat
 taxRateFloat
 taxFloat
}

146

If the property is derived based on the value of and properties then is probably no need to persist the property. Thetax price taxRate tax
SQL used to derive the value of a derived property may be expressed in the ORM DSL like this:

class Product {
 priceFloat
 taxRateFloat
 taxFloat

 mapping = {static
 tax formula: 'PRICE * TAX_RATE'
 }
}

Note that the formula expressed in the ORM DSL is SQL so references to other properties should relate to the persistence model not the object
model, which is why the example refers to and instead of and .PRICE TAX_RATE price taxRate

With that in place, when a Product is retrieved with something like , the SQL that is generated to support that will lookProduct.get(42)
something like this:

select
 product0_.id as id1_0_,
 product0_.version as version1_0_,
 product0_.price as price1_0_,
 product0_.tax_rate as tax4_1_0_,
 product0_.PRICE * product0_.TAX_RATE as formula1_0_
from
 product product0_
where
 product0_.id=?

Since the property is derived at runtime and not stored in the database it might seem that the same effect could be achieved by adding atax
method like to the class that simply returns the product of the and properties. With an approach likegetTax() Product taxRate price
that you would give up the ability query the database based on the value of the property. Using a derived property allows exactly that. Totax
retrieve all objects that have a value greater than 21.12 you could execute a query like this:Product tax

Product.findAllByTaxGreaterThan(21.12)

Derived properties may be referenced in the Criteria API:

Product.withCriteria {
 gt 'tax', 21.12f
}

The SQL that is generated to support either of those would look something like this:

147

select
 this_.id as id1_0_,
 this_.version as version1_0_,
 this_.price as price1_0_,
 this_.tax_rate as tax4_1_0_,
 this_.PRICE * this_.TAX_RATE as formula1_0_
from
 product this_
where
 this_.PRICE * this_.TAX_RATE>?

Because the value of a derived property is generated in the database and depends on the execution of SQL code,
derived properties may not have GORM constraints applied to them. If constraints are specified for a derived
property, they will be ignored.

5.5.2.12 Custom Naming Strategy
By default Grails uses Hibernate's to convert domain class Class and field names to SQL table and columnImprovedNamingStrategy
names by converting from camel-cased Strings to ones that use underscores as word separators. You can customize these on a per-instance basis
in the closure but if there's a consistent pattern you can specify a different class to use.mapping NamingStrategy

Configure the class name to be used in in the section, e.g.grails-app/conf/DataSource.groovy hibernate

dataSource {
 pooled = true
 dbCreate = "create-drop"
 …
}

hibernate {
 cache.use_second_level_cache = true
 …
 naming_strategy = com.myco.myproj.CustomNamingStrategy
}

You can use an existing class or write your own, for example one that prefixes table names and column names:

package com.myco.myproj

 org.hibernate.cfg.ImprovedNamingStrategyimport
 org.hibernate.util.StringHelperimport

class CustomNamingStrategy ImprovedNamingStrategy {extends

 classToTableName(className) {String String
 + StringHelper.unqualify(className)"table_"
 }

 propertyToColumnName(propertyName) {String String
 + StringHelper.unqualify(propertyName)"col_"
 }
}

5.5.3 Default Sort Order

148

You can sort objects using query arguments such as those found in the method:list

def airports = Airport.list(sort:'name')

However, you can also declare the default sort order for a collection in the mapping:

class Airport {
 …
 mapping = {static
 sort "name"
 }
}

The above means that all collections of s will by default be sorted by the airport name. If you also want to change the sort , useAirport order
this syntax:

class Airport {
 …
 mapping = {static
 sort name: "desc"
 }
}

Finally, you can configure sorting at the association level:

class Airport {
 …
 hasMany = [flights: Flight]static

 mapping = {static
 flights sort: 'number', order: 'desc'
 }
}

In this case, the collection will always be sorted in descending order of flight number.flights

These mappings will not work for default unidirectional one-to-many or many-to-many relationships because they
involve a join table. See for more details. Consider using a or queries with sort parameters tothis issue SortedSet
fetch the data you need.

5.6 Programmatic Transactions
Grails is built on Spring and uses Spring's Transaction abstraction for dealing with programmatic transactions. However, GORM classes have
been enhanced to make this simpler with the method. This method has a single parameter, a Closure, which has a singlewithTransaction
parameter which is a Spring instance.TransactionStatus

Here's an example of using in a controller methods:withTransaction

http://jira.codehaus.org/browse/GRAILS-4089
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/transaction/TransactionStatus.html

149

def transferFunds() {
 Account.withTransaction { status ->
 def source = Account.get(params.from)
 def dest = Account.get(params.to)

def amount = params.amount.toInteger()
 (source.active) {if
 (dest.active) {if
 source.balance -= amount
 dest.amount += amount
 }
 {else
 status.setRollbackOnly()
 }
 }
 }
}

In this example we rollback the transaction if the destination account is not active. Also, if an unchecked or (but not aException Error
checked , even though Groovy doesn't require that you catch checked exceptions) is thrown during the process the transaction willException
automatically be rolled back.

You can also use "save points" to rollback a transaction to a particular point in time if you don't want to rollback the entire transaction. This can
be achieved through the use of Spring's interface.SavePointManager

The method deals with the begin/commit/rollback logic for you within the scope of the block. withTransaction

5.7 GORM and Constraints
Although constraints are covered in the section, it is important to mention them here as some of the constraints can affect the way inValidation
which the database schema is generated.

Where feasible, Grails uses a domain class's constraints to influence the database columns generated for the corresponding domain class
properties.

Consider the following example. Suppose we have a domain model with the following properties:

String name
 descriptionString

By default, in MySQL, Grails would define these columns as

Column Data Type

name varchar(255)

description varchar(255)

But perhaps the business rules for this domain class state that a description can be up to 1000 characters in length. If that were the case, we would
likely define the column as follows we were creating the table with an SQL script.if

Column Data Type

description TEXT

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/transaction/SavepointManager.html

150

Chances are we would also want to have some application-based validation to make sure we don't exceed that 1000 character limit webefore
persist any records. In Grails, we achieve this validation with . We would add the following constraint declaration to the domain class.constraints

static constraints = {
 description maxSize: 1000
}

This constraint would provide both the application-based validation we want and it would also cause the schema to be generated as shown above.
Below is a description of the other constraints that influence schema generation.

Constraints Affecting String Properties

inList

maxSize

size

If either the or the constraint is defined, Grails sets the maximum column length based on the constraint value.maxSize size

In general, it's not advisable to use both constraints on the same domain class property. However, if both the constraint and the maxSize size
constraint are defined, then Grails sets the column length to the minimum of the constraint and the upper bound of the size constraint.maxSize
(Grails uses the minimum of the two, because any length that exceeds that minimum will result in a validation error.)

If the constraint is defined (and the and the constraints are not defined), then Grails sets the maximum column lengthinList maxSize size
based on the length of the longest string in the list of valid values. For example, given a list including values "Java", "Groovy", and "C++", Grails
would set the column length to 6 (i.e., the number of characters in the string "Groovy").

Constraints Affecting Numeric Properties

min

max

range

If the , , or constraint is defined, Grails attempts to set the column precision based on the constraint value. (The success of thismax min range
attempted influence is largely dependent on how Hibernate interacts with the underlying DBMS.)

In general, it's not advisable to combine the pair / and constraints together on the same domain class property. However, if bothmin max range
of these constraints is defined, then Grails uses the minimum precision value from the constraints. (Grails uses the minimum of the two, because
any length that exceeds that minimum precision will result in a validation error.)

scale

If the scale constraint is defined, then Grails attempts to set the column based on the constraint value. This rule only applies to floatingscale
point numbers (i.e., , , , or subclasses of java.lang.Float java.Lang.Double java.lang.BigDecimal

). The success of this attempted influence is largely dependent on how Hibernate interacts with the underlyingjava.lang.BigDecimal
DBMS.

The constraints define the minimum/maximum numeric values, and Grails derives the maximum number of digits for use in the precision. Keep
in mind that specifying only one of / constraints will not affect schema generation (since there could be large negative value of propertymin max
with max:100, for example), unless the specified constraint value requires more digits than default Hibernate column precision is (19 at the
moment). For example:

151

someFloatValue max: 1000000, scale: 3

would yield:

someFloatValue DECIMAL(19, 3) // precision is default

but

someFloatValue max: 12345678901234567890, scale: 5

would yield:

someFloatValue DECIMAL(25, 5) // precision = digits in max + scale

and

someFloatValue max: 100, min: -100000

would yield:

someFloatValue DECIMAL(8, 2) // precision = digits in min + scaledefault

152

6 The Web Layer

6.1 Controllers
A controller handles requests and creates or prepares the response. A controller can generate the response directly or delegate to a view. To create
a controller, simply create a class whose name ends with in the directory (in a subdirectory if it'sController grails-app/controllers
in a package).

The default configuration ensures that the first part of your controller name is mapped to a URI and each action defined withinURL Mapping
your controller maps to URIs within the controller name URI.

6.1.1 Understanding Controllers and Actions

Creating a controller

Controllers can be created with the or command. For example try running the following command from thecreate-controller generate-controller
root of a Grails project:

grails create-controller book

The command will create a controller at the location :grails-app/controllers/myapp/BookController.groovy

package myapp

class BookController {

def index() { }
}

where "myapp" will be the name of your application, the default package name if one isn't specified.

 by default maps to the /book URI (relative to your application root).BookController

The and commands are just for convenience and you can justcreate-controller generate-controller
as easily create controllers using your favorite text editor or IDE

Creating Actions

A controller can have multiple public action methods; each one maps to a URI:

153

class BookController {

def list() {

// controller logicdo
 // create model

 modelreturn
 }
}

This example maps to the URI by default thanks to the property being named ./book/list list

Public Methods as Actions

In earlier versions of Grails actions were implemented with Closures. This is still supported, but the preferred approach is to use methods.

Leveraging methods instead of Closure properties has some advantages:

Memory efficient

Allow use of stateless controllers (scope)singleton

You can override actions from subclasses and call the overridden superclass method with super.actionName()

Methods can be intercepted with standard proxying mechanisms, something that is complicated to do with Closures since they're fields.

If you prefer the Closure syntax or have older controller classes created in earlier versions of Grails and still want the advantages of using
methods, you can set the property to true in :grails.compile.artefacts.closures.convert BuildConfig.groovy

grails.compile.artefacts.closures.convert = true

and a compile-time AST transformation will convert your Closures to methods in the generated bytecode.

If a controller class extends some other class which is not defined under the grails-app/controllers/
directory, methods inherited from that class are not converted to controller actions. If the intent is to expose those
inherited methods as controller actions the methods may be overridden in the subclass and the subclass method may
invoke the method in the super class.

The Default Action

A controller has the concept of a default URI that maps to the root URI of the controller, for example for . The/book BookController
action that is called when the default URI is requested is dictated by the following rules:

If there is only one action, it's the default

If you have an action named , it's the defaultindex

Alternatively you can set it explicitly with the property:defaultAction

154

static defaultAction = "list"

6.1.2 Controllers and Scopes

Available Scopes

Scopes are hash-like objects where you can store variables. The following scopes are available to controllers:

servletContext - Also known as application scope, this scope lets you share state across the entire web application. The servletContext is an
instance of ServletContext

session - The session allows associating state with a given user and typically uses cookies to associate a session with a client. The session
object is an instance of HttpSession

request - The request object allows the storage of objects for the current request only. The request object is an instance of
HttpServletRequest

params - Mutable map of incoming request query string or POST parameters

flash - See below

Accessing Scopes

Scopes can be accessed using the variable names above in combination with Groovy's array index operator, even on classes provided by the
Servlet API such as the :HttpServletRequest

class BookController {
 def find() {
 def findBy = params[]"findBy"
 def appContext = request[]"foo"
 def loggedUser = session[]"logged_user"
 }
}

You can also access values within scopes using the de-reference operator, making the syntax even more clear:

class BookController {
 def find() {
 def findBy = params.findBy
 def appContext = request.foo
 def loggedUser = session.logged_user
 }
}

This is one of the ways that Grails unifies access to the different scopes.

Using Flash Scope

Grails supports the concept of scope as a temporary store to make attributes available for this request and the next request only. Afterwardsflash
the attributes are cleared. This is useful for setting a message directly before redirecting, for example:

http://download.oracle.com/javaee/1.4/api/javax/servlet/ServletContext.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpSession.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServletRequest.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServletRequest.html

155

def delete() {
 def b = Book.get(params.id)
 (!b) {if
 flash.message = "User not found id ${params.id}"for
 redirect(action:list)
 }
 … // remaining code
}

When the action is requested, the value will be in scope and can be used to display an information message. It will be removedlist message
from the scope after this second request.flash

Note that the attribute name can be anything you want, and the values are often strings used to display messages, but can be any object type.

Scoped Controllers

By default, a new controller instance is created for each request. In fact, because the controller is scoped, it is thread-safe sinceprototype
each request happens on its own thread.

You can change this behaviour by placing a controller in a particular scope. The supported scopes are:

prototype (default) - A new controller will be created for each request (recommended for actions as Closure properties)

session - One controller is created for the scope of a user session

singleton - Only one instance of the controller ever exists (recommended for actions as methods)

To enable one of the scopes, add a static property to your class with one of the valid scope values listed above, for examplescope

static scope = "singleton"

You can define the default strategy under in with the key, for example:Config.groovy grails.controllers.defaultScope

grails.controllers.defaultScope = "singleton"

Use scoped controllers wisely. For instance, we don't recommend having any properties in a singleton-scoped
controller since they will be shared for requests. Setting a default scope other than may also lead toall prototype
unexpected behaviors if you have controllers provided by installed plugins that expect that the scope is

.prototype

6.1.3 Models and Views

Returning the Model

A model is a Map that the view uses when rendering. The keys within that Map correspond to variable names accessible by the view. There are a
couple of ways to return a model. First, you can explicitly return a Map instance:

156

def show() {
 [book: Book.get(params.id)]
}

The above does reflect what you should use with the scaffolding views - see the for morenot scaffolding section
details.

If no explicit model is returned the controller's properties will be used as the model, thus allowing you to write code like this:

class BookController {

List books
 List authors

def list() {
 books = Book.list()
 authors = Author.list()
 }
}

This is possible due to the fact that controllers are prototype scoped. In other words a new controller is created for
each request. Otherwise code such as the above would not be thread-safe, and all users would share the same data.

In the above example the and properties will be available in the view.books authors

A more advanced approach is to return an instance of the Spring class:ModelAndView

import org.springframework.web.servlet.ModelAndView

def index() {
 // get some books just the index page, perhaps your favoritesfor
 def favoriteBooks = ...

// forward to the list view to show them
 ModelAndView(, [bookList : favoriteBooks])return new "/book/list"
}

One thing to bear in mind is that certain variable names can not be used in your model:

attributes

application

Currently, no error will be reported if you do use them, but this will hopefully change in a future version of Grails.

Selecting the View

In both of the previous two examples there was no code that specified which to render. So how does Grails know which one to pick? Theview
answer lies in the conventions. Grails will look for a view at the location for this action:grails-app/views/book/show.gsp list

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/servlet/ModelAndView.html

157

class BookController {
 def show() {
 [book: Book.get(params.id)]
 }
}

To render a different view, use the method:render

def show() {
 def map = [book: Book.get(params.id)]
 render(view: , model: map)"display"
}

In this case Grails will attempt to render a view at the location . Notice that Grails automaticallygrails-app/views/book/display.gsp
qualifies the view location with the directory of the directory. This is convenient, but to access shared views youbook grails-app/views
need instead you can use an absolute path instead of a relative one:

def show() {
 def map = [book: Book.get(params.id)]
 render(view: , model: map)"/shared/display"
}

In this case Grails will attempt to render a view at the location .grails-app/views/shared/display.gsp

Grails also supports JSPs as views, so if a GSP isn't found in the expected location but a JSP is, it will be used instead.

Rendering a Response

Sometimes it's easier (for example with Ajax applications) to render snippets of text or code to the response directly from the controller. For this,
the highly flexible method can be used:render

render "Hello World!"

The above code writes the text "Hello World!" to the response. Other examples include:

// write some markup
render {
 (b in books) {for
 div(id: b.id, b.title)
 }
}

// render a specific view
render(view: 'show')

158

// render a template each item in a collectionfor
render(template: 'book_template', collection: Book.list())

// render some text with encoding and content type
render(text: , contentType: , encoding:)"<xml>some xml</xml>" "text/xml" "UTF-8"

If you plan on using Groovy's to generate HTML for use with the method be careful of naming clashes betweenMarkupBuilder render
HTML elements and Grails tags, for example:

import groovy.xml.MarkupBuilder
…
def login() {
 def writer = StringWriter()new
 def builder = MarkupBuilder(writer)new
 builder.html {
 head {
 title 'Log in'
 }
 body {
 h1 'Hello'
 form {
 }
 }
 }

def html = writer.toString()
 render html
}

This will actually (which will return some text that will be ignored by the). To correctly output a call the form tag MarkupBuilder <form>
element, use the following:

def login() {
 // …
 body {
 h1 'Hello'
 builder.form {
 }
 }
 // …
}

6.1.4 Redirects and Chaining

Redirects

Actions can be redirected using the controller method:redirect

159

class OverviewController {

def login() {}

def find() {
 (!session.user)if
 redirect(action: 'login')
 return
 }
 …
 }
}

Internally the method uses the object's method.redirect HttpServletResponse sendRedirect

The method expects one of:redirect

Another closure within the same controller class:

// Call the login action within the same class
redirect(action: login)

The name of an action (and controller name if the redirect isn't to an action in the current controller):

// Also redirects to the index action in the home controller
redirect(controller: 'home', action: 'index')

A URI for a resource relative the application context path:

// Redirect to an explicit URI
redirect(uri:)"/login.html"

Or a full URL:

// Redirect to a URL
redirect(url:)"http://grails.org"

Parameters can optionally be passed from one action to the next using the argument of the method:params

redirect(action: 'myaction', params: [myparam:])"myvalue"

These parameters are made available through the dynamic property that accesses request parameters. If a parameter is specified with theparams
same name as a request parameter, the request parameter is overridden and the controller parameter is used.

Since the object is a Map, you can use it to pass the current request parameters from one action to the next:params

http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServletResponse.html

160

redirect(action: , params: params)"next"

Finally, you can also include a fragment in the target URI:

redirect(controller: , action: , fragment:)"test" "show" "profile"

which will (depending on the URL mappings) redirect to something like "/myapp/test/show#profile".

Chaining

Actions can also be chained. Chaining allows the model to be retained from one action to the next. For example calling the action in thisfirst
action:

class ExampleChainController {

def first() {
 chain(action: second, model: [one: 1])
 }

def second () {
 chain(action: third, model: [two: 2])
 }

def third() {
 [three: 3])
 }
}

results in the model:

[one: 1, two: 2, three: 3]

The model can be accessed in subsequent controller actions in the chain using the map. This dynamic property only exists inchainModel
actions following the call to the method:chain

class ChainController {

def nextInChain() {
 def model = chainModel.myModel
 …
 }
}

Like the method you can also pass parameters to the method:redirect chain

chain(action: , model: [one: 1], params: [myparam:])"action1" "param1"

161

6.1.5 Controller Interceptors
Often it is useful to intercept processing based on either request, session or application state. This can be achieved with action interceptors. There
are currently two types of interceptors: before and after.

If your interceptor is likely to apply to more than one controller, you are almost certainly better off writing a .Filter
Filters can be applied to multiple controllers or URIs without the need to change the logic of each controller

Before Interception

The intercepts processing before the action is executed. If it returns then the intercepted action will not bebeforeInterceptor false
executed. The interceptor can be defined for all actions in a controller as follows:

def beforeInterceptor = {
 println "Tracing action ${actionUri}"
}

The above is declared inside the body of the controller definition. It will be executed before all actions and does not interfere with processing. A
common use case is very simplistic authentication:

def beforeInterceptor = [action: .&auth, except: 'login']this

// defined with scope, so it's not considered an actionprivate
 auth() {private

 (!session.user) {if
 redirect(action: 'login')
 return false
 }
}

def login() {
 // display login page
}

The above code defines a method called . A private method is used so that it is not exposed as an action to the outside world. The auth
 then defines an interceptor that is used on all actions the login action and it executes the method. The beforeInterceptor except auth

 method is referenced using Groovy's method pointer syntax. Within the method it detects whether there is a user in the session, and if not itauth
redirects to the action and returns , causing the intercepted action to not be processed.login false

After Interception

Use the property to define an interceptor that is executed after an action:afterInterceptor

def afterInterceptor = { model ->
 println "Tracing action ${actionUri}"
}

The after interceptor takes the resulting model as an argument and can hence manipulate the model or response.

162

An after interceptor may also modify the Spring MVC object prior to rendering. In this case, the above example becomes:ModelAndView

def afterInterceptor = { model, modelAndView ->
 println "Current view is ${modelAndView.viewName}"
 (model.someVar) modelAndView.viewName = if "/mycontroller/someotherview"
 println "View is now ${modelAndView.viewName}"
}

This allows the view to be changed based on the model returned by the current action. Note that the may be if the actionmodelAndView null
being intercepted called or .redirect render

Interception Conditions

Rails users will be familiar with the authentication example and how the 'except' condition was used when executing the interceptor (interceptors
are called 'filters' in Rails; this terminology conflicts with Servlet filter terminology in Java):

def beforeInterceptor = [action: .&auth, except: 'login']this

This executes the interceptor for all actions except the specified action. A list of actions can also be defined as follows:

def beforeInterceptor = [action: .&auth, except: ['login', 'register']]this

The other supported condition is 'only', this executes the interceptor for only the specified action(s):

def beforeInterceptor = [action: .&auth, only: ['secure']]this

6.1.6 Data Binding
Data binding is the act of "binding" incoming request parameters onto the properties of an object or an entire graph of objects. Data binding
should deal with all necessary type conversion since request parameters, which are typically delivered by a form submission, are always strings
whilst the properties of a Groovy or Java object may well not be.

Grails uses 's underlying data binding capability to perform data binding.Spring

Binding Request Data to the Model

There are two ways to bind request parameters onto the properties of a domain class. The first involves using a domain classes' Map constructor:

def save() {
 def b = Book(params)new
 b.save()
}

The data binding happens within the code . By passing the object to the domain class constructor Grailsnew Book(params) params
automatically recognizes that you are trying to bind from request parameters. So if we had an incoming request like:

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/servlet/ModelAndView.html
http://www.springframework.org

163

/book/save?title=The%20Stand&author=Stephen%20King

Then the and request parameters would automatically be set on the domain class. You can use the property totitle author properties
perform data binding onto an existing instance:

def save() {
 def b = Book.get(params.id)
 b.properties = params
 b.save()
}

This has the same effect as using the implicit constructor.

Data binding and Single-ended Associations

If you have a or association you can use Grails' data binding capability to update these relationships too. Forone-to-one many-to-one
example if you have an incoming request such as:

/book/save?author.id=20

Grails will automatically detect the suffix on the request parameter and look up the instance for the given id when doing data.id Author
binding such as:

def b = Book(params)new

An association property can be set to by passing the literal "null". For example:null String

/book/save?author.id=null

Data Binding and Many-ended Associations

If you have a one-to-many or many-to-many association there are different techniques for data binding depending of the association type.

If you have a based association (the default for a) then the simplest way to populate an association is to send a list of identifiers.Set hasMany
For example consider the usage of below:<g:select>

<g:select name="books"
 from="${Book.list()}"
 size= multiple= optionKey="5" "yes" "id"
 value= />"${author?.books}"

This produces a select box that lets you select multiple values. In this case if you submit the form Grails will automatically use the identifiers
from the select box to populate the association.books

164

However, if you have a scenario where you want to update the properties of the associated objects the this technique won't work. Instead you use
the subscript operator:

<g:textField name= value= />"books[0].title" "the Stand"
<g:textField name= value= />"books[1].title" "the Shining"

However, with based association it is critical that you render the mark-up in the same order that you plan to do the update in. This is becauseSet
a has no concept of order, so although we're referring to and it is not guaranteed that the order of the association will beSet books0 books1
correct on the server side unless you apply some explicit sorting yourself.

This is not a problem if you use based associations, since a has a defined order and an index you can refer to. This is also true of List List
 based associations.Map

Note also that if the association you are binding to has a size of two and you refer to an element that is outside the size of association:

<g:textField name= value= />"books[0].title" "the Stand"
<g:textField name= value= />"books[1].title" "the Shining"
<g:textField name= value= />"books[2].title" "Red Madder"

Then Grails will automatically create a new instance for you at the defined position. If you "skipped" a few elements in the middle:

<g:textField name= value= />"books[0].title" "the Stand"
<g:textField name= value= />"books[1].title" "the Shining"
<g:textField name= value= />"books[5].title" "Red Madder"

Then Grails will automatically create instances in between. For example in the above case Grails will create 4 additional instances if the
association being bound had a size of 2.

You can bind existing instances of the associated type to a using the same syntax as you would use with a single-ended association.List .id
For example:

<g:select name= from="books[0].id" "${bookList}"
 value= />"${author?.books[0]?.id}"

<g:select name= from="books[1].id" "${bookList}"
 value= />"${author?.books[1]?.id}"

<g:select name= from="books[2].id" "${bookList}"
 value= />"${author?.books[2]?.id}"

Would allow individual entries in the to be selected separately.books List

Entries at particular indexes can be removed in the same way too. For example:

<g:select name="books[0].id"
 from="${Book.list()}"
 value="${author?.books[0]?.id}"
 noSelection= />"['null': '']"

165

Will render a select box that will remove the association at if the empty option is chosen.books0

Binding to a property works the same way except that the list index in the parameter name is replaced by the map key:Map

<g:select name="images[cover].id"
 from="${Image.list()}"
 value="${book?.images[cover]?.id}"
 noSelection= />"['null': '']"

This would bind the selected image into the property under a key of .Map images "cover"

Data binding with Multiple domain classes

It is possible to bind data to multiple domain objects from the object.params

For example so you have an incoming request to:

/book/save?book.title=The%20Stand&author.name=Stephen%20King

You'll notice the difference with the above request is that each parameter has a prefix such as or which is used to isolate whichauthor. book.
parameters belong to which type. Grails' object is like a multi-dimensional hash and you can index into it to isolate only a subset of theparams
parameters to bind.

def b = Book(params.book)new

Notice how we use the prefix before the first dot of the parameter to isolate only parameters below this level to bind. We could dobook.title
the same with an domain class:Author

def a = Author(params.author)new

Data Binding and Action Arguments

Controller action arguments are subject to request parameter data binding. There are 2 categories of controller action arguments. The first
category is command objects. Complex types are treated as command objects. See the section of the user guide for details.Command Objects
The other category is basic object types. Supported types are the 8 primitives, their corresponding type wrappers and . The defaultjava.lang.String
behavior is to map request parameters to action arguments by name:

class AccountingController {

// accountNumber will be initialized with the value of params.accountNumber
 // accountType will be initialized with params.accountType
 def displayInvoice(accountNumber, accountType) {String int
 // …
 }
}

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/String.html

166

For primitive arguments and arguments which are instances of any of the primitive type wrapper classes a type conversion has to be carried out
before the request parameter value can be bound to the action argument. The type conversion happens automatically. In a case like the example
shown above, the request parameter has to be converted to an . If type conversion fails for any reason, theparams.accountType int
argument will have its default value per normal Java behavior (null for type wrapper references, false for booleans and zero for numbers) and a
corresponding error will be added to the property of the defining controller.errors

/accounting/displayInvoice?accountNumber=B59786&accountType=bogusValue

Since "bogusValue" cannot be converted to type int, the value of accountType will be zero, will becontroller.errors.hasErrors()
true, will be equal to 1 and willcontroller.errors.errorCount controller.errors.getFieldError('accountType')
contain the corresponding error.

If the argument name does not match the name of the request parameter then the annotation may be@grails.web.RequestParameter
applied to an argument to express the name of the request parameter which should be bound to that argument:

import grails.web.RequestParameter

class AccountingController {

// mainAccountNumber will be initialized with the value of params.accountNumber
 // accountType will be initialized with params.accountType
 def displayInvoice(@RequestParameter('accountNumber') mainAccountNumber, accountType) {String int
 // …
 }
}

Data binding and type conversion errors

Sometimes when performing data binding it is not possible to convert a particular String into a particular target type. This results in a type
conversion error. Grails will retain type conversion errors inside the property of a Grails domain class. For example:errors

class Book {
 …
 URL publisherURL
}

Here we have a domain class that uses the class to represent URLs. Given an incoming request such as:Book java.net.URL

/book/save?publisherURL=a-bad-url

it is not possible to bind the string to the property as a type mismatch error occurs. You can check for these likea-bad-url publisherURL
this:

def b = Book(params)new

 (b.hasErrors()) {if
 println +"The value ${b.errors.getFieldError('publisherURL').rejectedValue}"
 " is not a valid URL!"
}

167

Although we have not yet covered error codes (for more information see the section on), for type conversion errors you would want aValidation
message from the file to use for the error. You can use a generic error message handler suchgrails-app/i18n/messages.properties
as:

typeMismatch.java.net.URL=The field {0} is not a valid URL

Or a more specific one:

typeMismatch.Book.publisherURL=The publisher URL you specified is not a valid URL

Data Binding and Security concerns

When batch updating properties from request parameters you need to be careful not to allow clients to bind malicious data to domain classes and
be persisted in the database. You can limit what properties are bound to a given domain class using the subscript operator:

def p = Person.get(1)

p.properties['firstName','lastName'] = params

In this case only the and properties will be bound.firstName lastName

Another way to do this is is to use as the target of data binding instead of domain classes. Alternatively there is also theCommand Objects
flexible method.bindData

The method allows the same data binding capability, but to arbitrary objects:bindData

def p = Person()new
bindData(p, params)

The method also lets you exclude certain parameters that you don't want updated:bindData

def p = Person()new
bindData(p, params, [exclude: 'dateOfBirth'])

Or include only certain properties:

def p = Person()new
bindData(p, params, [include: ['firstName', 'lastName]])

Note that if an empty List is provided as a value for the parameter then all fields will be subject toinclude
binding if they are not explicitly excluded.

168

6.1.7 XML and JSON Responses

Using the render method to output XML

Grails supports a few different ways to produce XML and JSON responses. The first is the method.render

The method can be passed a block of code to do mark-up building in XML:render

def list() {

def results = Book.list()

render(contentType:) {"text/xml"
 books {
 (b in results) {for
 book(title: b.title)
 }
 }
 }
}

The result of this code would be something like:

<books>
 <book title= />"The Stand"
 <book title= />"The Shining"
</books>

Be careful to avoid naming conflicts when using mark-up building. For example this code would produce an error:

def list() {

def books = Book.list() // naming conflict here

render(contentType:) {"text/xml"
 books {
 (b in results) {for
 book(title: b.title)
 }
 }
 }
}

This is because there is local variable which Groovy attempts to invoke as a method.books

Using the render method to output JSON

The method can also be used to output JSON:render

169

def list() {

def results = Book.list()

render(contentType:) {"text/json"
 books = array {
 (b in results) {for
 book title: b.title
 }
 }
 }
}

In this case the result would be something along the lines of:

[
 {title: },"The Stand"
 {title: }"The Shining"
]

The same dangers with naming conflicts described above for XML also apply to JSON building.

Automatic XML Marshalling

Grails also supports automatic marshalling of to XML using special converters.domain classes

To start off with, import the package into your controller:grails.converters

import grails.converters.*

Now you can use the following highly readable syntax to automatically convert domain classes to XML:

render Book.list() as XML

The resulting output would look something like the following::

<?xml version= encoding= ?>"1.0" "ISO-8859-1"
<list>
 <book id= >"1"
 <author>Stephen King</author>
 <title>The Stand</title>
 </book>
 <book id= >"2"
 <author>Stephen King</author>
 <title>The Shining</title>
 </book>
</list>

An alternative to using the converters is to use the feature of Grails. The codecs feature provides and codecs encodeAsXML encodeAsJSON
methods:

170

def xml = Book.list().encodeAsXML()
render xml

For more information on XML marshalling see the section on REST

Automatic JSON Marshalling

Grails also supports automatic marshalling to JSON using the same mechanism. Simply substitute with :XML JSON

render Book.list() as JSON

The resulting output would look something like the following:

[
 { :1,"id"
 : ,"class" "Book"
 : ,"author" "Stephen King"
 : },"title" "The Stand"
 { :2,"id"
 : ,"class" "Book"
 : ,"author" "Stephen King"
 : Date(1194127343161),"releaseDate" new
 : }"title" "The Shining"
]

Again as an alternative you can use the to achieve the same effect. encodeAsJSON

6.1.8 More on JSONBuilder
The previous section on on XML and JSON responses covered simplistic examples of rendering XML and JSON responses. Whilst the XML
builder used by Grails is the standard found in Groovy, the JSON builder is a custom implementation specific to Grails.XmlSlurper

JSONBuilder and Grails versions

JSONBuilder behaves different depending on the version of Grails you use. For version below 1.2 the deprecated classgrails.web.JSONBuilder
is used. This section covers the usage of the Grails 1.2 JSONBuilder

For backwards compatibility the old class is used with the method for older applications; to use the newer/better JSONBuilder render
 class set the following in :JSONBuilder Config.groovy

grails.json.legacy.builder = false

Rendering Simple Objects

To render a simple JSON object just set properties within the context of the Closure:

http://groovy.codehaus.org/Reading+XML+using+Groovy's+XmlSlurper

171

render(contentType:) {"text/json"
 hello = "world"
}

The above will produce the JSON:

{ : }"hello" "world"

Rendering JSON Arrays

To render a list of objects simple assign a list:

render(contentType:) {"text/json"
 categories = ['a', 'b', 'c']
}

This will produce:

{ :[, ,]}"categories" "a" "b" "c"

You can also render lists of complex objects, for example:

render(contentType:) {"text/json"
 categories = [{ a = }, { b = }]"A" "B"
}

This will produce:

{ :[{ : } , { : }] }"categories" "a" "A" "b" "B"

Use the special method to return a list as the root:element

render(contentType:) {"text/json"
 element 1
 element 2
 element 3
}

The above code produces:

[1,2,3]

172

Rendering Complex Objects

Rendering complex objects can be done with Closures. For example:

render(contentType:) {"text/json"
 categories = ['a', 'b', 'c']
 title = "Hello JSON"
 information = {
 pages = 10
 }
}

The above will produce the JSON:

{ :[, ,], : , :{ :10}}"categories" "a" "b" "c" "title" "Hello JSON" "information" "pages"

Arrays of Complex Objects

As mentioned previously you can nest complex objects within arrays using Closures:

render(contentType:) {"text/json"
 categories = [{ a = }, { b = }]"A" "B"
}

You can use the method to build them up dynamically:array

def results = Book.list()
render(contentType:) {"text/json"
 books = array {
 (b in results) {for
 book title: b.title
 }
 }
}

Direct JSONBuilder API Access

If you don't have access to the method, but still want to produce JSON you can use the API directly:render

173

def builder = JSONBuilder()new

def result = builder.build {
 categories = ['a', 'b', 'c']
 title = "Hello JSON"
 information = {
 pages = 10
 }
}

// prints the JSON text
println result.toString()

def sw = StringWriter()new
result.render sw

6.1.9 Uploading Files

Programmatic File Uploads

Grails supports file uploads using Spring's interface. The first step for file uploading is to create a multipart formMultipartHttpServletRequest
like this:

Upload Form:

 <g:uploadForm action= >"upload"
 <input type= name= />"file" "myFile"
 <input type= />"submit"
 </g:uploadForm>

The tag conveniently adds the attribute to the standard tag.uploadForm enctype="multipart/form-data" <g:form>

There are then a number of ways to handle the file upload. One is to work with the Spring instance directly:MultipartFile

def upload() {
 def f = request.getFile('myFile')
 (f.empty) {if
 flash.message = 'file cannot be empty'
 render(view: 'uploadForm')
 return
 }

f.transferTo(File('/some/local/dir/myfile.txt'))new
 response.sendError(200, 'Done')
}

This is convenient for doing transfers to other destinations and manipulating the file directly as you can obtain an and so on withInputStream
the interface.MultipartFile

File Uploads through Data Binding

File uploads can also be performed using data binding. Consider this domain class:Image

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/multipart/MultipartHttpServletRequest.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/multipart/MultipartFile.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/multipart/MultipartFile.html

174

class Image {
 [] myFilebyte

 constraints = {static
 // Limit upload file size to 2MB
 myFile maxSize: 1024 * 1024 * 2
 }
}

If you create an image using the object in the constructor as in the example below, Grails will automatically bind the file's contents as a params
 to the property:byte myFile

def img = Image(params)new

It's important that you set the or constraints, otherwise your database may be created with a small column size that can't handlesize maxSize
reasonably sized files. For example, both H2 and MySQL default to a blob size of 255 bytes for properties.byte

It is also possible to set the contents of the file as a string by changing the type of the property on the image to a String type:myFile

class Image {
 myFileString
}

6.1.10 Command Objects
Grails controllers support the concept of command objects. A command object is similar to a form bean in a framework like Struts, and they are
useful for populating a subset of the properties needed to update a domain class. Or where there is no domain class required for the interaction,
but you need features such as and .data binding validation

Declaring Command Objects

Command objects are typically declared in the same source file as a controller, directly below the controller class definition. For example:

class UserController {
 …
}

class LoginCommand {
 usernameString
 passwordString

 constraints = {static
 username(blank: , minSize: 6)false
 password(blank: , minSize: 6)false
 }
}

As this example shows, you can define in command objects just like in .constraints domain classes

Using Command Objects

175

To use command objects, controller actions may optionally specify any number of command object parameters. The parameter types must be
supplied so that Grails knows what objects to create, populate and validate.

Before the controller action is executed Grails will automatically create an instance of the command object class, populate its properties with by
binding the request parameters, and validate the command object. For example:

class LoginController {

def login = { LoginCommand cmd ->
 (cmd.hasErrors()) {if
 redirect(action: 'loginForm')
 return
 }

// work with the command object data
 }
}

When using methods instead of Closures for actions, you can specify command objects in arguments:

class LoginController {
 def login(LoginCommand cmd) {
 (cmd.hasErrors()) {if
 redirect(action: 'loginForm')
 return
 }

// work with the command object data
 }
}

Command Objects and Dependency Injection

Command objects can participate in dependency injection. This is useful if your command object has some custom validation logic uses Grails
:services

class LoginCommand {

def loginService

 usernameString
 passwordString

 constraints = {static
 username validator: { val, obj ->
 obj.loginService.canLogin(obj.username, obj.password)
 }
 }
}

In this example the command object interacts with the bean which is injected by name from the Spring loginService
. ApplicationContext

6.1.11 Handling Duplicate Form Submissions
Grails has built-in support for handling duplicate form submissions using the "Synchronizer Token Pattern". To get started you define a token on
the tag:form

176

<g:form useToken= ...>"true"

Then in your controller code you can use the method to handle valid and invalid requests:withForm

withForm {
 // good request
}.invalidToken {
 // bad request
}

If you only provide the method and not the chained method then by default Grails will store the invalid token in a withForm invalidToken
 variable and redirect the request back to the original page. This can then be checked in the view:flash.invalidToken

<g:if test= >"${flash.invalidToken}"
 Don't click the button twice!
</g:if>

The tag makes use of the and hence requires session affinity or clustered sessions if used in awithForm session
cluster.

6.1.12 Simple Type Converters

Type Conversion Methods

If you prefer to avoid the overhead of and simply want to convert incoming parameters (typically Strings) into another moreData Binding
appropriate type the object has a number of convenience methods for each type:params

def total = params. ('total')int

The above example uses the method, and there are also methods for , , , and so on. Each of these methods isint boolean long char short
null-safe and safe from any parsing errors, so you don't have to perform any additional checks on the parameters.

Each of the conversion methods allows a default value to be passed as an optional second argument. The default value will be returned if a
corresponding entry cannot be found in the map or if an error occurs during the conversion. Example:

def total = params. ('total', 42)int

These same type conversion methods are also available on the parameter of GSP tags.attrs

Handling Multi Parameters

177

A common use case is dealing with multiple request parameters of the same name. For example you could get a query string such as
.?name=Bob&name=Judy

In this case dealing with one parameter and dealing with many has different semantics since Groovy's iteration mechanics for iterateString
over each character. To avoid this problem the object provides a method that always returns a list:params list

for (name in params.list('name')) {
 println name
}

6.1.13 Asynchronous Request Processing
Grails support asynchronous request processing as provided by the Servlet 3.0 specification. To enable the async features you need to set your
servlet target version to 3.0 in BuildConfig.groovy:

grails.servlet.version = "3.0"

With that done ensure you do a clean re-compile as some async features are enabled at compile time.

With a Servlet target version of 3.0 you can only deploy on Servlet 3.0 containers such as Tomcat 7 and above.

Asynchronous Rendering

You can render content (templates, binary data etc.) in an asynchronous manner by calling the method which returns an instancestartAsync
of the Servlet 3.0 . Once you have a reference to the you can use Grails' regular render method to renderAsyncContext AsyncContext
content:

def index() {
 def ctx = startAsync()
 ctx.start {
 Book(title:).save()new "The Stand"
 render template: , model:[books:Book.list()]"books"
 ctx.complete()
 }
}

Note that you must call the method to terminate the connection.complete()

Resuming an Async Request

You resume processing of an async request (for example to delegate to view rendering) by using the method of the dispatch
 class:AsyncContext

178

def index() {
 def ctx = startAsync()
 ctx.start {
 // workingdo
 …
 // render view
 ctx.dispatch()
 }
}

6.2 Groovy Server Pages
Groovy Servers Pages (or GSP for short) is Grails' view technology. It is designed to be familiar for users of technologies such as ASP and JSP,
but to be far more flexible and intuitive.

GSPs live in the directory and are typically rendered automatically (by convention) or with the method such as:grails-app/views render

render(view:)"index"

A GSP is typically a mix of mark-up and GSP tags which aid in view rendering.

Although it is possible to have Groovy logic embedded in your GSP and doing this will be covered in this
document, the practice is strongly discouraged. Mixing mark-up and code is a thing and most GSP pagesbad
contain no code and needn't do so.

A GSP typically has a "model" which is a set of variables that are used for view rendering. The model is passed to the GSP view from a
controller. For example consider the following controller action:

def show() {
 [book: Book.get(params.id)]
}

This action will look up a instance and create a model that contains a key called . This key can then be referenced within the GSPBook book
view using the name :book

${book.title}

6.2.1 GSP Basics
In the next view sections we'll go through the basics of GSP and what is available to you. First off let's cover some basic syntax that users of JSP
and ASP should be familiar with.

GSP supports the usage of scriptlet blocks to embed Groovy code (again this is discouraged):<% %>

179

<html>
 <body>
 <% out << %>"Hello GSP!"
 </body>
</html>

You can also use the syntax to output values:<%= %>

<html>
 <body>
 <%= %>"Hello GSP!"
 </body>
</html>

GSP also supports JSP-style server-side comments (which are not rendered in the HTML response) as the following example demonstrates:

<html>
 <body>
 <%-- This is my comment --%>
 <%= %>"Hello GSP!"
 </body>
</html>

6.2.1.1 Variables and Scopes
Within the brackets you can declare variables:<% %>

<% now = new Date() %>

and then access those variables later in the page:

<%=now%>

Within the scope of a GSP there are a number of pre-defined variables, including:

180

application - The instancejavax.servlet.ServletContext

applicationContext The Spring instanceApplicationContext

flash - The objectflash

grailsApplication - The instanceGrailsApplication

out - The response writer for writing to the output stream

params - The object for retrieving request parametersparams

request - The instanceHttpServletRequest

response - The instanceHttpServletResponse

session - The instanceHttpSession

webRequest - The instanceGrailsWebRequest

6.2.1.2 Logic and Iteration
Using the syntax you can embed loops and so on using this syntax:<% %>

<html>
 <body>
 %><% [1,2,3,4].each { num ->
 <p><%= %>"Hello ${num}!" </p>
 <%}%>
 </body>
</html>

As well as logical branching:

<html>
 <body>
 <% if (params.hello == 'true')%>
 <%= %>"Hello!"
 <% else %>
 <%= %>"Goodbye!"
 </body>
</html>

6.2.1.3 Page Directives
GSP also supports a few JSP-style page directives.

The import directive lets you import classes into the page. However, it is rarely needed due to Groovy's default imports and :GSP Tags

<%@ page import= %>"java.awt.*"

GSP also supports the contentType directive:

http://download.oracle.com/javaee/1.4/api/javax/servlet/ServletContext.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/ApplicationContext.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServletRequest.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServletResponse.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpSession.html

181

<%@ page contentType= %>"text/json"

The contentType directive allows using GSP to render other formats.

6.2.1.4 Expressions
In GSP the syntax introduced earlier is rarely used due to the support for GSP expressions. A GSP expression is similar to a JSP EL<%= %>
expression or a Groovy GString and takes the form :${expr}

<html>
 <body>
 Hello ${params.name}
 </body>
</html>

However, unlike JSP EL you can have any Groovy expression within the block. Variables within the block are escaped by${..} ${..} not
default, so any HTML in the variable's string is rendered directly to the page. To reduce the risk of Cross-site-scripting (XSS) attacks, you can
enable automatic HTML escaping with the setting in :grails.views.default.codec grails-app/conf/Config.groovy

grails.views. .codec='html'default

Other possible values are 'none' (for no default encoding) and 'base64'.

6.2.2 GSP Tags
Now that the less attractive JSP heritage has been set aside, the following sections cover GSP's built-in tags, which are the preferred way to
define GSP pages.

The section on covers how to add your own custom tag libraries.Tag Libraries

All built-in GSP tags start with the prefix . Unlike JSP, you don't specify any tag library imports. If a tag starts with it is automaticallyg: g:
assumed to be a GSP tag. An example GSP tag would look like:

<g:example />

GSP tags can also have a body such as:

<g:example>
 Hello world
</g:example>

Expressions can be passed into GSP tag attributes, if an expression is not used it will be assumed to be a String value:

182

<g:example attr= >"${new Date()}"
 Hello world
</g:example>

Maps can also be passed into GSP tag attributes, which are often used for a named parameter style syntax:

<g:example attr= attr2= >"${new Date()}" "[one:1, two:2, three:3]"
 Hello world
</g:example>

Note that within the values of attributes you must use single quotes for Strings:

<g:example attr= attr2= >"${new Date()}" "[one:'one', two:'two']"
 Hello world
</g:example>

With the basic syntax out the way, the next sections look at the tags that are built into Grails by default.

6.2.2.1 Variables and Scopes
Variables can be defined within a GSP using the tag:set

<g:set var= value= />"now" "${new Date()}"

Here we assign a variable called to the result of a GSP expression (which simply constructs a new instance). You cannow java.util.Date
also use the body of the tag to define a variable:<g:set>

<g:set var= >"myHTML"
 Some re-usable code on: ${new Date()}
</g:set>

Variables can also be placed in one of the following scopes:

page - Scoped to the current page (default)

request - Scoped to the current request

flash - Placed within scope and hence available for the next requestflash

session - Scoped for the user session

application - Application-wide scope.

To specify the scope, use the attribute:scope

<g:set var= value= scope= />"now" "${new Date()}" "request"

183

6.2.2.2 Logic and Iteration
GSP also supports logical and iterative tags out of the box. For logic there are , and tags for use with branching:if else elseif

<g:if test= >"${session.role == 'admin'}"
 <%-- show administrative functions --%>
</g:if>
<g:else>
 <%-- show basic functions --%>
</g:else>

Use the and tags for iteration:each while

<g:each in= var= >"${[1,2,3]}" "num"
 Number ${num}<p> </p>
</g:each>

<g:set var= value= />"num" "${1}"
<g:while test= >"${num < 5 }"
 Number ${num++}<p> </p>
</g:while>

6.2.2.3 Search and Filtering
If you have collections of objects you often need to sort and filter them. Use the and tags for these tasks:findAll grep

Stephen King's Books:
<g:findAll in= expr= >"${books}" "it.author == 'Stephen King'"
 Title: ${it.title}<p> </p>
</g:findAll>

The attribute contains a Groovy expression that can be used as a filter. The tag does a similar job, for example filtering by class:expr grep

<g:grep in= filter= >"${books}" "NonFictionBooks.class"
 Title: ${it.title}<p> </p>
</g:grep>

Or using a regular expression:

<g:grep in= filter= >"${books.title}" "~/.*?Groovy.*?/"
 Title: ${it}<p> </p>
</g:grep>

The above example is also interesting due to its usage of GPath. GPath is an XPath-like language in Groovy. The variable is a collectionbooks
of instances. Since each has a , you can obtain a list of Book titles using the expression . Groovy willBook Book title books.title
auto-magically iterate the collection, obtain each title, and return a new list!

6.2.2.4 Links and Resources

184

GSP also features tags to help you manage linking to controllers and actions. The tag lets you specify controller and action name pairing andlink
it will automatically work out the link based on the , even if you change them! For example:URL Mappings

<g:link action= id= >"show" "1" Book 1</g:link>

${currentBook.name}<g:link action= id= >"show" "${currentBook.id}" </g:link>

Book Home<g:link controller= >"book" </g:link>

Book List<g:link controller= action= >"book" "list" </g:link>

Book List<g:link url= >"[action: 'list', controller: 'book']" </g:link>

<g:link params="[sort: 'title', order: 'asc', author: currentBook.author]"
Book List action= >"list" </g:link>

6.2.2.5 Forms and Fields

Form Basics

GSP supports many different tags for working with HTML forms and fields, the most basic of which is the tag. This is a controller/actionform
aware version of the regular HTML form tag. The attribute lets you specify which controller and action to map to:url

<g:form name= url= >"myForm" "[controller:'book',action:'list']" ...</g:form>

In this case we create a form called that submits to the 's action. Beyond that all of the usual HTMLmyForm BookController list
attributes apply.

Form Fields

In addition to easy construction of forms, GSP supports custom tags for dealing with different types of fields, including:

textField - For input fields of type 'text'

passwordField - For input fields of type 'password'

checkBox - For input fields of type 'checkbox'

radio - For input fields of type 'radio'

hiddenField - For input fields of type 'hidden'

select - For dealing with HTML select boxes

Each of these allows GSP expressions for the value:

<g:textField name= value= />"myField" "${myValue}"

GSP also contains extended helper versions of the above tags such as (for creating groups of tags), , radioGroup radio localeSelect currencySelect
and (for selecting locales, currencies and time zones respectively).timeZoneSelect

Multiple Submit Buttons

185

The age old problem of dealing with multiple submit buttons is also handled elegantly with Grails using the tag. It is just like aactionSubmit
regular submit, but lets you specify an alternative action to submit to:

<g:actionSubmit value= action= />"Some update label" "update"

6.2.2.6 Tags as Method Calls
One major different between GSP tags and other tagging technologies is that GSP tags can be called as either regular tags or as method calls from

, or GSP views.controllers tag libraries

Tags as method calls from GSPs

Tags return their results as a String-like object (a which has all of the same methods as String) instead of writing directlyStreamCharBuffer
to the response when called as methods. For example:

Static Resource: ${createLinkTo(dir: , file:)}"images" "logo.jpg"

This is particularly useful for using a tag within an attribute:

"${createLinkTo(dir: 'images', file: 'logo.jpg')}"

In view technologies that don't support this feature you have to nest tags within tags, which becomes messy quickly and often has an adverse
effect of WYSWIG tools such as Dreamweaver that attempt to render the mark-up as it is not well-formed:

<img src= images logo.jpg ""<g:createLinkTo dir=" " file=" " /> />

Tags as method calls from Controllers and Tag Libraries

You can also invoke tags from controllers and tag libraries. Tags within the default can be invoked without the prefix and a g: namespace
 result is returned:StreamCharBuffer

def imageLocation = createLinkTo(dir: , file:).toString()"images" "logo.jpg"

Prefix the namespace to avoid naming conflicts:

def imageLocation = g.createLinkTo(dir: , file:).toString()"images" "logo.jpg"

For tags that use a , use that prefix for the method call. For example (from the):custom namespace FCK Editor plugin

http://grails.org/plugin/fckeditor

186

def editor = fckeditor.editor(name: , width: , height:)"text" "100%" "400"

6.2.3 Views and Templates
Grails also has the concept of templates. These are useful for partitioning your views into maintainable chunks, and combined with Layouts
provide a highly re-usable mechanism for structured views.

Template Basics

Grails uses the convention of placing an underscore before the name of a view to identify it as a template. For example, you might have a
template that renders Books located at :grails-app/views/book/_bookTemplate.gsp

<div class= id= >"book" "${book?.id}"
 Title: ${book?.title}<div> </div>
 Author: ${book?.author?.name}<div> </div>
</div>

Use the tag to render this template from one of the views in :render grails-app/views/book

<g:render template= model= />"bookTemplate" "[book: myBook]"

Notice how we pass into a model to use using the attribute of the tag. If you have multiple instances you can also rendermodel render Book
the template for each using the render tag with a attribute:Book collection

<g:render template= var= collection= />"bookTemplate" "book" "${bookList}"

Shared Templates

In the previous example we had a template that was specific to the and its views at .BookController grails-app/views/book
However, you may want to share templates across your application.

In this case you can place them in the root views directory at grails-app/views or any subdirectory below that location, and then with the template
attribute use an absolute location starting with instead of a relative location. For example if you had a template called /

, you would reference it as:grails-app/views/shared/_mySharedTemplate.gsp

<g:render template= />"/shared/mySharedTemplate"

You can also use this technique to reference templates in any directory from any view or controller:

<g:render template= model= />"/book/bookTemplate" "[book: myBook]"

187

The Template Namespace

Since templates are used so frequently there is template namespace, called , available that makes using templates easier. Consider fortmpl
example the following usage pattern:

<g:render template= model= />"bookTemplate" "[book:myBook]"

This can be expressed with the namespace as follows:tmpl

<tmpl:bookTemplate book= />"${myBook}"

Templates in Controllers and Tag Libraries

You can also render templates from controllers using the controller method. This is useful for applications where you generate smallrender Ajax
HTML or data responses to partially update the current page instead of performing new request:

def bookData() {
 def b = Book.get(params.id)
 render(template: , model:[book:b])"bookTemplate"
}

The controller method writes directly to the response, which is the most common behaviour. To instead obtain the result of template as arender
String you can use the tag:render

def bookData() {
 def b = Book.get(params.id)
 content = g.render(template: , model:[book:b])String "bookTemplate"
 render content
}

Notice the usage of the namespace which tells Grails we want to use the instead of the method. g tag as method call render

6.2.4 Layouts with Sitemesh

Creating Layouts

Grails leverages , a decorator engine, to support view layouts. Layouts are located in the directory.Sitemesh grails-app/views/layouts
A typical layout can be seen below:

http://www.opensymphony.com/sitemesh/

188

<html>
 <head>
 <title><g:layoutTitle default= />"An example decorator" </title>
 <g:layoutHead />
 </head>
 <body onload= >"${pageProperty(name:'body.onload')}"
 <div class= >"menu" <!--my common menu goes here--></menu>
 <div class= >"body"
 <g:layoutBody />
 </div>
 </div>
 </body>
</html>

The key elements are the , and tag invocations:layoutHead layoutTitle layoutBody

layoutTitle - outputs the target page's title

layoutHead - outputs the target page's head tag contents

layoutBody - outputs the target page's body tag contents

The previous example also demonstrates the tag which can be used to inspect and return aspects of the target page.pageProperty

Triggering Layouts

There are a few ways to trigger a layout. The simplest is to add a meta tag to the view:

<html>
 <head>
 An Example Page<title> </title>
 <meta name= content= />"layout" "main"
 </head>
 This is my content!<body> </body>
</html>

In this case a layout called will be used to layout the page. If we were to use the layout from thegrails-app/views/layouts/main.gsp
previous section the output would resemble this:

<html>
 <head>
 An Example Page<title> </title>
 </head>
 <body onload= >""
 <div class= >"menu" <!--my common menu goes here--></div>
 <div class= >"body"
 This is my content!
 </div>
 </body>
</html>

Specifying A Layout In A Controller

Another way to specify a layout is to specify the name of the layout by assigning a value to the "layout" property in a controller. For example, if
you have a controller such as:

189

class BookController {
 layout = 'customer'static

def list() { … }
}

You can create a layout called which will be applied to all views that the grails-app/views/layouts/customer.gsp
 delegates to. The value of the "layout" property may contain a directory structure relative to the BookController

 directory. For example:grails-app/views/layouts/

class BookController {
 layout = 'custom/customer'static

def list() { … }
}

Views rendered from that controller would be decorated with the template.grails-app/views/layouts/custom/customer.gsp

Layout by Convention

Another way to associate layouts is to use "layout by convention". For example, if you have this controller:

class BookController {
 def list() { … }
}

You can create a layout called , which will be applied to all views that the grails-app/views/layouts/book.gsp BookController
delegates to.

Alternatively, you can create a layout called which will only be applied to the grails-app/views/layouts/book/list.gsp list
action within the .BookController

If you have both the above mentioned layouts in place the layout specific to the action will take precedence when the list action is executed.

If a layout may not be located using any of those conventions, the convention of last resort is to look for the application default layout which is
. The name of the application default layout may be changed by defining a propertygrails-app/views/layouts/application.gsp

in as follows:grails-app/conf/Config.groovy

grails.sitemesh. .layout = 'myLayoutName'default

With that property in place, the application default layout will be .grails-app/views/layouts/myLayoutName.gsp

Inline Layouts

Grails' also supports Sitemesh's concept of inline layouts with the tag. This can be used to apply a layout to a template, URL orapplyLayout
arbitrary section of content. This lets you even further modularize your view structure by "decorating" your template includes.

Some examples of usage can be seen below:

190

<g:applyLayout name= template= collection= />"myLayout" "bookTemplate" "${books}"

<g:applyLayout name= url= />"myLayout" "http://www.google.com"

<g:applyLayout name= >"myLayout"
The content to apply a layout to
</g:applyLayout>

Server-Side Includes

While the tag is useful for applying layouts to external content, if you simply want to include external content in the current pageapplyLayout
you use the tag:include

<g:include controller= action= />"book" "list"

You can even combine the tag and the tag for added flexibility:include applyLayout

<g:applyLayout name= >"myLayout"
 <g:include controller= action= />"book" "list"
</g:applyLayout>

Finally, you can also call the tag from a controller or tag library as a method:include

def content = include(controller: , action:)"book" "list"

The resulting content will be provided via the return value of the tag. include

6.2.5 Static Resources
Grails 2.0 integrates with the to provide sophisticated static resource management. This plugin is installed by default in newResources plugin
Grails applications.

The basic way to include a link to a static resource in your application is to use the tag. This simple approach creates a URI pointing toresource
the file.

However modern applications with dependencies on multiple JavaScript and CSS libraries and frameworks (as well as dependencies on multiple
Grails plugins) require something more powerful.

The issues that the Resources framework tackles are:

Web application performance tuning is difficult

Correct ordering of resources, and deferred inclusion of JavaScript

Resources that depend on others that must be loaded first

The need for a standard way to expose static resources in plugins and applications

The need for an extensible processing chain to optimize resources

Preventing multiple inclusion of the same resource

http://grails.org/plugin/resources

191

The plugin achieves this by introducing new artefacts and processing the resources using the server's local file system.

It adds artefacts for declaring resources, for declaring "mappers" that can process resources, and a servlet filter to serve processed resources.

What you get is an incredibly advanced resource system that enables you to easily create highly optimized web applications that run the same in
development and in production.

The Resources plugin documentation provides a more detailed overview of the which will be beneficial when reading the followingconcepts
guide.

6.2.5.1 Including resources using the resource tags

Pulling in resources with r:require

To use resources, your GSP page must indicate which resource modules it requires. For example with the , which exposes ajQuery plugin
"jquery" resource module, to use jQuery in any page on your site you simply add:

<html>
 <head>
 <r:require module= />"jquery"
 <r:layoutResources/>
 </head>
 <body>
 …
 <r:layoutResources/>
 </body>
</html>

This will automatically include all resources needed for jQuery, including them at the correct locations in the page. By default the plugin sets the
disposition to be "head", so they load early in the page.

You can call multiple times in a GSP page, and you use the "modules" attribute to provide a list of modules:r:require

<html>
 <head>
 <r:require modules= />"jquery, main, blueprint, charting"
 <r:layoutResources/>
 </head>
 <body>
 …
 <r:layoutResources/>
 </body>
</html>

The above may result in many JavaScript and CSS files being included, in the correct order, with some JavaScript files loading at the end of the
body to improve the apparent page load time.

However you cannot use r:require in isolation - as per the examples you must have the <r:layoutResources/> tag to actually perform the render.

Rendering the links to resources with r:layoutResources

When you have declared the resource modules that your GSP page requires, the framework needs to render the links to those resources at the
correct time.

To achieve this correctly, you must include the r:layoutResources tag twice in your page, or more commonly, in your GSP layout:

http://grails-plugins.github.com/grails-resources/
http://grails.org/plugin/jquery

192

<html>
 <head>
 <g:layoutTitle/>
 <r:layoutResources/>
 </head>
 <body>
 <g:layoutBody/>
 <r:layoutResources/>
 </body>
</html>

This represents the simplest Sitemesh layout you can have that supports Resources.

The Resources framework has the concept of a "disposition" for every resource. This is an indication of where in the page the resource should be
included.

The default disposition applied depends on the type of resource. All CSS must be rendered in <head> in HTML, so "head" is the default for all
CSS, and will be rendered by the first r:layoutResources. Page load times are improved when JavaScript is loaded after the page content, so the
default for JavaScript files is "defer", which means it is rendered when the second r:layoutResources is invoked.

Note that both your GSP page and your Sitemesh layout (as well as any GSP template fragments) can call r:require to depend on resources. The
only limitation is that you must call r:require before the r:layoutResources that should render it.

Adding page-specific JavaScript code with r:script

Grails has the tag which is adapted to defer to Resources plugin if installed, but it is recommended that you call directlyjavascript r:script
when you need to include fragments of JavaScript code.

This lets you write some "inline" JavaScript which is actually rendered inline, but either in the <head> or at the end of the body, based on thenot
disposition.

Given a Sitemesh layout like this:

<html>
 <head>
 <g:layoutTitle/>
 <r:layoutResources/>
 </head>
 <body>
 <g:layoutBody/>
 <r:layoutResources/>
 </body>
</html>

...in your GSP you can inject some JavaScript code into the head or deferred regions of the page like this:

193

<html>
 <head>
 Testing r:script magic!<title> </title>
 </head>
 <body>
 <r:script disposition= >"head"
 window.alert('This is at the end of ');<head>
 </r:script>
 <r:script disposition= >"defer"
 window.alert('This is at the end of the body, and the page has loaded.');
 </r:script>
 </body>
</html>

The default disposition is "defer", so the disposition in the latter r:script is purely included for demonstration.

Note that such r:script code fragments load after any modules that you have used, to ensure that any required libraries have loaded.always

Linking to images with r:img

This tag is used to render markup, using the Resources framework to process the resource on the fly (if configured to do so - e.g. make it
eternally cacheable).

This includes any extra attributes on the tag if the resource has been previously declared in a module.

With this mechanism you can specify the width, height and any other attributes in the resource declaration in the module, and they will be pulled
in as necessary.

Example:

<html>
 <head>
 Testing r:img<title> </title>
 </head>
 <body>
 <r:img uri= />"/images/logo.png"
 </body>
</html>

Note that Grails has a built-in tag as a shortcut for rendering tags that refer to a static resource. The Grails tag isg:img img
Resources-aware and will delegate to if found. However it is recommended that you use directly if using the Resources plugin.r:img r:img

Alongside the regular Grails tag attributes, this also supports the "uri" attribute for increased brevity.resource

See for full details. r:resource documentation

6.2.5.2 Other resource tags

r:resource

This is equivalent to the Grails tag, returning a link to the processed static resource. Grails' own tag delegates to thisresource g:resource
implementation if found, but if your code requires the Resources plugin, you should use directly.r:resource

Alongside the regular Grails tag attributes, this also supports the "uri" attribute for increased brevity.resource

See for full details.r:resource documentation

http://grails-plugins.github.com/grails-resources
http://grails-plugins.github.com/grails-resources

194

r:external

This is a resource-aware version of Grails tag which renders the HTML markup necessary to include an external file resource such asexternal
CSS, JS or a favicon.

See for full details. r:resource documentation

6.2.5.3 Declaring resources
A DSL is provided for declaring resources and modules. This can go either in your in the case of application-specificConfig.groovy
resources, or more commonly in a resources artefact in .grails-app/conf

Note that you do not need to declare all your static resources, especially images. However you must to establish dependencies or other
resources-specific attributes. Any resource that is not declared is called "ad-hoc" and will still be processed using defaults for that resource type.

Consider this example resource configuration file, :grails-app/conf/MyAppResources.groovy

modules = {
 core {
 dependsOn 'jquery, utils'

resource url: '/js/core.js', disposition: 'head'
 resource url: '/js/ui.js'
 resource url: '/css/main.css',
 resource url: '/css/branding.css'
 resource url: '/css/print.css', attrs: [media: 'print']
 }

utils {
 dependsOn 'jquery'

resource url: '/js/utils.js'
 }

forms {
 dependsOn 'core,utils'

resource url: '/css/forms.css'
 resource url: '/js/forms.js'
 }
}

This defines three resource modules; 'core', 'utils' and 'forms'. The resources in these modules will be automatically bundled out of the box
according to the module name, resulting in fewer files. You can override this with on each resource, or call bundle:'someOtherName'

 on the module (see).defaultBundle resources plugin documentation

It declares dependencies between them using , which controls the load order of the resources.dependsOn

When you include an in your GSP, it will pull in all the resources from 'core' and 'utils' as well as<r:require module="forms"/>
'jquery', all in the correct order.

You'll also notice the on the file. This tells Resources that while it can defer all the other JS files to the enddisposition:'head' core.js
of the body, this one must go into the .<head>

The CSS file for print styling adds custom attributes using the map option, and these are passed through to the tag whenattrs r:external
the engine renders the link to the resource, so you can customize the HTML attributes of the generated link.

There is no limit to the number of modules or xxxResources.groovy artefacts you can provide, and plugins can supply them to expose modules to
applications, which is exactly how the jQuery plugin works.

http://grails-plugins.github.com/grails-resources
http://grails-plugins.github.com/grails-resources

195

To define modules like this in your application's Config.groovy, you simply assign the DSL closure to the grails.resources.modules
Config variable.

For full details of the resource DSL please see the . resources plugin documentation

6.2.5.4 Overriding plugin resources
Because a resource module can define the bundle groupings and other attributes of resources, you may find that the settings provided are not
correct for your application.

For example, you may wish to bundle jQuery and some other libraries all together in one file. There is a load-time and caching trade-off here, but
often it is the case that you'd like to override some of these settings.

To do this, the DSL supports an "overrides" clause, within which you can change the setting for a module, or attributes ofdefaultBundle
individual resources that have been declared with a unique id:

modules = {
 core {
 dependsOn 'jquery, utils'
 defaultBundle 'monolith'

resource url: '/js/core.js', disposition: 'head'
 resource url: '/js/ui.js'
 resource url: '/css/main.css',
 resource url: '/css/branding.css'
 resource url: '/css/print.css', attrs: [media: 'print']
 }

utils {
 dependsOn 'jquery'
 defaultBundle 'monolith'

resource url: '/js/utils.js'
 }

forms {
 dependsOn 'core,utils'
 defaultBundle 'monolith'

resource url: '/css/forms.css'
 resource url: '/js/forms.js'
 }

overrides {
 jquery {
 defaultBundle 'monolith'
 }
 }
}

This will put all code into a single bundle named 'monolith'. Note that this can still result in multiple files, as separate bundles are required for
head and defer dispositions, and JavaScript and CSS files are bundled separately.

Note that overriding individual resources requires the original declaration to have included a unique id for the resource.

For full details of the resource DSL please see the . resources plugin documentation

6.2.5.5 Optimizing your resources
The Resources framework uses "mappers" to mutate the resources into the final format served to the user.

The resource mappers are applied to each static resource once, in a specific order. You can create your own resource mappers, and several
plugins provide some already for zipping, caching and minifying.

http://grails-plugins.github.com/grails-resources
http://grails-plugins.github.com/grails-resources

196

Out of the box, the Resources plugin provides bundling of resources into fewer files, which is achieved with a few mappers that also perform
CSS re-writing to handle when your CSS files are moved into a bundle.

Bundling multiple resources into fewer files

The 'bundle' mapper operates by default on any resource with a "bundle" defined - or inherited from a clause on the module.defaultBundle
Modules have an implicit default bundle name the same as the name of the module.

Files of the same kind will be aggregated into this bundle file. Bundles operate across module boundaries:

modules = {
 core {
 dependsOn 'jquery, utils'
 defaultBundle 'common'

resource url: '/js/core.js', disposition: 'head'
 resource url: '/js/ui.js', bundle: 'ui'
 resource url: '/css/main.css', bundle: 'theme'
 resource url: '/css/branding.css'
 resource url: '/css/print.css', attrs: [media: 'print']
 }

utils {
 dependsOn 'jquery'

resource url: '/js/utils.js', bundle: 'common'
 }

forms {
 dependsOn 'core,utils'

resource url: '/css/forms.css', bundle: 'ui'
 resource url: '/js/forms.js', bundle: 'ui'
 }
}

Here you see that resources are grouped into bundles; 'common', 'ui' and 'theme' - across module boundaries.

Note that auto-bundling by module does occur if there is only one resource in the module.not

Making resources cache "eternally" in the client browser

Caching resources "eternally" in the client is only viable if the resource has a unique name that changes whenever the contents change, and
requires caching headers to be set on the response.

The plugin provides a mapper that achieves this by hashing your files and renaming them based on this hash. It also sets thecached-resources
caching headers on every response for those resources. To use, simply install the cached-resources plugin.

Note that the caching headers can only be set if your resources are being served by your application. If you have another server serving the static
content from your app (e.g. Apache HTTPD), configure it to send caching headers. Alternatively you can configure it to request and proxy the
resources from your container.

Zipping resources

Returning gzipped resources is another way to reduce page load times and reduce bandwidth.

The plugin provides a mapper that automatically compresses your content, excluding by default already compressed formatszipped-resources
such as gif, jpeg and png.

Simply install the zipped-resources plugin and it works.

http://grails.org/plugin/cached-resources
http://grails.org/plugin/zipped-resources

197

Minifying

There are a number of CSS and JavaScript minifiers available to obfuscate and reduce the size of your code. At the time of writing none are
publicly released but releases are imminent.

6.2.5.6 Debugging
When your resources are being moved around, renamed and otherwise mutated, it can be hard to debug client-side issues. Modern browsers,
especially Safari, Chrome and Firefox have excellent tools that let you view all the resources requested by a page, including the headers and other
information about them.

There are several debugging features built in to the Resources framework.

X-Grails-Resources-Original-Src Header

Every resource served in development mode will have the X-Grails-Resources-Original-Src: header added, indicating the original source file(s)
that make up the response.

Adding the debug flag

If you add a query parameter to your URL and request the page, Resources will bypass any processing so that you can see_debugResources=y
your original source files.

This also adds a unique timestamp to all your resource URLs, to defeat any caching that browsers may use. This means that you should always
see your very latest code when you reload the page.

Turning on debug all the time

You can turn on the aforementioned debug mechanism without requiring a query parameter, but turning it on in Config.groovy:

grails.resources.debug = true

You can of course set this per-environment.

6.2.5.7 Preventing processing of resources
Sometimes you do not want a resource to be processed in a particular way, or even at all. Occasionally you may also want to disable all resource
mapping.

Preventing the application of a specific mapper to an individual resource

All resource declarations support a convention of noXXXX:true where XXXX is a mapper name.

So for example to prevent the "hashandcache" mapper from being applied to a resource (which renames and moves it, potentially breaking
relative links written in JavaScript code), you would do this:

198

modules = {
 forms {
 resource url: '/css/forms.css', nohashandcache: true
 resource url: '/js/forms.js', nohashandcache: true
 }
}

Excluding/including paths and file types from specific mappers

Mappers have includes/excludes Ant patterns to control whether they apply to a given resource. Mappers set sensible defaults for these based on
their activity, for example the zipped-resources plugin's "zip" mapper is set to exclude images by default.

You can configure this in your using the mapper name e.g:Config.groovy

// We wouldn't link to .exe files using Resources but the sake of example:for
grails.resources.zip.excludes = ['**/*.zip', '**/*.exe']

// Perhaps some reason we want to prevent bundling on CSS files:for "less"
grails.resources.bundle.excludes = ['**/*.less']

There is also an "includes" inverse. Note that settings these replaces the default includes/excludes for that mapper - it is not additive.

Controlling what is treated as an "ad-hoc" (legacy) resource

Ad-hoc resources are those undeclared, but linked to directly in your application using the Grails or Resources linking tags (resource,without
img or external).

These may occur with some legacy plugins or code with hardcoded paths in.

There is a Config.groovy setting which defines a list of Servlet API compliant filter URI mappings, which thegrails.resources.adhoc.patterns
Resources filter will use to detect such "ad-hoc resource" requests.

By default this is set to:

grails.resources.adhoc.patterns = ['images/*', '*.js', '*.css']

6.2.5.8 Other Resources-aware plugins
At the time of writing, the following plugins include support for the Resources framework:

jquery

jquery-ui

blueprint

lesscss-resources

zipped-resources

cached-resources

http://grails.org/plugin/jquery
http://grails.org/plugin/jquery-ui
http://grails.org/plugin/blueprint
http://grails.org/plugin/lesscss-resources
http://grails.org/plugin/zipped-resources
http://grails.org/plugin/cached-resources

199

6.2.6 Sitemesh Content Blocks
Although it is useful to decorate an entire page sometimes you may find the need to decorate independent sections of your site. To do this you
can use content blocks. To get started, partition the page to be decorated using the tag:<content>

<content tag= >"navbar"
… draw the navbar here…
</content>

<content tag= >"header"
… draw the header here…
</content>

<content tag= >"footer"
… draw the footer here…
</content>

<content tag= >"body"
… draw the body here…
</content>

Then within the layout you can reference these components and apply individual layouts to each:

<html>
 <body>
 <div id= >"header"
 <g:applyLayout name= >"headerLayout"
 <g:pageProperty name= />"page.header"
 </g:applyLayout>
 </div>
 <div id= >"nav"
 <g:applyLayout name= >"navLayout"
 <g:pageProperty name= />"page.navbar"
 </g:applyLayout>
 </div>
 <div id= >"body"
 <g:applyLayout name= >"bodyLayout"
 <g:pageProperty name= />"page.body"
 </g:applyLayout>
 </div>
 <div id= >"footer"
 <g:applyLayout name= >"footerLayout"
 <g:pageProperty name= />"page.footer"
 </g:applyLayout>
 </div>
 </body>
</html>

6.2.7 Making Changes to a Deployed Application
One of the main issues with deploying a Grails application (or typically any servlet-based one) is that any change to the views requires that you
redeploy your whole application. If all you want to do is fix a typo on a page, or change an image link, it can seem like a lot of unnecessary work.
For such simple requirements, Grails does have a solution: the configuration setting.grails.gsp.view.dir

How does this work? The first step is to decide where the GSP files should go. Let's say we want to keep them unpacked in a
 directory. We add these two lines to :/var/www/grails/my-app grails-app/conf/Config.groovy

200

grails.gsp.enable.reload = true
grails.gsp.view.dir = "/ /www/grails/my-app/"var

The first line tells Grails that modified GSP files should be reloaded at runtime. If you don't have this setting, you can make as many changes as
you like but they won't be reflected in the running application until you restart. The second line tells Grails where to load the views and layouts
from.

The trailing slash on the value is important! Without it, Grails will look for views ingrails.gsp.view.dir
the parent directory.

Setting "grails.gsp.view.dir" is optional. If it's not specified, you can update files directly to the application server's deployed war directory.
Depending on the application server, these files might get overwritten when the server is restarted. Most application servers support "exploded
war deployment" which is recommended in this case.

With those settings in place, all you need to do is copy the views from your web application to the external directory. On a Unix-like system, this
would look something like this:

mkdir -p / /www/grails/my-app/grails-app/viewsvar
cp -R grails-app/views/* / /www/grails/my-app/grails-app/viewsvar

The key point here is that you must retain the view directory structure, including the bit. So you end up with the path grails-app/views
 ./var/www/grails/my-app/grails-app/views/...

One thing to bear in mind with this technique is that every time you modify a GSP, it uses up permgen space. So at some point you will
eventually hit "out of permgen space" errors unless you restart the server. So this technique is not recommended for frequent or large changes to
the views.

There are also some System properties to control GSP reloading:

Name Description

grails.gsp.enable.reload altervative system property for enabling the GSP reload mode without changing Config.groovy

grails.gsp.reload.interval interval between checking the lastmodified time of the gsp source file, unit is milliseconds

grails.gsp.reload.granularity
the number of milliseconds leeway to give before deciding a file is out of date. this is needed because
different roundings usually cause a 1000ms difference in lastmodified times

GSP reloading is supported for precompiled GSPs since Grails 1.3.5 .

6.2.8 GSP Debugging

Viewing the generated source code

Adding "?showSource=true" or "&showSource=true" to the url shows the generated Groovy source code for the view instead of rendering it.
It won't show the source code of included templates. This only works in development mode

The saving of all generated source code can be activated by setting the property "grails.views.gsp.keepgenerateddir" (in Config.groovy) . It
must point to a directory that exists and is writable.

During "grails war" gsp pre-compilation, the generated source code is stored in grails.project.work.dir/gspcompile (usually in
~/.grails/(grails_version)/projects/(project name)/gspcompile).

201

Debugging GSP code with a debugger

See Debugging GSP in STS

Viewing information about templates used to render a single url

GSP templates are reused in large web applications by using the taglib. Several small templates can be used to render a single page.g:render
It might be hard to find out what GSP template actually renders the html seen in the result. The debug templates -feature adds html comments to
the output. The comments contain debug information about gsp templates used to render the page.

Usage is simple: append "?debugTemplates" or "&debugTemplates" to the url and view the source of the result in your browser.
"debugTemplates" is restricted to development mode. It won't work in production.

Here is an example of comments added by debugTemplates :

<!-- GSP #2 START template: /home/.../views/_carousel.gsp
 precompiled: lastmodified: … -->false
.
.
.
<!-- GSP #2 END template: /home/.../views/_carousel.gsp
 rendering time: 115 ms -->

Each comment block has a unique id so that you can find the start & end of each template call.

6.3 Tag Libraries
Like (JSP), GSP supports the concept of custom tag libraries. Unlike JSP, Grails' tag library mechanism is simple, elegant andJava Server Pages
completely reloadable at runtime.

Quite simply, to create a tag library create a Groovy class that ends with the convention and place it within the TagLib
 directory:grails-app/taglib

class SimpleTagLib {

}

Now to create a tag create a Closure property that takes two arguments: the tag attributes and the body content:

class SimpleTagLib {
 def simple = { attrs, body ->

}
}

The argument is a Map of the attributes of the tag, whilst the argument is a Closure that returns the body content when invoked:attrs body

http://contraptionsforprogramming.blogspot.com/2010/08/debuggable-gsps-in-springsource-tool.html
http://www.oracle.com/technetwork/java/javaee/jsp/index.html

202

class SimpleTagLib {
 def emoticon = { attrs, body ->
 out << body() << (attrs.happy == ' ' ? :)true " :-)" " :-("
 }
}

As demonstrated above there is an implicit variable that refers to the output which you can use to append content to the response.out Writer
Then you can reference the tag inside your GSP; no imports are necessary:

<g:emoticon happy= >"true" Hi John</g:emoticon>

To help IDEs like SpringSource Tool Suite (STS) and others autocomplete tag attributes, you should add Javadoc
comments to your tag closures with descriptions. Since taglibs use Groovy code it can be difficult to reliably@attr
detect all usable attributes.

For example:

class SimpleTagLib {

/**
 * Renders the body with an emoticon.
 *
 * @attr happy whether to show a happy emoticon (' ') ortrue
 * a sad emoticon (' ')false
 */
 def emoticon = { attrs, body ->
 out << body() << (attrs.happy == ' ' ? :)true " :-)" " :-("
 }
}

and any mandatory attributes should include the REQUIRED keyword, e.g.

class SimpleTagLib {

/**
 * Creates a password field.new
 *
 * @attr name REQUIRED the field name
 * @attr value the field value
 */
 def passwordField = { attrs ->
 attrs.type = "password"
 attrs.tagName = "passwordField"
 fieldImpl(out, attrs)
 }
}

6.3.1 Variables and Scopes
Within the scope of a tag library there are a number of pre-defined variables including:

203

actionName - The currently executing action name

controllerName - The currently executing controller name

flash - The objectflash

grailsApplication - The instanceGrailsApplication

out - The response writer for writing to the output stream

pageScope - A reference to the object used for GSP rendering (i.e. the binding)pageScope

params - The object for retrieving request parametersparams

pluginContextPath - The context path to the plugin that contains the tag library

request - The instanceHttpServletRequest

response - The instanceHttpServletResponse

servletContext - The instancejavax.servlet.ServletContext

session - The instanceHttpSession

6.3.2 Simple Tags
As demonstrated it the previous example it is easy to write simple tags that have no body and just output content. Another example is a

 style tag:dateFormat

def dateFormat = { attrs, body ->
 out << java.text.SimpleDateFormat(attrs.format).format(attrs.date)new
}

The above uses Java's class to format a date and then write it to the response. The tag can then be used within a GSP asSimpleDateFormat
follows:

<g:dateFormat format= date= />"dd-MM-yyyy" "${new Date()}"

With simple tags sometimes you need to write HTML mark-up to the response. One approach would be to embed the content directly:

def formatBook = { attrs, body ->
 out << "<div id="${attrs.book.id}">"
 out << "Title : ${attrs.book.title}"
 out << "</div>"
}

Although this approach may be tempting it is not very clean. A better approach would be to reuse the tag:render

def formatBook = { attrs, body ->
 out << render(template: , model: [book: attrs.book])"bookTemplate"
}

http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServletRequest.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServletResponse.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/ServletContext.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpSession.html

204

And then have a separate GSP template that does the actual rendering.

6.3.3 Logical Tags
You can also create logical tags where the body of the tag is only output once a set of conditions have been met. An example of this may be a set
of security tags:

def isAdmin = { attrs, body ->
 def user = attrs.user
 (user && checkUserPrivs(user)) {if
 out << body()
 }
}

The tag above checks if the user is an administrator and only outputs the body content if he/she has the correct set of access privileges:

<g:isAdmin user= >"${myUser}"
 // some restricted content
</g:isAdmin>

6.3.4 Iterative Tags
Iterative tags are easy too, since you can invoke the body multiple times:

def repeat = { attrs, body ->
 attrs.times?.toInteger()?.times { num ->
 out << body(num)
 }
}

In this example we check for a attribute and if it exists convert it to a number, then use Groovy's method to iterate the specifiedtimes times
number of times:

<g:repeat times= >"3"
Repeat this 3 times! Current repeat = ${it}<p> </p>

</g:repeat>

Notice how in this example we use the implicit variable to refer to the current number. This works because when we invoked the body weit
passed in the current value inside the iteration:

out << body(num)

That value is then passed as the default variable to the tag. However, if you have nested tags this can lead to conflicts, so you should shouldit
instead name the variables that the body uses:

205

def repeat = { attrs, body ->
 def = attrs. ?: var var "num"
 attrs.times?.toInteger()?.times { num ->
 out << body(():num)var
 }
}

Here we check if there is a attribute and if there is use that as the name to pass into the body invocation on this line:var

out << body(():num)var

Note the usage of the parenthesis around the variable name. If you omit these Groovy assumes you are using a
String key and not referring to the variable itself.

Now we can change the usage of the tag as follows:

<g:repeat times= var= >"3" "j"
Repeat this 3 times! Current repeat = ${j}<p> </p>

</g:repeat>

Notice how we use the attribute to define the name of the variable and then we are able to reference that variable within the body of thevar j
tag.

6.3.5 Tag Namespaces
By default, tags are added to the default Grails namespace and are used with the prefix in GSP pages. However, you can specify a differentg:
namespace by adding a static property to your class:TagLib

class SimpleTagLib {
 namespace = static "my"

def example = { attrs ->
 …
 }
}

Here we have specified a of and hence the tags in this tag lib must then be referenced from GSP pages like this:namespace my

<my:example name= />"..."

where the prefix is the same as the value of the static property. Namespaces are particularly useful for plugins.namespace

Tags within namespaces can be invoked as methods using the namespace as a prefix to the method call:

206

out << my.example(name:)"foo"

This works from GSP, controllers or tag libraries

6.3.6 Using JSP Tag Libraries
In addition to the simplified tag library mechanism provided by GSP, you can also use JSP tags from GSP. To do so simply declare the JSP to
use with the directive:taglib

<%@ taglib prefix= uri= %>"fmt" "http://java.sun.com/jsp/jstl/fmt"

Then you can use it like any other tag:

<fmt:formatNumber value= pattern= />"${10}" ".00"

With the added bonus that you can invoke JSP tags like methods:

${fmt.formatNumber(value:10, pattern:)}".00"

6.3.7 Tag return value
Since Grails 1.2, a tag library call returns an instance of class byorg.codehaus.groovy.grails.web.util.StreamCharBuffer
default. This change improves performance by reducing object creation and optimizing buffering during request processing. In earlier Grails
versions, a instance was returned.java.lang.String

Tag libraries can also return direct object values to the caller since Grails 1.2.. Object returning tag names are listed in a static
 property in the tag library class.returnObjectForTags

Example:

class ObjectReturningTagLib {
 namespace = static "cms"
 returnObjectForTags = ['content']static

def content = { attrs, body ->
 CmsContent.findByCode(attrs.code)?.content
 }
}

6.4 URL Mappings
Throughout the documentation so far the convention used for URLs has been the default of . However, this/controller/action/id
convention is not hard wired into Grails and is in fact controlled by a URL Mappings class located at

.grails-app/conf/UrlMappings.groovy

The class contains a single property called that has been assigned a block of code:UrlMappings mappings

207

class UrlMappings {
 mappings = {static
 }
}

6.4.1 Mapping to Controllers and Actions
To create a simple mapping simply use a relative URL as the method name and specify named parameters for the controller and action to map to:

"/product"(controller: , action:)"product" "list"

In this case we've mapped the URL to the action of the . Omit the action definition to map to the/product list ProductController
default action of the controller:

"/product"(controller:)"product"

An alternative syntax is to assign the controller and action to use within a block passed to the method:

"/product" {
 controller = "product"
 action = "list"
}

Which syntax you use is largely dependent on personal preference. To rewrite one URI onto another explicit URI (rather than a controller/action
pair) do something like this:

"/hello"(uri:)"/hello.dispatch"

Rewriting specific URIs is often useful when integrating with other frameworks.

6.4.2 Embedded Variables

Simple Variables

The previous section demonstrated how to map simple URLs with concrete "tokens". In URL mapping speak tokens are the sequence of
characters between each slash, '/'. A concrete token is one which is well defined such as as . However, in many circumstances you/product
don't know what the value of a particular token will be until runtime. In this case you can use variable placeholders within the URL for example:

static mappings = {
 (controller:)"/product/$id" "product"
}

208

In this case by embedding a $id variable as the second token Grails will automatically map the second token into a parameter (available via the
 object) called . For example given the URL , the following code will render "MacBook" to the response:params id /product/MacBook

class ProductController {
 def index() { render params.id }
}

You can of course construct more complex examples of mappings. For example the traditional blog URL format could be mapped as follows:

static mappings = {
 (controller: , action:)"/$blog/$year/$month/$day/$id" "blog" "show"
}

The above mapping would let you do things like:

/graemerocher/2007/01/10/my_funky_blog_entry

The individual tokens in the URL would again be mapped into the object with values available for , , , and so on.params year month day id

Dynamic Controller and Action Names

Variables can also be used to dynamically construct the controller and action name. In fact the default Grails URL mappings use this technique:

static mappings = {
 ()"/$controller/$action?/$id?"
}

Here the name of the controller, action and id are implicitly obtained from the variables , and embedded within thecontroller action id
URL.

You can also resolve the controller name and action name to execute dynamically using a closure:

static mappings = {
 {"/$controller"
 action = { params.goHere }
 }
}

Optional Variables

Another characteristic of the default mapping is the ability to append a ? at the end of a variable to make it an optional token. In a further
example this technique could be applied to the blog URL mapping to have more flexible linking:

209

static mappings = {
 (controller: , action:)"/$blog/$year?/$month?/$day?/$id?" "blog" "show"
}

With this mapping all of these URLs would match with only the relevant parameters being populated in the object:params

/graemerocher/2007/01/10/my_funky_blog_entry
/graemerocher/2007/01/10
/graemerocher/2007/01
/graemerocher/2007
/graemerocher

Arbitrary Variables

You can also pass arbitrary parameters from the URL mapping into the controller by just setting them in the block passed to the mapping:

"/holiday/win" {
 id = "Marrakech"
 year = 2007
}

This variables will be available within the object passed to the controller.params

Dynamically Resolved Variables

The hard coded arbitrary variables are useful, but sometimes you need to calculate the name of the variable based on runtime factors. This is also
possible by assigning a block to the variable name:

"/holiday/win" {
 id = { params.id }
 isEligible = { session.user != } // must be logged innull
}

In the above case the code within the blocks is resolved when the URL is actually matched and hence can be used in combination with all sorts of
logic.

6.4.3 Mapping to Views
You can resolve a URL to a view without a controller or action involved. For example to map the root URL to a GSP at the location /

 you could use:grails-app/views/index.gsp

static mappings = {
 (view:) // map the root URL"/" "/index"
}

Alternatively if you need a view that is specific to a given controller you could use:

210

static mappings = {
 (controller: , view:) // to a view a controller"/help" "site" "help" for
}

6.4.4 Mapping to Response Codes
Grails also lets you map HTTP response codes to controllers, actions or views. Just use a method name that matches the response code you are
interested in:

static mappings = {
 (controller: , action:)"403" "errors" "forbidden"
 (controller: , action:)"404" "errors" "notFound"
 (controller: , action:)"500" "errors" "serverError"
}

Or you can specify custom error pages:

static mappings = {
 (view:)"403" "/errors/forbidden"
 (view:)"404" "/errors/notFound"
 (view:)"500" "/errors/serverError"
}

Declarative Error Handling

In addition you can configure handlers for individual exceptions:

static mappings = {
 (view:)"403" "/errors/forbidden"
 (view:)"404" "/errors/notFound"
 (controller: , action: ,"500" "errors" "illegalArgument"
 exception: IllegalArgumentException)
 (controller: , action: ,"500" "errors" "nullPointer"
 exception: NullPointerException)
 (controller: , action: ,"500" "errors" "customException"
 exception: MyException)
 (view:)"500" "/errors/serverError"
}

With this configuration, an will be handled by the action in , aIllegalArgumentException illegalArgument ErrorsController
 will be handled by the action, and a will be handled by the NullPointerException nullPointer MyException

 action. Other exceptions will be handled by the catch-all rule and use the view.customException /errors/serverError

You can access the exception from your custom error handing view or controller action using the request's attribute like so:exception

211

class ErrorController {
 def handleError() {
 def exception = request.exception
 // perform desired processing to handle the exception
 }
}

If your error-handling controller action throws an exception as well, you'll end up with a
.StackOverflowException

6.4.5 Mapping to HTTP methods
URL mappings can also be configured to map based on the HTTP method (GET, POST, PUT or DELETE). This is very useful for RESTful APIs
and for restricting mappings based on HTTP method.

As an example the following mappings provide a RESTful API URL mappings for the :ProductController

static mappings = {
 (controller:) {"/product/$id" "product"
 action = [GET: , PUT: , DELETE: , POST:]"show" "update" "delete" "save"
 }
}

6.4.6 Mapping Wildcards
Grails' URL mappings mechanism also supports wildcard mappings. For example consider the following mapping:

static mappings = {
 (controller:)"/images/*.jpg" "image"
}

This mapping will match all paths to images such as . Of course you can achieve the same effect with a variable:/image/logo.jpg

static mappings = {
 (controller:)"/images/$name.jpg" "image"
}

However, you can also use double wildcards to match more than one level below:

static mappings = {
 (controller:)"/images/**.jpg" "image"
}

In this cases the mapping will match as well as . Even better you can use a double wildcard/image/logo.jpg /image/other/logo.jpg
variable:

212

static mappings = {
 // will match /image/logo.jpg and /image/other/logo.jpg
 (controller:)"/images/$name**.jpg" "image"
}

In this case it will store the path matched by the wildcard inside a parameter obtainable from the object:name params

def name = params.name
println name // prints or "logo" "other/logo"

If you use wildcard URL mappings then you may want to exclude certain URIs from Grails' URL mapping process. To do this you can provide
an setting inside the class:excludes UrlMappings.groovy

class UrlMappings {
 excludes = [,]static "/images/*" "/css/*"
 mappings = {static
 …
 }
}

In this case Grails won't attempt to match any URIs that start with or . /images /css

6.4.7 Automatic Link Re-Writing
Another great feature of URL mappings is that they automatically customize the behaviour of the tag so that changing the mappings don'tlink
require you to go and change all of your links.

This is done through a URL re-writing technique that reverse engineers the links from the URL mappings. So given a mapping such as the blog
one from an earlier section:

static mappings = {
 (controller: , action:)"/$blog/$year?/$month?/$day?/$id?" "blog" "show"
}

If you use the link tag as follows:

<g:link controller= action="blog" "show"
 params= >"[blog:'fred', year:2007]"
 My Blog
</g:link>

<g:link controller= action="blog" "show"
 params= >"[blog:'fred', year:2007, month:10]"
 My Blog - October 2007 Posts
</g:link>

Grails will automatically re-write the URL in the correct format:

213

"/fred/2007" My Blog
My Blog - October 2007 Posts"/fred/2007/10"

6.4.8 Applying Constraints
URL Mappings also support Grails' unified mechanism, which lets you further "constrain" how a URL is matched. Forvalidation constraints
example, if we revisit the blog sample code from earlier, the mapping currently looks like this:

static mappings = {
 (controller: , action:)"/$blog/$year?/$month?/$day?/$id?" "blog" "show"
}

This allows URLs such as:

/graemerocher/2007/01/10/my_funky_blog_entry

However, it would also allow:

/graemerocher/not_a_year/not_a_month/not_a_day/my_funky_blog_entry

This is problematic as it forces you to do some clever parsing in the controller code. Luckily, URL Mappings can be constrained to further
validate the URL tokens:

"/$blog/$year?/$month?/$day?/$id?" {
 controller = "blog"
 action = "show"
 constraints {
 year(matches:/\d{4}/)
 month(matches:/\d{2}/)
 day(matches:/\d{2}/)
 }
}

In this case the constraints ensure that the , and parameters match a particular valid pattern thus relieving you of that burdenyear month day
later on.

6.4.9 Named URL Mappings
URL Mappings also support named mappings, that is are mappings which have a name associated with them. The name may be used to refer to a
specific mapping when links are generated.

The syntax for defining a named mapping is as follows:

214

static mappings = {
 name <mapping name>: <url pattern> {
 // …
 }
}

For example:

static mappings = {
 name personList: {"/showPeople"
 controller = 'person'
 action = 'list'
 }
 name accountDetails: {"/details/$acctNumber"
 controller = 'product'
 action = 'accountDetails'
 }
}

The mapping may be referenced in a link tag in a GSP.

<g:link mapping= >"personList" List People</g:link>

That would result in:

"/showPeople" List People

Parameters may be specified using the params attribute.

<g:link mapping= params= >"accountDetails" "[acctNumber:'8675309']"
 Show Account
</g:link>

That would result in:

"/details/8675309" Show Account

Alternatively you may reference a named mapping using the link namespace.

<link:personList>List People</link:personList>

That would result in:

215

"/showPeople" List People

The link namespace approach allows parameters to be specified as attributes.

<link:accountDetails acctNumber= >"8675309" Show Account</link:accountDetails>

That would result in:

"/details/8675309" Show Account

To specify attributes that should be applied to the generated , specify a value to the attribute. These attributes will be appliedhref Map attrs
directly to the href, not passed through to be used as request parameters.

<link:accountDetails attrs= acctNumber= >"[class: 'fancy']" "8675309"
 Show Account
</link:accountDetails>

That would result in:

"/details/8675309" "fancy" Show Account

6.4.10 Customizing URL Formats
The default URL Mapping mechanism supports camel case names in the URLs. The default URL for accessing an action named addNumbers
in a controller named would be something like . Grails allows for theMathHelperController /mathHelper/addNumbers
customization of this pattern and provides an implementation which replaces the camel case convention with a hyphenated convention that would
support URLs like . To enable hyphenated URLs assign a value of "hyphenated" to the /math-helper/add-numbers

 property in .grails.web.url.converter grails-app/conf/Config.groovy

// grails-app/conf/Config.groovy

grails.web.url.converter = 'hyphenated'

Arbitrary strategies may be plugged in by providing a class which implements the interface and adding an instance of that class toUrlConverter
the Spring application context with the bean name of . If Grails finds a bean in the context withgrails.web.UrlConverter.BEAN_NAME
that name, it will be used as the default converter and there is no need to assign a value to the configgrails.web.url.converter
property.

216

// src/groovy/com/myapplication/MyUrlConverterImpl.groovy

 com.myapplicationpackage

class MyUrlConverterImpl grails.web.UrlConverter {implements

 toUrlElement(propertyOrClassName) {String String
 // some representation of a property or class name that should be used in URLs…return
 }
}

// grails-app/conf/spring/resources.groovy

beans = {
 (com.myapplication.MyUrlConverterImpl)"${grails.web.UrlConverter.BEAN_NAME}"
}

6.5 Web Flow

Overview

Grails supports the creation of web flows built on the project. A web flow is a conversation that spans multiple requests andSpring Web Flow
retains state for the scope of the flow. A web flow also has a defined start and end state.

Web flows don't require an HTTP session, but instead store their state in a serialized form, which is then restored using a flow execution key that
Grails passes around as a request parameter. This makes flows far more scalable than other forms of stateful application that use the HttpSession
and its inherit memory and clustering concerns.

Web flow is essentially an advanced state machine that manages the "flow" of execution from one state to the next. Since the state is managed for
you, you don't have to be concerned with ensuring that users enter an action in the middle of some multi step flow, as web flow manages that for
you. This makes web flow perfect for use cases such as shopping carts, hotel booking and any application that has multi page work flows.

From Grails 1.2 onwards Webflow is no longer in Grails core, so you must install the Webflow plugin to use this
feature: grails install-plugin webflow

Creating a Flow

To create a flow create a regular Grails controller and add an action that ends with the convention . For example:Flow

class BookController {

def index() {
 redirect(action:)"shoppingCart"
 }

def shoppingCartFlow = {
 …
 }
}

Notice when redirecting or referring to the flow as an action we omit the suffix. In other words the name of the action of the above flow is Flow
. shoppingCart

http://www.springsource.org/webflow

217

6.5.1 Start and End States
As mentioned before a flow has a defined start and end state. A start state is the state which is entered when a user first initiates a conversation
(or flow). The start state of a Grails flow is the first method call that takes a block. For example:

class BookController {
 …
 def shoppingCartFlow ={
 showCart {
 on().to "checkout" "enterPersonalDetails"
 on().to "continueShopping" "displayCatalogue"
 }
 …
 displayCatalogue {
 redirect(controller: , action:)"catalogue" "show"
 }
 displayInvoice()
 }
}

Here the node is the start state of the flow. Since the showCart state doesn't define an action or redirect it is assumed be a showCart view state
that, by convention, refers to the view .grails-app/views/book/shoppingCart/showCart.gsp

Notice that unlike regular controller actions, the views are stored within a directory that matches the name of the flow:
.grails-app/views/book/shoppingCart

The flow also has two possible end states. The first is which performs an external redirect to anothershoppingCart displayCatalogue
controller and action, thus exiting the flow. The second is which is an end state as it has no events at all and will simplydisplayInvoice
render a view called whilst ending the flow at the same time.grails-app/views/book/shoppingCart/displayInvoice.gsp

Once a flow has ended it can only be resumed from the start state, in this case , and not from any other state. showCart

6.5.2 Action States and View States

View states

A view state is a one that doesn't define an or a . So for example this is a view state:action redirect

enterPersonalDetails {
 on().to "submit" "enterShipping"
 on().to " "return "showCart"
}

It will look for a view called by default. Note that the grails-app/views/book/shoppingCart/enterPersonalDetails.gsp
 state defines two events: and . The view is responsible for these events. Use the enterPersonalDetails submit return triggering

 method to change the view to be rendered:render

enterPersonalDetails {
 render(view:)"enterDetailsView"
 on().to "submit" "enterShipping"
 on().to " "return "showCart"
}

218

Now it will look for . Start the parameter with a / to usegrails-app/views/book/shoppingCart/enterDetailsView.gsp view
a shared view:

enterPersonalDetails {
 render(view:)"/shared/enterDetailsView"
 on().to "submit" "enterShipping"
 on().to " "return "showCart"
}

Now it will look for grails-app/views/shared/enterDetailsView.gsp

Action States

An action state is a state that executes code but does not render a view. The result of the action is used to dictate flow transition. To create an
action state you define an action to to be executed. This is done by calling the method and passing it a block of code to be executed:action

listBooks {
 action {
 [bookList: Book.list()]
 }
 on().to "success" "showCatalogue"
 on(Exception).to "handleError"
}

As you can see an action looks very similar to a controller action and in fact you can reuse controller actions if you want. If the action
successfully returns with no errors the event will be triggered. In this case since we return a Map, which is regarded as the "model"success
and is automatically placed in .flow scope

In addition, in the above example we also use an exception handler to deal with errors on the line:

on(Exception).to "handleError"

This makes the flow transition to a state called in the case of an exception.handleError

You can write more complex actions that interact with the flow request context:

processPurchaseOrder {
 action {
 def a = flow.address
 def p = flow.person
 def pd = flow.paymentDetails
 def cartItems = flow.cartItems
 flow.clear()

def o = Order(person: p, shippingAddress: a, paymentDetails: pd)new
 o.invoiceNumber = Random().nextInt(9999999)new
 (item in cartItems) { o.addToItems item }for
 o.save()
 [order: o]
 }
 on().to "error" "confirmPurchase"
 on(Exception).to "confirmPurchase"
 on().to "success" "displayInvoice"
}

219

Here is a more complex action that gathers all the information accumulated from the flow scope and creates an object. It then returns theOrder
order as the model. The important thing to note here is the interaction with the request context and "flow scope".

Transition Actions

Another form of action is what is known as a action. A transition action is executed directly prior to state transition once an hastransition event
been triggered. A simple example of a transition action can be seen below:

enterPersonalDetails {
 on() {"submit"
 log.trace "Going to enter shipping"
 }.to "enterShipping"
 on().to " "return "showCart"
}

Notice how we pass a block of the code to event that simply logs the transition. Transition states are very useful for submit data binding and
, which is covered in a later section. validation

6.5.3 Flow Execution Events
In order to execution of a flow from one state to the next you need some way of trigger an that indicates what the flow should dotransition event
next. Events can be triggered from either view states or action states.

Triggering Events from a View State

As discussed previously the start state of the flow in a previous code listing deals with two possible events. A event and a checkout
 event:continueShopping

def shoppingCartFlow = {
 showCart {
 on().to "checkout" "enterPersonalDetails"
 on().to "continueShopping" "displayCatalogue"
 }
 …
}

Since the event is a view state it will render the view . Within this viewshowCart grails-app/book/shoppingCart/showCart.gsp
you need to have components that trigger flow execution. On a form this can be done use the tag:submitButton

<g:form action= >"shoppingCart"
 <g:submitButton name= value= />"continueShopping" "Continue Shopping"
 <g:submitButton name= value= />"checkout" "Checkout"
</g:form>

The form must submit back to the flow. The name attribute of each tag signals which event will be triggered. IfshoppingCart submitButton
you don't have a form you can also trigger an event with the tag as follows:link

<g:link action= event= />"shoppingCart" "checkout"

220

Triggering Events from an Action

To trigger an event from an you invoke a method. For example there is the built in and methods. The exampleaction error() success()
below triggers the event on validation failure in a transition action:error()

enterPersonalDetails {
 on() {"submit"
 def p = Person(params)new
 flow.person = p
 (!p.validate()) error()if return
 }.to "enterShipping"
 on().to " "return "showCart"
}

In this case because of the error the transition action will make the flow go back to the state.enterPersonalDetails

With an action state you can also trigger events to redirect flow:

shippingNeeded {
 action {
 (params.shippingRequired) yes()if
 no()else
 }
 on().to "yes" "enterShipping"
 on().to "no" "enterPayment"
}

6.5.4 Flow Scopes

Scope Basics

You'll notice from previous examples that we used a special object called to store objects within "flow scope". Grails flows have fiveflow
different scopes you can utilize:

request - Stores an object for the scope of the current request

flash - Stores the object for the current and next request only

flow - Stores objects for the scope of the flow, removing them when the flow reaches an end state

conversation - Stores objects for the scope of the conversation including the root flow and nested subflows

session - Stores objects in the user's session

Grails service classes can be automatically scoped to a web flow scope. See the documentation on for moreServices
information.

Returning a model Map from an action will automatically result in the model being placed in flow scope. For example, using a transition action,
you can place objects within scope as follows:flow

221

1.

2.

enterPersonalDetails {
 on() {"submit"
 [person: Person(params)]new
 }.to "enterShipping"
 on().to " "return "showCart"
}

Be aware that a new request is always created for each state, so an object placed in request scope in an action state (for example) will not be
available in a subsequent view state. Use one of the other scopes to pass objects from one state to another. Also note that Web Flow:

Moves objects from flash scope to request scope upon transition between states;

Merges objects from the flow and conversation scopes into the view model before rendering (so you shouldn't include a scope prefix when
referencing these objects within a view, e.g. GSP pages).

Flow Scopes and Serialization

When placing objects in , or scope they must implement or an exception will beflash flow conversation java.io.Serializable
thrown. This has an impact on in that domain classes are typically placed within a scope so that they can be rendered in a view.domain classes
For example consider the following domain class:

class Book {
 titleString
}

To place an instance of the class in a flow scope you will need to modify it as follows:Book

class Book Serializable {implements
 titleString
}

This also impacts associations and closures you declare within a domain class. For example consider this:

class Book Serializable {implements
 titleString
 Author author
}

Here if the association is not you will also get an error. This also impacts closures used in such as Author Serializable GORM events
, and so on. The following domain class will cause an error if an instance is placed in a flow scope:onLoad onSave

class Book Serializable {implements

 titleString

def onLoad = {
 println "I'm loading"
 }
}

222

The reason is that the assigned block on the event cannot be serialized. To get around this you should declare all events as onLoad transient
:

class Book Serializable {implements

 titleString

 onLoad = {transient
 println "I'm loading"
 }
}

or as methods:

class Book Serializable {implements

 titleString

def onLoad() {
 println "I'm loading"
 }
}

6.5.5 Data Binding and Validation
In the section on , the start state in the first example triggered a transition to the state. This statestart and end states enterPersonalDetails
renders a view and waits for the user to enter the required information:

enterPersonalDetails {
 on().to "submit" "enterShipping"
 on().to " "return "showCart"
}

The view contains a form with two submit buttons that either trigger the submit event or the return event:

<g:form action= >"shoppingCart"
 <!-- Other fields -->
 <g:submitButton name= value= >"submit" "Continue" </g:submitButton>
 <g:submitButton name= value= >"return" "Back" </g:submitButton>
</g:form>

However, what about the capturing the information submitted by the form? To to capture the form info we can use a flow transition action:

enterPersonalDetails {
 on() {"submit"
 flow.person = Person(params)new
 !flow.person.validate() ? error() : success()
 }.to "enterShipping"
 on().to " "return "showCart"
}

223

Notice how we perform data binding from request parameters and place the instance within scope. Also interesting is that wePerson flow
perform and invoke the method if validation fails. This signals to the flow that the transition should halt and return to the validation error()

 view so valid entries can be entered by the user, otherwise the transition should continue and go to the enterPersonalDetails
 state.enterShipping

Like regular actions, flow actions also support the notion of by defining the first argument of the closure:Command Objects

enterPersonalDetails {
 on() { PersonDetailsCommand cmd ->"submit"
 flow.personDetails = cmd
 !flow.personDetails.validate() ? error() : success()
 }.to "enterShipping"
 on().to " "return "showCart"
}

6.5.6 Subflows and Conversations
Grails' Web Flow integration also supports subflows. A subflow is like a flow within a flow. For example take this search flow:

def searchFlow = {
 displaySearchForm {
 on().to "submit" "executeSearch"
 }
 executeSearch {
 action {
 [results:searchService.executeSearch(params.q)]
 }
 on().to "success" "displayResults"
 on().to "error" "displaySearchForm"
 }
 displayResults {
 on().to "searchDeeper" "extendedSearch"
 on().to "searchAgain" "displaySearchForm"
 }
 extendedSearch {
 // Extended search subflow
 subflow(controller: , action:)"searchExtensions" "extendedSearch"
 on().to "moreResults" "displayMoreResults"
 on().to "noResults" "displayNoMoreResults"
 }
 displayMoreResults()
 displayNoMoreResults()
}

It references a subflow in the state. The controller parameter is optional if the subflow is defined in the same controller asextendedSearch
the calling flow.

Prior to 1.3.5, the previous subflow call would look like , with thesubflow(extendedSearchFlow)
requirement that the name of the subflow state be the same as the called subflow (minus). This way of callingFlow
a subflow is deprecated and only supported for backward compatibility.

The subflow is another flow entirely:

224

def extendedSearchFlow = {
 startExtendedSearch {
 on().to "findMore" "searchMore"
 on().to "searchAgain" "noResults"
 }
 searchMore {
 action {
 def results = searchService.deepSearch(ctx.conversation.query)
 (!results) error()if return
 conversation.extendedResults = results
 }
 on().to "success" "moreResults"
 on().to "error" "noResults"
 }
 moreResults()
 noResults()
}

Notice how it places the in conversation scope. This scope differs to flow scope as it lets you share state that spans theextendedResults
whole conversation not just the flow. Also notice that the end state (either or of the subflow triggers the events inmoreResults noResults
the main flow:

extendedSearch {
 // Extended search subflow
 subflow(controller: , action:)"searchExtensions" "extendedSearch"
 on().to "moreResults" "displayMoreResults"
 on().to "noResults" "displayNoMoreResults"
}

6.6 Filters
Although Grails support fine grained interceptors, these are only really useful when applied to a few controllers and become difficultcontrollers
to manage with larger applications. Filters on the other hand can be applied across a whole group of controllers, a URI space or to a specific
action. Filters are far easier to plugin and maintain completely separately to your main controller logic and are useful for all sorts of cross cutting
concerns such as security, logging, and so on.

6.6.1 Applying Filters
To create a filter create a class that ends with the convention in the directory. Within this class define a codeFilters grails-app/conf
block called that contains the filter definitions:filters

class ExampleFilters {
 def filters = {
 // your filters here
 }
}

Each filter you define within the block has a name and a scope. The name is the method name and the scope is defined using namedfilters
arguments. For example to define a filter that applies to all controllers and all actions you can use wildcards:

sampleFilter(controller:'*', action:'*') {
 // interceptor definitions
}

225

The scope of the filter can be one of the following things:

A controller and/or action name pairing with optional wildcards

A URI, with Ant path matching syntax

Filter rule attributes:

controller - controller matching pattern, by default * is replaced with .* and a regex is compiled

controllerExclude - controller exclusion pattern, by default * is replaced with .* and a regex is compiled

action - action matching pattern, by default * is replaced with .* and a regex is compiled

actionExclude - action exclusion pattern, by default * is replaced with .* and a regex is compiled

regex (/) - use regex syntax (don't replace '*' with '.*')true false

uri - a uri to match, expressed with as Ant style path (e.g. /book/**)

uriExclude - a uri pattern to exclude, expressed with as Ant style path (e.g. /book/**)

find (/) - rule matches with partial match (see)true false java.util.regex.Matcher.find()

invert (/) - invert the rule (NOT rule)true false

Some examples of filters include:

All controllers and actions

all(controller: '*', action: '*') {

}

Only for the BookController

justBook(controller: 'book', action: '*') {

}

All controllers except the BookController

notBook(controller: 'book', invert:) {true

}

All actions containing 'save' in the action name

saveInActionName(action: '*save*', find:) {true

}

226

All actions starting with the letter 'b' except for actions beginning with the phrase 'bad*'

actionBeginningWithBButNotBad(action: 'b*', actionExclude: 'bad*', find:) {true

}

Applied to a URI space

someURIs(uri: '/book/**') {

}

Applied to all URIs

allURIs(uri: '/**') {

}

In addition, the order in which you define the filters within the code block dictates the order in which they are executed. To control thefilters
order of execution between classes, you can use the property discussed in section.Filters dependsOn filter dependencies

Note: When exclude patterns are used they take precedence over the matching patterns. For example, if action is 'b*'
and actionExclude is 'bad*' then actions like 'best' and 'bien' will have that filter applied but actions like 'bad' and
'badlands' will not.

6.6.2 Filter Types
Within the body of the filter you can then define one or several of the following interceptor types for the filter:

before - Executed before the action. Return to indicate that the response has been handled that that all future filters and the actionfalse
should not execute

after - Executed after an action. Takes a first argument as the view model to allow modification of the model before rendering the view

afterView - Executed after view rendering. Takes an Exception as an argument which will be non- if an exception occurs duringnull
processing. Note: this Closure is called before the layout is applied.

For example to fulfill the common simplistic authentication use case you could define a filter as follows:

227

class SecurityFilters {
 def filters = {
 loginCheck(controller: '*', action: '*') {
 before = {
 (!session.user && !actionName.equals('login')) {if
 redirect(action: 'login')
 return false
 }
 }
 }
 }
}

Here the filter uses a interceptor to execute a block of code that checks if a user is in the session and if not redirects tologinCheck before
the login action. Note how returning false ensure that the action itself is not executed.

6.6.3 Variables and Scopes
Filters support all the common properties available to and , plus the application context:controllers tag libraries

request - The HttpServletRequest object

response - The HttpServletResponse object

session - The HttpSession object

servletContext - The ServletContext object

flash - The flash object

params - The request parameters object

actionName - The action name that is being dispatched to

controllerName - The controller name that is being dispatched to

grailsApplication - The Grails application currently running

applicationContext - The ApplicationContext object

However, filters only support a subset of the methods available to controllers and tag libraries. These include:

redirect - For redirects to other controllers and actions

render - For rendering custom responses

6.6.4 Filter Dependencies
In a class, you can specify any other classes that should first be executed using the property. This is usedFilters Filters dependsOn
when a class depends on the behavior of another class (e.g. setting up the environment, modifying the request/session, etc.)Filters Filters
and is defined as an array of classes.Filters

Take the following example classes:Filters

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/ApplicationContext.html

228

class MyFilters {
 def dependsOn = [MyOtherFilters]

def filters = {
 checkAwesome(uri:) {"/*"
 before = {
 (request.isAwesome) { // something awesome }if do
 }
 }

checkAwesome2(uri:) {"/*"
 before = {
 (request.isAwesome) { // something awesome }if do else
 }
 }
 }
}

class MyOtherFilters {
 def filters = {
 makeAwesome(uri:) {"/*"
 before = {
 request.isAwesome = true
 }
 }
 doNothing(uri:) {"/*"
 before = {
 // nothingdo
 }
 }
 }
}

MyFilters specifically MyOtherFilters. This will cause all the filters in MyOtherFilters whose scope matches the current request todependsOn
be executed before those in MyFilters. For a request of "/test", which will match the scope of every filter in the example, the execution order
would be as follows:

MyOtherFilters - makeAwesome

MyOtherFilters - doNothing

MyFilters - checkAwesome

MyFilters - checkAwesome2

The filters within the MyOtherFilters class are processed in order first, followed by the filters in the MyFilters class. Execution order between
 classes are enabled and the execution order of filters within each class are preserved.Filters Filters

If any cyclical dependencies are detected, the filters with cyclical dependencies will be added to the end of the filter chain and processing will
continue. Information about any cyclical dependencies that are detected will be written to the logs. Ensure that your root logging level is set to at
l eas t WARN or conf igure an appender fo r the Gra i l s F i l t e r s P lug in (

) when debugging filter dependency issues. org.codehaus.groovy.grails.plugins.web.filters.FiltersGrailsPlugin

6.7 Ajax
Ajax is the driving force behind the shift to richer web applications. These types of applications in general are better suited to agile, dynamic
frameworks written in languages like and Grails provides support for building Ajax applications through its Ajax tag library. For aGroovy Ruby
full list of these see the Tag Library Reference.

http://groovy.codehaus.org
http://www.ruby-lang.org/.

229

6.7.1 Ajax Support
By default Grails ships with the library, but through the provides support for other frameworks such as ,jQuery Plugin system Prototype
Dojo:http://dojotoolkit.org/, Yahoo UI:http://developer.yahoo.com/yui/ and the .Google Web Toolkit

This section covers Grails' support for Ajax in general. To get started, add this line to the tag of your page:<head>

<g:javascript library= />"jquery"

You can replace with any other library supplied by a plugin you have installed. This works because of Grails' support for adaptive tagjQuery
libraries. Thanks to Grails' plugin system there is support for a number of different Ajax libraries including (but not limited to):

jQuery

Prototype

Dojo

YUI

MooTools

6.7.1.1 Remoting Linking
Remote content can be loaded in a number of ways, the most commons way is through the tag. This tag allows the creation of HTMLremoteLink
anchor tags that perform an asynchronous request and optionally set the response in an element. The simplest way to create a remote link is as
follows:

<g:remoteLink action= id= >"delete" "1" Delete Book</g:remoteLink>

The above link sends an asynchronous request to the action of the current controller with an id of . delete 1

6.7.1.2 Updating Content
This is great, but usually you provide feedback to the user about what happened:

def delete() {
 def b = Book.get(params.id)
 b.delete()
 render "Book ${b.id} was deleted"
}

GSP code:

<div id= >"message" </div>
<g:remoteLink action= id= update= >"delete" "1" "message"
Delete Book
</g:remoteLink>

http://jquery.com/
http://www.prototypejs.org/
http://code.google.com/webtoolkit/

230

The above example will call the action and set the contents of the to the response in this case . Thismessage div "Book 1 was deleted"
is done by the attribute on the tag, which can also take a Map to indicate what should be updated on failure:update

<div id= >"message" </div>
<div id= >"error" </div>
<g:remoteLink update="[success: 'message', failure: 'error']"
 action= id= >"delete" "1"
Delete Book
</g:remoteLink>

Here the div will be updated if the request failed. error

6.7.1.3 Remote Form Submission
An HTML form can also be submitted asynchronously in one of two ways. Firstly using the tag which expects similar attributes toformRemote
those for the tag:remoteLink

<g:formRemote url="[controller: 'book', action: 'delete']"
 update= >"[success: 'message', failure: 'error']"
 <input type= name= value= />"hidden" "id" "1"
 <input type= value= />"submit" "Delete Book!"
</g:formRemote >

Or alternatively you can use the tag to create a submit button. This allows some buttons to submit remotely and some notsubmitToRemote
depending on the action:

<form action= >"delete"
 <input type= name= value= />"hidden" "id" "1"
 <g:submitToRemote action="delete"
 update= />"[success: 'message', failure: 'error']"
</form>

6.7.1.4 Ajax Events
Specific JavaScript can be called if certain events occur, all the events start with the "on" prefix and let you give feedback to the user where
appropriate, or take other action:

<g:remoteLink action="show"
 id="1"
 update="success"
 onLoading="showProgress()"
 onComplete= >"hideProgress()" Show Book 1</g:remoteLink>

The above code will execute the "showProgress()" function which may show a progress bar or whatever is appropriate. Other events include:

231

onSuccess - The JavaScript function to call if successful

onFailure - The JavaScript function to call if the call failed

on_ERROR_CODE - The JavaScript function to call to handle specified error codes (eg on404="alert('not found!')")

onUninitialized - The JavaScript function to call the a Ajax engine failed to initialise

onLoading - The JavaScript function to call when the remote function is loading the response

onLoaded - The JavaScript function to call when the remote function is completed loading the response

onComplete - The JavaScript function to call when the remote function is complete, including any updates

If you need a reference to the object you can use the implicit event parameter to obtain it:XmlHttpRequest e

<g:javascript>
 function fireMe(e) {
 alert(+ e)"XmlHttpRequest = "
 }
}
</g:javascript>
<g:remoteLink action="example"
 update="success"

Ajax Link onSuccess= >"fireMe(e)" </g:remoteLink>

6.7.2 Ajax with Prototype
Grails features an external plugin to add support to Grails. To install the plugin type the following command from the root of yourPrototype
project in a terminal window:

grails install-plugin prototype

This will download the current supported version of the Prototype plugin and install it into your Grails project. With that done you can add the
following reference to the top of your page:

<g:javascript library= />"prototype"

If you require too you can do the following instead:Scriptaculous

<g:javascript library= />"scriptaculous"

Now all of Grails tags such as , and work with Prototype remoting. remoteLink formRemote submitToRemote

6.7.3 Ajax with Dojo
Grails features an external plugin to add support to Grails. To install the plugin type the following command from the root of your projectDojo
in a terminal window:

http://www.prototypejs.org/
http://script.aculo.us/
http://dojotoolkit.org/

232

grails install-plugin dojo

This will download the current supported version of Dojo and install it into your Grails project. With that done you can add the following
reference to the top of your page:

<g:javascript library= />"dojo"

Now all of Grails tags such as , and work with Dojo remoting. remoteLink formRemote submitToRemote

6.7.4 Ajax with GWT
Grails also features support for the through a plugin. There is comprehensive available on the Grails wiki. Google Web Toolkit documentation

6.7.5 Ajax on the Server
There are a number of different ways to implement Ajax which are typically broken down into:

Content Centric Ajax - Where you just use the HTML result of a remote call to update the page

Data Centric Ajax - Where you actually send an XML or JSON response from the server and programmatically update the page

Script Centric Ajax - Where the server sends down a stream of JavaScript to be evaluated on the fly

Most of the examples in the section cover Content Centric Ajax where you are updating the page, but you may also want to use DataAjax
Centric or Script Centric. This guide covers the different styles of Ajax.

Content Centric Ajax

Just to re-cap, content centric Ajax involves sending some HTML back from the server and is typically done by rendering a template with the
 method:render

def showBook() {
 def b = Book.get(params.id)

render(template: , model: [book: b])"bookTemplate"
}

Calling this on the client involves using the tag:remoteLink

<g:remoteLink action= id="showBook" "${book.id}"
 update= >"book${book.id}" Update Book</g:remoteLink>

<div id= >"book${book.id}"
 <!--existing book mark-up -->
</div>

Data Centric Ajax with JSON

http://code.google.com/webtoolkit/
http://grails.org/plugin/gwt

233

Data Centric Ajax typically involves evaluating the response on the client and updating programmatically. For a JSON response with Grails you
would typically use Grails' capability:JSON marshalling

import grails.converters.JSON

def showBook() {
 def b = Book.get(params.id)

render b as JSON
}

And then on the client parse the incoming JSON request using an Ajax event handler:

<g:javascript>
function updateBook(e) {
 var book = eval(+e.responseText+) // evaluate the JSON"(" ")"
 $(+ book.id +).innerHTML = book.title"book" "_title"
}
<g:javascript>
<g:remoteLink action= update= onSuccess= >"test" "foo" "updateBook(e)"
 Update Book
</g:remoteLink>

book${book.id}<g:set var= >"bookId" </g:set>
<div id= >"${bookId}"
 The Stand<div id= >"${bookId}_title" </div>
</div>

Data Centric Ajax with XML

On the server side using XML is equally simple:

import grails.converters.XML

def showBook() {
 def b = Book.get(params.id)

render b as XML
}

However, since DOM is involved the client gets more complicated:

<g:javascript>
function updateBook(e) {
 var xml = e.responseXML
 var id = xml.getElementsByTagName().getAttribute()"book" "id"
 $(+ id +) = xml.getElementsByTagName()[0].textContent"book" "_title" "title"
}
<g:javascript>
<g:remoteLink action= update= onSuccess= >"test" "foo" "updateBook(e)"
 Update Book
</g:remoteLink>

book${book.id}<g:set var= >"bookId" </g:set>
<div id= >"${bookId}"
 The Stand<div id= >"${bookId}_title" </div>
</div>

234

Script Centric Ajax with JavaScript

Script centric Ajax involves actually sending JavaScript back that gets evaluated on the client. An example of this can be seen below:

def showBook() {
 def b = Book.get(params.id)

response.contentType = "text/javascript"
 title = b.title.encodeAsJavascript()String
 render "$('book${b.id}_title')='${title}'"
}

The important thing to remember is to set the to . If you use Prototype on the client the returnedcontentType text/javascript
JavaScript will automatically be evaluated due to this setting.contentType

Obviously in this case it is critical that you have an agreed client-side API as you don't want changes on the client breaking the server. This is one
of the reasons Rails has something like RJS. Although Grails does not currently have a feature such as RJS there is a Dynamic JavaScript Plugin
that offers similar capabilities.

Responding to both Ajax and non-Ajax requests

It's straightforward to have the same Grails controller action handle both Ajax and non-Ajax requests. Grails adds the method to isXhr()
 which can be used to identify Ajax requests. For example you could render a page fragment using a template for AjaxHttpServletRequest

requests or the full page for regular HTTP requests:

def listBooks() {
 def books = Book.list(params)
 (request.xhr) {if
 render template: , model: [books: books]"bookTable"
 } {else
 render view: , model: [books: books]"list"
 }
}

6.8 Content Negotiation
Grails has built in support for using either the HTTP header, an explicit format request parameter or the extensionContent negotiation Accept
of a mapped URI.

Configuring Mime Types

Before you can start dealing with content negotiation you need to tell Grails what content types you wish to support. By default Grails comes
configured with a number of different content types within using the grails-app/conf/Config.groovy grails.mime.types
setting:

http://grails.org/plugin/dynamic-javascript
http://en.wikipedia.org/wiki/Content_negotiation

235

grails.mime.types = [xml: ['text/xml', 'application/xml'],
 text: 'text-plain',
 js: 'text/javascript',
 rss: 'application/rss+xml',
 atom: 'application/atom+xml',
 css: 'text/css',
 csv: 'text/csv',
 all: '*/*',
 json: 'text/json',
 html: ['text/html','application/xhtml+xml']
]

The above bit of configuration allows Grails to detect to format of a request containing either the 'text/xml' or 'application/xml' media types as
simply 'xml'. You can add your own types by simply adding new entries into the map.

Content Negotiation using the Accept header

Every incoming HTTP request has a special header that defines what media types (or mime types) a client can "accept". In older browsersAccept
this is typically:

/

Which simply means anything. However, on newer browser something all together more useful is sent such as (an example of a Firefox Accept
header):

text/xml, application/xml, application/xhtml+xml, text/html;q=0.9,
text/plain;q=0.8, image/png, */*;q=0.5

Grails parses this incoming format and adds a to the object that outlines the preferred response format. For the aboveproperty response
example the following assertion would pass:

assert 'html' == response.format

Why? The media type has the highest "quality" rating of 0.9, therefore is the highest priority. If you have an older browser astext/html
mentioned previously the result is slightly different:

assert 'all' == response.format

In this case 'all' possible formats are accepted by the client. To deal with different kinds of requests from you can use the Controllers withFormat
method that acts as kind of a switch statement:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

236

import grails.converters.XML

class BookController {

def list() {
 def books = Book.list()
 withFormat {
 html bookList: books
 js { render }"alert('hello')"
 xml { render books as XML }
 }
 }
}

If the preferred format is then Grails will execute the call only. This causes Grails to look for a view called either html html()
 or . If the format is then the closuregrails-app/views/books/list.html.gsp grails-app/views/books/list.gsp xml

will be invoked and an XML response rendered.

How do we handle the "all" format? Simply order the content-types within your block so that whichever one you want executedwithFormat
comes first. So in the above example, "all" will trigger the handler.html

When using make sure it is the last call in your controller action as the return value of the withFormat
 method is used by the action to dictate what happens next.withFormat

Request format vs. Response format

As of Grails 2.0, there is a separate notion of the format and the format. The request format is dictated by the request response CONTENT_TYPE
header and is typically used to detect if the incoming request can be parsed into XML or JSON, whilst the response format uses the file
extension, format parameter or ACCEPT header to attempt to deliver an appropriate response to the client.

The available on controllers deals specifically with the response format. If you wish to add logic that deals with the request formatwithFormat
then you can do so using a separate method available on the request:withFormat

request.withFormat {
 xml {
 // read XML
 }
 json {
 // read JSON
 }
}

Content Negotiation with the format Request Parameter

If fiddling with request headers if not your favorite activity you can override the format used by specifying a request parameter:format

/book/list?format=xml

You can also define this parameter in the definition:URL Mappings

237

"/book/list"(controller: , action:) {"book" "list"
 format = "xml"
}

Content Negotiation with URI Extensions

Grails also supports content negotiation using URI extensions. For example given the following URI:

/book/list.xml

Grails will remove the extension and map it to instead whilst simultaneously setting the content format to based on this/book/list xml
extension. This behaviour is enabled by default, so if you wish to turn it off, you must set the property ingrails.mime.file.extensions

 to :grails-app/conf/Config.groovy false

grails.mime.file.extensions = false

Testing Content Negotiation

To test content negotiation in a unit or integration test (see the section on) you can either manipulate the incoming request headers:Testing

void testJavascriptOutput() {
 def controller = TestController()new
 controller.request.addHeader ,"Accept"
 "text/javascript, text/html, application/xml, text/xml, */*"

controller.testAction()
 assertEquals , controller.response.contentAsString"alert('hello')"
}

Or you can set the format parameter to achieve a similar effect:

void testJavascriptOutput() {
 def controller = TestController()new
 controller.params.format = 'js'

controller.testAction()
 assertEquals , controller.response.contentAsString"alert('hello')"
}

238

7 Validation
Grails validation capability is built on and data binding capabilities. However Grails takes this further and provides aSpring's Validator API
unified way to define validation "constraints" with its constraints mechanism.

Constraints in Grails are a way to declaratively specify validation rules. Most commonly they are applied to , however domain classes URL
 and also support constraints. Mappings Command Objects

7.1 Declaring Constraints
Within a domain class are defined with the constraints property that is assigned a code block:constraints

class User {
 loginString
 passwordString
 emailString
 ageInteger

 constraints = {static
 …
 }
}

You then use method calls that match the property name for which the constraint applies in combination with named parameters to specify
constraints:

class User {
 ...

 constraints = {static
 login size: 5..15, blank: , unique: false true
 password size: 5..15, blank: false
 email email: , blank: true false
 age min: 18
 }
}

In this example we've declared that the property must be between 5 and 15 characters long, it cannot be blank and must be unique. We'velogin
also applied other constraints to the , and properties.password email age

By default, all domain class properties are not nullable (i.e. they have an implicit constraint).nullable: false
The same is not true for command object properties, which are nullable by default.

A complete reference for the available constraints can be found in the Quick Reference section under the Constraints heading.

A word of warning - referencing domain class properties from constraints

It's very easy to attempt to reference instance variables from the static constraints block, but this isn't legal in Groovy (or Java). If you do so, you
will get a for your trouble. For example, you may tryMissingPropertyException

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/validation/package-summary.html

239

class Response {
 Survey survey
 Answer answer

 constraints = {static
 survey blank: false
 answer blank: , inList: survey.answersfalse
 }
}

See how the constraint references the instance property ? That won't work. Instead, use a custom :inList survey validator

class Response {
 …
 constraints = {static
 survey blank: false
 answer blank: , validator: { val, obj -> val in obj.survey.answers }false
 }
}

In this example, the argument to the custom validator is the domain that is being validated, so we can access its propertyobj instance survey
and return a boolean to indicate whether the new value for the property, , is valid. answer val

7.2 Validating Constraints

Validation Basics

Call the method to validate a domain class instance:validate

def user = User(params)new

 (user.validate()) {if
 // something with userdo
}

 {else
 user.errors.allErrors.each {
 println it
 }
}

The property on domain classes is an instance of the Spring interface. The interface provides methods to navigate theerrors Errors Errors
validation errors and also retrieve the original values.

Validation Phases

Within Grails there are two phases of validation, the first one being which occurs when you bind request parameters onto andata binding
instance such as:

def user = User(params)new

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/validation/Errors.html

240

At this point you may already have errors in the property due to type conversion (such as converting Strings to Dates). You can checkerrors
these and obtain the original input value using the API:Errors

if (user.hasErrors()) {
 (user.errors.hasFieldErrors()) {if "login"
 println user.errors.getFieldError().rejectedValue"login"
 }
}

The second phase of validation happens when you call or . This is when Grails will validate the bound values againts the validate save constraints
you defined. For example, by default the method calls before executing, allowing you to write code like:save validate

if (user.save()) {
 userreturn
}

 {else
 user.errors.allErrors.each {
 println it
 }
}

7.3 Validation on the Client

Displaying Errors

Typically if you get a validation error you redirect back to the view for rendering. Once there you need some way of displaying errors. Grails
supports a rich set of tags for dealing with errors. To render the errors as a list you can use :renderErrors

<g:renderErrors bean= />"${user}"

If you need more control you can use and :hasErrors eachError

<g:hasErrors bean= >"${user}"

 <g:eachError var= bean= >"err" "${user}"
 ${err}
 </g:eachError>

</g:hasErrors>

Highlighting Errors

It is often useful to highlight using a red box or some indicator when a field has been incorrectly input. This can also be done with the hasErrors
by invoking it as a method. For example:

<div class='value ${hasErrors(bean:user,field:'login','errors')}'>
 <input type= name= value= />"text" "login" "${fieldValue(bean:user,field:'login')}"
</div>

241

This code checks if the field of the bean has any errors and if so it adds an CSS class to the , allowing you to uselogin user errors div
CSS rules to highlight the .div

Retrieving Input Values

Each error is actually an instance of the class in Spring, which retains the original input value within it. This is useful as you can useFieldError
the error object to restore the value input by the user using the tag:fieldValue

<input type= name= value= />"text" "login" "${fieldValue(bean:user,field:'login')}"

This code will check for an existing in the bean and if there is obtain the originally input value for the field. FieldError User login

7.4 Validation and Internationalization
Another important thing to note about errors in Grails is that error messages are not hard coded anywhere. The class in Spring resolvesFieldError
messages from message bundles using Grails' support.i18n

Constraints and Message Codes

The codes themselves are dictated by a convention. For example consider the constraints we looked at earlier:

package com.mycompany.myapp

class User {
 ...

 constraints = {static
 login size: 5..15, blank: , unique: false true
 password size: 5..15, blank: false
 email email: , blank: true false
 age min: 18
 }
}

If a constraint is violated Grails will by convention look for a message code of the form:

[Name].[Property Name].[Constraint Code]Class

In the case of the constraint this would be so you would need a message such as the following in your blank user.login.blank
 file:grails-app/i18n/messages.properties

user.login.blank=Your login name must be specified!

The class name is looked for both with and without a package, with the packaged version taking precedence. So for example,
com.mycompany.myapp.User.login.blank will be used before user.login.blank. This allows for cases where your domain class message codes
clash with a plugin's.

For a reference on what codes are for which constraints refer to the reference guide for each constraint.

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/validation/FieldError.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/validation/FieldError.html

242

Displaying Messages

The tag will automatically look up messages for you using the tag. If you need more control of rendering you can handlerenderErrors message
this yourself:

<g:hasErrors bean= >"${user}"

 <g:eachError var= bean= >"err" "${user}"
 <g:message error= />"${err}"
 </g:eachError>

</g:hasErrors>

In this example within the body of the tag we use the tag in combination with its argument to read the message for theeachError message error
given error.

7.5 Validation Non Domain and Command Object Classes
 and support validation by default. Other classes may be made validateable by defining the static Domain classes command objects
 property in the class (as described above) and then telling the framework about them. It is important that the application registerconstraints

the validateable classes with the framework. Simply defining the property is not sufficient.constraints

The Validateable Annotation

Classes which define the static property and are annotated with @Validateable can be made validateable by the framework.constraints
Consider this example:

// src/groovy/com/mycompany/myapp/User.groovy
 com.mycompany.myapppackage

 grails.validation.Validateableimport

@Validateable
class User {
 ...

 constraints = {static
 login size: 5..15, blank: , unique: false true
 password size: 5..15, blank: false
 email email: , blank: true false
 age min: 18
 }
}

Registering Validateable Classes

If a class is not marked with Validateable, it may still be made validateable by the framework. The steps
constraintsrequired to do this are to define the static property in the class (as described above)

grails.validateable.classesand then telling the framework about the class by assigning a value to the
Config.groovy@:property in

243

grails.validateable.classes = [com.mycompany.myapp.User, com.mycompany.dto.Account]

244

8 The Service Layer
Grailsservice. Grailscontroller

Grails,servicecontroller

Service

Grails service, :create-service

grails create-service helloworld.simple

create-servicepackageGrailspackage

serviceservice .Grails ,Groovy:grails-app/services/helloworld/SimpleService.groovy Service

package helloworld

class SimpleService {
}

8.1 Declarative Transactions

Services-- :service Springdomain withTransaction

Grailsserviceserviceservicetransactional false

class CountryService {
 transactional = static false
}

trueservice

: service.newnew BookService()

.Runtime ErrorPROPAGATION_REQUIRED

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/transaction/TransactionDefinition.html#PROPAGATION_REQUIRED

245

Checked. GroovycheckeduncheckedSpring. checkedunchecked

GrailsSpring Transactional

GrailsService Transactional

listBooksupdateBookdeleteBook

import org.springframework.transaction.annotation.Transactional

class BookService {

@Transactional(readOnly =)true
 def listBooks() {
 Book.list()
 }

@Transactional
 def updateBook() {
 // …
 }

def deleteBook() {
 // …
 }
}

ServiceServiceService Transactional= TRUE

import org.springframework.transaction.annotation.Transactional

@Transactional
class BookService {

def listBooks() {
 Book.list()
 }

def updateBook() {
 // …
 }

def deleteBook() {
 // …
 }
}

, : listBooks

246

import org.springframework.transaction.annotation.Transactional

@Transactional
class BookService {

@Transactional(readOnly =)true
 def listBooks() {
 Book.list()
 }

def updateBook() {
 // …
 }

def deleteBook() {
 // …
 }
}

 updateBook deleteBook

Spring .Using @Transactional

GrailsSpringGrails Transactional

8.1.1 Transactions Rollback and the Session

Understanding Transactions and the Hibernate Session

When using transactions there are important considerations you must take into account with regards to how the underlying persistence session is
handled by Hibernate. When a transaction is rolled back the Hibernate session used by GORM is cleared. This means any objects within the
session become detached and accessing uninitialized lazy-loaded collections will lead to s.LazyInitializationException

To understand why it is important that the Hibernate session is cleared. Consider the following example:

class Author {
 nameString
 ageInteger

 hasMany = [books: Book]static
}

If you were to save two authors using consecutive transactions as follows:

Author.withTransaction { status ->
 Author(name: , age: 40).save()new "Stephen King"
 status.setRollbackOnly()
}

Author.withTransaction { status ->
 Author(name: , age: 40).save()new "Stephen King"
}

Only the second author would be saved since the first transaction rolls back the author by clearing the Hibernate session. If thesave()
Hibernate session were not cleared then both author instances would be persisted and it would lead to very unexpected results.

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/transaction.html#transaction-declarative-annotations

247

It can, however, be frustrating to get s due to the session being cleared.LazyInitializationException

For example, consider the following example:

class AuthorService {

void updateAge(id, age) {int
 def author = Author.get(id)
 author.age = age
 (author.isTooOld()) {if
 AuthorException(, author)throw new "too old"
 }
 }
}

class AuthorController {

def authorService

def updateAge() {
 {try
 authorService.updateAge(params.id, params. ())int "age"
 }
 (e) {catch
 render "Author books ${e.author.books}"
 }
 }
}

In the above example the transaction will be rolled back if the 's age exceeds the maximum value defined in the methodAuthor isTooOld()
by throwing an . The references the author but when the association is accessed a AuthorException AuthorException books

 will be thrown because the underlying Hibernate session has been cleared.LazyInitializationException

To solve this problem you have a number of options. One is to ensure you query eagerly to get the data you will need:

class AuthorService {
 …
 void updateAge(id, age) {int
 def author = Author.findById(id, [fetch:[books:]])"eager"
 ...

In this example the association will be queried when retrieving the .books Author

This is the optimal solution as it requires fewer queries then the following suggested solutions.

Another solution is to redirect the request after a transaction rollback:

248

class AuthorController {

AuthorService authorService

def updateAge() {
 {try
 authorService.updateAge(params.id, params. ())int "age"
 }
 (e) {catch
 flash.message "Can't update age"
 redirect action: , id:params.id"show"
 }
 }
}

In this case a new request will deal with retrieving the again. And, finally a third solution is to retrieve the data for the again toAuthor Author
make sure the session remains in the correct state:

class AuthorController {

def authorService

def updateAge() {
 {try
 authorService.updateAge(params.id, params. ())int "age"
 }
 (e) {catch
 def author = Author.read(params.id)
 render "Author books ${author.books}"
 }
 }
}

Validation Errors and Rollback

A common use case is to rollback a transaction if there are validation errors. For example consider this service:

import grails.validation.ValidationException

class AuthorService {

void updateAge(id, age) {int
 def author = Author.get(id)
 author.age = age
 (!author.validate()) {if
 ValidationException(, author.errors)throw new "Author is not valid"
 }
 }
}

To re-render the same view that a transaction was rolled back in you can re-associate the errors with a refreshed instance before rendering:

249

import grails.validation.ValidationException

class AuthorController {

def authorService

def updateAge() {
 {try
 authorService.updateAge(params.id, params. ())int "age"
 }
 (ValidationException e) {catch
 def author = Author.read(params.id)
 author.errors = e.errors
 render view: , model: [author:author]"edit"
 }
 }
}

8.2 Scoped Services
By default, access to service methods is not synchronised, so nothing prevents concurrent execution of those methods. In fact, because the service
is a singleton and may be used concurrently, you should be very careful about storing state in a service. Or take the easy (and better) road and
never store state in a service.

You can change this behaviour by placing a service in a particular scope. The supported scopes are:

prototype - A new service is created every time it is injected into another class

request - A new service will be created per request

flash - A new service will be created for the current and next request only

flow - In web flows the service will exist for the scope of the flow

conversation - In web flows the service will exist for the scope of the conversation. ie a root flow and its sub flows

session - A service is created for the scope of a user session

singleton (default) - Only one instance of the service ever exists

If your service is , or scoped it must implement andflash flow conversation java.io.Serializable
can only be used in the context of a Web Flow

To enable one of the scopes, add a static scope property to your class whose value is one of the above, for example

static scope = "flow"

8.3 Dependency Injection and Services

Dependency Injection Basics

A key aspect of Grails services is the ability to use 's dependency injection features. Grails supports "dependency injection bySpring Framework
convention". In other words, you can use the property name representation of the class name of a service to automatically inject them into
controllers, tag libraries, and so on.

http://www.springframework.org/

250

As an example, given a service called , if you define a property called in a controller as follows:BookService bookService

class BookController {
 def bookService
 …
}

In this case, the Spring container will automatically inject an instance of that service based on its configured scope. All dependency injection is
done by name. You can also specify the type as follows:

class AuthorService {
 BookService bookService
}

NOTE: Normally the property name is generated by lower casing the first letter of the type. For example, an
instance of the class would map to a property named .BookService bookService

To be consistent with standard JavaBean conventions, if the first 2 letters of the class name are upper case, the
property name is the same as the class name. For example, the property name of the classJDBCHelperService
would be , not or .JDBCHelperService jDBCHelperService jdbcHelperService

See section 8.8 of the JavaBean specification for more information on de-capitalization rules.

Dependency Injection and Services

You can inject services in other services with the same technique. If you had an that needed to use the ,AuthorService BookService
declaring the as follows would allow that:AuthorService

class AuthorService {
 def bookService
}

Dependency Injection and Domain Classes / Tag Libraries

You can even inject services into domain classes and tag libraries, which can aid in the development of rich domain models and views:

class Book {
 …
 def bookService

def buyBook() {
 bookService.buyBook()this
 }
}

8.4 Using Services from Java

251

One of the powerful things about services is that since they encapsulate re-usable logic, you can use them from other classes, including Java
classes. There are a couple of ways you can reuse a service from Java. The simplest way is to move your service into a package within the

 directory. The reason this is important is that it is not possible to import classes into Java from the default packagegrails-app/services
(the package used when no package declaration is present). So for example the below cannot be used from Java as it stands:BookService

class BookService {
 void buyBook(Book book) {
 // logic
 }
}

However, this can be rectified by placing this class in a package, by moving the class into a sub directory such as
 and then modifying the package declaration:grails-app/services/bookstore

package bookstore

class BookService {
 void buyBook(Book book) {
 // logic
 }
}

An alternative to packages is to instead have an interface within a package that the service implements:

package bookstore

 BookStore {interface
 void buyBook(Book book)
}

And then the service:

class BookService bookstore.BookStore {implements
 void buyBook(Book b) {
 // logic
 }
}

This latter technique is arguably cleaner, as the Java side only has a reference to the interface and not to the implementation class (although it's
always a good idea to use packages). Either way, the goal of this exercise to enable Java to statically resolve the class (or interface) to use, at
compile time.

Now that this is done you can create a Java class within the directory and add a setter that uses the type and the name of the bean insrc/java
Spring:

252

// src/java/bookstore/BookConsumer.java
 bookstore;package

 class BookConsumer {public

 BookStore store;private

 void setBookStore(BookStore storeInstance) {public
 .store = storeInstance;this
 }
 …
}

Once this is done you can configure the Java class as a Spring bean in (for moregrails-app/conf/spring/resources.xml
information see the section on):Grails and Spring

<bean id= class= >"bookConsumer" "bookstore.BookConsumer"
 <property name= ref= />"bookStore" "bookService"
</bean>

or in :grails-app/conf/spring/resources.groovy

import bookstore.BookConsumer

beans = {
 bookConsumer(BookConsumer) {
 bookStore = ref()"bookService"
 }
}

253

9 Testing
Automated testing is a key part of Grails. Hence, Grails provides many ways to making testing easier from low level unit testing to high level
functional tests. This section details the different capabilities that Grails offers for testing.

Grails 1.3.x and below used the class hierarchy for testing in a JUnit 3grails.test.GrailsUnitTestCase
style. Grails 2.0.x and above deprecates these test harnesses in favour of mixins that can be applied to a range of
different kinds of tests (JUnit 3, Junit 4, Spock etc.) without subclassing

The first thing to be aware of is that all of the and commands create or tests automatically.create-* generate-* unit integration
For example if you run the command as follows:create-controller

grails create-controller com.acme.app.simple

Grails will create a controller at , and also a unit test at grails-app/controllers/com/acme/app/SimpleController.groovy
. What Grails won't do however is populate the logic inside the test!test/unit/com/acme/app/SimpleControllerTests.groovy

That is left up to you.

The default class name suffix is but as of Grails 1.2.2, the suffix of is also supported.Tests Test

Running Tests

Test are run with the command:test-app

grails test-app

Note that you will be able to run unit tests much quicker if you use an IDE or if you use the "interactive mode" to start-up Grails, thus preventing
the need to stop the JVM:

grails
…
test-app

The command will produce output such as:test-app

Running Unit Tests…
Running test FooTests...FAILURE
Unit Tests Completed in 464ms …

Tests failed: 0 errors, 1 failures

254

Whilst reports will have been written out the directory.target/test-reports

You can force a clean before running tests by passing to the command.-clean test-app

Targeting Tests

You can selectively target the test(s) to be run in different ways. To run all tests for a controller named you would run:SimpleController

grails test-app SimpleController

This will run any tests for the class named . Wildcards can be used...SimpleController

grails test-app *Controller

This will test all classes ending in . Package names can optionally be specified...Controller

grails test-app some.org.*Controller

or to run all tests in a package...

grails test-app some.org.*

or to run all tests in a package including subpackages...

grails test-app some.org.**.*

You can also target particular test methods...

grails test-app SimpleController.testLogin

This will run the test in the tests. You can specify as many patterns in combination as you like...testLogin SimpleController

grails test-app some.org.* SimpleController.testLogin BookController

Targeting Test Types and/or Phases

In addition to targeting certain tests, you can also target test and/or by using the syntax.types phases phase:type

255

Grails organises tests by phase and by type. A test phase relates to the state of the Grails application during the tests,
and the type relates to the testing mechanism.

Grails comes with support for 4 test phases (, , and) and JUnit testunit integration functional other
types for the and phases. These test types have the same name as the phase.unit integration

Testing plugins may provide new test phases or new test types for existing phases. Refer to the plugin
documentation.

To execute the JUnit tests you can run:integration

grails test-app integration:integration

Both and are optional. Their absence acts as a wildcard. The following command will run all test types in the phase:phase type unit

grails test-app unit:

The Grails is one plugin that adds new test types to Grails. It adds a test type to the , and Spock Plugin spock unit integration
 phases. To run all spock tests in all phases you would run the following:functional

grails test-app :spock

To run the all of the spock tests in the phase you would run...functional

grails test-app functional:spock

More than one pattern can be specified...

grails test-app unit:spock integration:spock

Targeting Tests in Types and/or Phases

Test and type/phase targetting can be applied at the same time:

grails test-app integration: unit: some.org.**.*

This would run all tests in the and phases that are in the package or a subpackage. integration unit some.org

9.1 Unit Testing

http://grails.org/plugin/spock

256

Unit testing are tests at the "unit" level. In other words you are testing individual methods or blocks of code without consideration for
surrounding infrastructure. Unit tests are typically run without the presence of physical resources that involve I/O such databases, socket
connections or files. This is to ensure they run as quick as possible since quick feedback is important.

Since Grails 2.0, a collection of unit testing mixins is provided by Grails that lets you enhance the behavior of a typical JUnit 3, JUnit 4 or Spock
test. The following sections cover the usage of these mixins.

The previous JUnit 3-style class hierarchy is still present in Grails for backwardsGrailsUnitTestCase
compatibility, but is now deprecated. The previous documentation on the subject can be found in the Grails 1.3.x
documentation

9.1.1 Unit Testing Controllers

The Basics

You use the annotation to unit test controllers. Using in this manner activates the grails.test.mixin.TestFor TestFor
 and its associated API. For example:grails.test.mixin.web.ControllerUnitTestMixin

import grails.test.mixin.TestFor

@TestFor(SimpleController)
class SimpleControllerTests {
 void testSomething() {

}
}

Adding the annotation to a controller causes a new field to be automatically created for the controller under test.TestFor controller

The annotation will also automatically annotate any public methods starting with "test" with JUnit 4'sTestFor
@Test annotation. If any of your test method don't start with "test" just add this manually

To test the simplest "Hello World"-style example you can do the following:

// Test class
class SimpleController {
 def hello() {
 render "hello"
 }
}

void testHello() {
 controller.hello()

assert response.text == 'hello'
}

http://grails.org/doc/1.3.x/guide/9.%20Testing.html
http://grails.org/doc/1.3.x/guide/9.%20Testing.html

257

T h e o b j e c t i s a n i n s t a n c e o f r e s p o n s e
 which extends Spring's org.codehaus.groovy.grails.plugins.testing.GrailsMockHttpServletResponse

 and has a number of useful methods for inspecting the state of theorg.springframework.mock.web.MockHttpServletResponse
response.

For example to test a redirect you can use the property:redirectUrl

// Test class
class SimpleController {
 def index() {
 redirect action: 'hello'
 }
 …
}

void testIndex() {
 controller.index()

assert response.redirectedUrl == '/simple/hello'
}

Testing View Rendering

To test view rendering you can inspect the state of the controller's property (an instance of modelAndView
) or you can use the and properties provided by the mixin:org.springframework.web.servlet.ModelAndView view model

// Test class
class SimpleController {
 def home() {
 render view: , model: [title:]"homePage" "Hello World"
 }
 …
}

void testIndex() {
 controller.home()

assert view == "/simple/homePage"
 assert model.title == "Hello World"
}

Testing Template Rendering

Unlike view rendering, template rendering will actually attempt to write the template directly to the response rather than returning a
 hence it requires a different approach to testing.ModelAndView

Consider the following controller action:

258

class SimpleController {
 def display() {
 render template:"snippet"
 }
}

In this example the controller will look for a template in . You can test this as follows:grails-app/views/simple/_snippet.gsp

void testDisplay() {
 controller.display()
 assert response.text == 'contents of template'
}

However, you may not want to render the real template, but just test that is was rendered. In this case you can provide mock Groovy Pages:

void testDisplay() {
 views['/simple/_snippet.gsp'] = 'mock contents'
 controller.display()
 assert response.text == 'mock contents'
}

Testing XML and JSON Responses

XML and JSON response are also written directly to the response. Grails' mocking capabilities provide some conveniences for testing XML and
JSON response. For example consider the following action:

def renderXml() {
 render(contentType:) {"text/xml"
 book(title:)"Great"
 }
}

This can be tested using the property of the response:xml

void testRenderXml() {
 controller.renderXml()
 assert == response.text"<book title='Great'/>"
 assert == response.xml.@title.text()"Great"
}

The property is a parsed result from Groovy's class which is very convenient for parsing XML.xml XmlSlurper

Testing JSON responses is pretty similar, instead you use the property:json

http://groovy.codehaus.org/Reading+XML+using+Groovy's+XmlSlurper

259

// controller action
def renderJson() {
 render(contentType:) {"text/json"
 book = "Great"
 }
}

// test
void testRenderJson() {

controller.renderJson()

assert '{ : }' == response.text"book" "Great"
 assert == response.json.book"Great"
}

The property is an instance of which is a map-like structure that isjson org.codehaus.groovy.grails.web.json.JSONElement
useful for parsing JSON responses.

Testing XML and JSON Requests

Grails provides various convenient ways to automatically parse incoming XML and JSON packets. For example you can bind incoming JSON or
XML requests using Grails' data binding:

def consumeBook() {
 def b = Book(params['book'])new

render b.title
}

To test this Grails provides an easy way to specify an XML or JSON packet via the or properties. For example the above action canxml json
be tested by specifying a String containing the XML:

void testConsumeBookXml() {
 request.xml = '<book><title>The Shining</title></book>'
 controller.consumeBook()

assert response.text == 'The Shining'
}

Or alternatively a domain instance can be specified and it will be auto-converted into the appropriate XML request:

void testConsumeBookXml() {
 request.xml = Book(title:)new "The Shining"
 controller.consumeBook()

assert response.text == 'The Shining'
}

The same can be done for JSON requests:

260

void testConsumeBookJson() {
 request.json = Book(title:)new "The Shining"
 controller.consumeBook()

assert response.text == 'The Shining'
}

If you prefer not to use Grails' data binding but instead manually parse the incoming XML or JSON that can be tested too. For example consider
the controller action below:

def consume() {
 request.withFormat {
 xml {
 render request.XML.@title
 }
 json {
 render request.JSON.title
 }
 }
}

To test the XML request you can specify the XML as a string:

void testConsumeXml() {
 request.xml = '<book title= />'"The Stand"

controller.consume()

assert response.text == 'The Stand'
}

And, of course, the same can be done for JSON:

void testConsumeJson() {
 request.json = '{title: }'"The Stand"
 controller.consume()

assert response.text == 'The Stand'
}

Testing Spring Beans

When using only a subset of the Spring beans available to a running Grails application are available. If you wish to make additionalTestFor
beans available you can do so with the method of :defineBeans GrailsUnitTestMixin

class SimpleController {
 SimpleService simpleService
 def hello() {
 render simpleService.sayHello()
 }
}

261

void testBeanWiring() {
 defineBeans {
 simpleService(SimpleService)
 }

controller.hello()

assert response.text == "Hello World"
}

The controller is auto-wired by Spring just like in a running Grails application. Autowiring even occurs if you instantiate subsequent instances of
the controller:

void testAutowiringViaNew() {
 defineBeans {
 simpleService(SimpleService)
 }

def controller1 = SimpleController()new
 def controller2 = SimpleController()new

assert controller1.simpleService != null
 assert controller2.simpleService != null
}

Testing Mime Type Handling

You can test mime type handling and the method quite simply by setting the response's attribute:withFormat format

// controller action
def sayHello() {
 def data = [Hello:]"World"
 withFormat {
 xml { render data as XML }
 html data
 }
}

// test
void testSayHello() {
 response.format = 'xml'
 controller.sayHello()

 expected = '<?xml version= encoding= ?>' +String "1.0" "UTF-8"
 '<map><entry key= >World</entry></map>'"Hello"

assert expected == response.text
}

Testing Duplicate Form Submissions

Testing duplicate form submissions is a little bit more involved. For example if you have an action that handles a form such as:

262

def handleForm() {
 withForm {
 render "Good"
 }.invalidToken {
 render "Bad"
 }
}

you want to verify the logic that is executed on a good form submission and the logic that is executed on a duplicate submission. Testing the bad
submission is simple. Just invoke the controller:

void testDuplicateFormSubmission() {
 controller.handleForm()
 assert == response.text"Bad"
}

Testing the successful submission requires providing an appropriate :SynchronizerToken

import org.codehaus.groovy.grails.web.servlet.mvc.SynchronizerToken
...

void testValidFormSubmission() {
 def token = SynchronizerToken.store(session)
 params[SynchronizerToken.KEY] = token.currentToken.toString()

controller.handleForm()
 assert == response.text"Good"
}

If you test both the valid and the invalid request in the same test be sure to reset the response between executions of the controller:

controller.handleForm() // first execution
…
response.reset()
…
controller.handleForm() // second execution

Testing File Upload

You use the class to test file uploads. For example consider the following controller action:GrailsMockMultipartFile

def uploadFile() {
 MultipartFile file = request.getFile()"myFile"
 file.transferTo(File())new "/local/disk/myFile"
}

To test this action you can register a with the request:GrailsMockMultipartFile

263

void testFileUpload() {
 file = GrailsMockMultipartFile(, .bytes)final new "myFile" "foo"
 request.addFile(file)
 controller.uploadFile()

assert file.targetFileLocation.path == "/local/disk/myFile"
}

The constructor arguments are the name and contents of the file. It has a mock implementation of the GrailsMockMultipartFile
 method that simply records the and doesn't write to disk.transferTo targetFileLocation

Testing Command Objects

Special support exists for testing command object handling with the method. For example consider the followingmockCommandObject
action:

def handleCommand(SimpleCommand simple) {
 (simple.hasErrors()) {if
 render "Bad"
 }
 {else
 render "Good"
 }
}

To test this you mock the command object, populate it and then validate it as follows:

void testInvalidCommand() {
 def cmd = mockCommandObject(SimpleCommand)
 cmd.name = '' // doesn't allow blank names

cmd.validate()
 controller.handleCommand(cmd)

assert response.text == 'Bad'
}

Testing Calling Tag Libraries

You can test calling tag libraries using , although the mechanism for testing the tag called varies from tag toControllerUnitTestMixin
tag. For example to test a call to the tag, add a message to the . Consider the following action:message messageSource

def showMessage() {
 render g.message(code:)"foo.bar"
}

This can be tested as follows:

264

void testRenderBasicTemplateWithTags() {
 messageSource.addMessage(, request.locale,)"foo.bar" "Hello World"

controller.showMessage()

assert response.text == "Hello World"
}

9.1.2 Unit Testing Tag Libraries

The Basics

Tag libraries and GSP pages can be tested with the mixin. To use the mixingrails.test.mixin.web.GroovyPageUnitTestMixin
declare which tag library is under test with the annotation:TestFor

@TestFor(SimpleTagLib)
class SimpleTagLibTests {

}

Note that if you are testing invocation of a custom tag from a controller you can combine the and the ControllerUnitTestMixin
 using the annotation:GroovyPageUnitTestMixin Mock

@TestFor(SimpleController)
@Mock(SimpleTagLib)
class GroovyPageUnitTestMixinTests {

}

Testing Custom Tags

The core Grails tags don't need to be enabled during testing, however custom tag libraries do. The classGroovyPageUnitTestMixin
provides a method that you can use to mock a custom tag library. For example consider the following tag library:mockTagLib()

class SimpleTagLib {

 namespace = 's'static

def hello = { attrs, body ->
 out << "Hello ${attrs.name ?: 'World'}"
 }
}

You can test this tag library by using and supplying the name of the tag library:TestFor

265

@TestFor(SimpleTagLib)
class SimpleTagLibTests {
 void testHelloTag() {
 assert applyTemplate('<s:hello />') == 'Hello World'
 assert applyTemplate('<s:hello name= />') == 'Hello Fred'"Fred"
 }
}

Alternatively, you can use the annotation and mock multiple tag libraries using the method:TestMixin mockTagLib()

@grails.test.mixin.TestMixin(GroovyPageUnitTestMixin)
class MultipleTagLibraryTests {

@Test
 void testMuliple() {
 mockTagLib(FirstTagLib)
 mockTagLib(SecondTagLib)

…
 }
}

The provides convenience methods for asserting that the template output equals or matches an expected value.GroovyPageUnitTestMixin

@grails.test.mixin.TestMixin(GroovyPageUnitTestMixin)
class MultipleTagLibraryTests {

@Test
 void testMuliple() {
 mockTagLib(FirstTagLib)
 mockTagLib(SecondTagLib)
 assertOutputEquals ('Hello World', '<s:hello />')
 assertOutputMatches (/.*Fred.*/, '<s:hello name= />')"Fred"
 }
}

Testing View and Template Rendering

You can test rendering of views and templates in via the method provided by grails-app/views render(Map)
 :GroovyPageUnitTestMixin

def result = render(template:)"/simple/hello"
assert result == "Hello World"

This will attempt to render a template found at the location . Note that if the template dependsgrails-app/views/simple/_hello.gsp
on any custom tag libraries you need to call as described in the previous section. mockTagLib

9.1.3 Unit Testing Domains

Overview

266

The mocking support described here is best used when testing non-domain artifacts that use domain classes, to let
you focus on testing the artifact without needing a database. But when testing persistence it's best to use integration
tests which configure Hibernate and use a database.

Domain class interaction can be tested without involving a database connection using . This implementationDomainClassUnitTestMixin
mimics the behavior of GORM against an in-memory implementation. Note that this has limitations compared to a realConcurrentHashMap
GORM implementation. The following features of GORM for Hibernate can only be tested within an integration test:

String-based HQL queries

composite identifiers

dirty checking methods

any direct interaction with Hibernate

However a large, commonly-used portion of the GORM API can be mocked using including:DomainClassUnitTestMixin

Simple persistence methods like , etc.save() delete()

Dynamic Finders

Named Queries

Query-by-example

GORM Events

If something isn't supported then 's method can come in handy to mock the missing pieces. AlternativelyGrailsUnitTestMixin mockFor
you can write an integration test which bootstraps the complete Grails environment at a cost of test execution time.

The Basics

 is typically used in combination with testing either a controller, service or tag library where the domain is aDomainClassUnitTestMixin
mock collaborator defined by the annotation:Mock

import grails.test.mixin.*

@TestFor(SimpleController)
@Mock(Simple)
class SimpleControllerTests {

}

The example above tests the class and mocks the behavior of the domain class as well. For example consider aSimpleController Simple
typical scaffolded controller action:save

267

class BookController {
 def save() {
 def book = Book(params)new
 (book.save(flush:)) {if true
 flash.message = message(
 code: ' .created.message',default
 args: [message(code: 'book.label',
 : 'Book'), book.id])}default "

show redirect(action: " ", id: book.id)
 }
 {else

create", model: [bookInstance: book]) render(view: "
 }
 }
}

Tests for this action can be written as follows:

import grails.test.mixin.*

@TestFor(BookController)
@Mock(Book)
class BookControllerTests {

void testSaveInvalidBook() {
 controller.save()

assert model.bookInstance != null
 assert view == '/book/create'
 }

void testSaveValidBook() {
 params.title = "The Stand"
 params.pages = "500"

controller.save()

assert response.redirectedUrl == '/book/show/1'
 assert flash.message != null
 assert Book.count() == 1
 }
}

 annotation also supports a list of mock collaborators if you have more than one domain to mock:Mock

@TestFor(BookController)
@Mock([Book, Author])
class BookControllerTests {
 …
}

Alternatively you can also use the directly with the annotation:DomainClassUnitTestMixin TestMixin

@TestFor(BookController)
@TestMixin(DomainClassUnitTestMixin)
class BookControllerTests {
 …
}

268

And then call the method to mock domains during your test:mockDomain

void testSave() {
 mockDomain(Author)
 mockDomain(Book)
}

The method also includes an additional parameter that lets you pass a Map of Maps to configure a domain, which is useful formockDomain
fixture-like data:

void testSave() {
 mockDomain(Book, [
 [title: , pages: 1000],"The Stand"
 [title: , pages: 400],"The Shining"
 [title: , pages: 300]])"Along Came a Spider"
}

Testing Constraints

Your constraints contain logic and that logic is highly susceptible to bugs - the kind of bugs that can be tricky to track down (particularly as by
default doesn't throw an exception when it fails). If your answer is that it's too hard or fiddly, that is no longer an excuse. Enter the save()

 method.mockForConstraintsTests()

This method is like a much reduced version of the method that simply adds a method to a given domain class.mockDomain() validate()
All you have to do is mock the class, create an instance with populated data, and then call . You can then access the validate() errors
property to determine if validation failed. So if all we are doing is mocking the method, why the optional list of test instances?validate()
That is so that we can test the constraint as you will soon see.unique

So, suppose we have a simple domain class:

class Book {

 titleString
 authorString

 constraints = {static
 title blank: , unique: false true
 author blank: , minSize: 5false
 }
}

Don't worry about whether the constraints are sensible (they're not!), they are for demonstration only. To test these constraints we can do the
following:

269

@TestFor(Book)
class BookTests {
 void testConstraints() {

def existingBook = Book(new
 title: ,"Misery"
 author:)"Stephen King"

mockForConstraintsTests(Book, [existingBook])

// validation should fail both properties are if null
 def book = Book()new

assert !book.validate()
 assert == book.errors[]"nullable" "title"
 assert == book.errors[]"nullable" "author"

// So let's demonstrate the unique and minSize constraints

book = Book(title: , author:)new "Misery" "JK"
 assert !book.validate()
 assert == book.errors[]"unique" "title"
 assert == book.errors[]"minSize" "author"

// Validation should pass!
 book = Book(title: , author:)new "The Shining" "Stephen King"
 assert book.validate()
 }
}

You can probably look at that code and work out what's happening without any further explanation. The one thing we will explain is the way the
 property is used. First, is a real Spring instance, so you can access all the properties and methods you would normally expect.errors Errors

Second, this particular object also has map/property access as shown. Simply specify the name of the field you are interested in and theErrors
map/property access will return the name of the constraint that was violated. Note that it is the constraint name, not the message code (as you
might expect).

That's it for testing constraints. One final thing we would like to say is that testing the constraints in this way catches a common error: typos in
the "constraints" property name! It is currently one of the hardest bugs to track down normally, and yet a unit test for your constraints will
highlight the problem straight away.

9.1.4 Unit Testing Filters
Unit testing filters is typically a matter of testing a controller where a filter is a mock collaborator. For example consider the following filters
class:

class CancellingFilters {
 def filters = {
 all(controller: , action:) {"simple" "list"
 before = {
 redirect(controller:)"book"
 return false
 }
 }
 }
}

This filter interceptors the action of the controller and redirects to the controller. To test this filter you start off with a testlist simple book
that targets the class and add the as a mock collaborator:SimpleController CancellingFilters

270

@TestFor(SimpleController)
@Mock(CancellingFilters)
class SimpleControllerTests {

}

You can then implement a test that uses the method to wrap the call to an action in filter execution:withFilters

void testInvocationOfListActionIsFiltered() {
 withFilters(action:) {"list"
 controller.list()
 }
 assert response.redirectedUrl == '/book'
}

Note that the parameter is required because it is unknown what the action to invoke is until the action is actually called. The action
 parameter is optional and taken from the controller under test. If it is a another controller you are testing then you can specify it:controller

withFilters(controller: ,action:) {"book" "list"
 controller.list()
}

9.1.5 Unit Testing URL Mappings

The Basics

Testing URL mappings can be done with the annotation testing a particular URL mappings class. For example to test the default URLTestFor
mappings you can do the following:

@TestFor(UrlMappings)
class UrlMappingsTests {

}

Note that since the default class is in the default package your test must also be in the defaultUrlMappings
package

With that done there are a number of useful methods that are defined by the grails.test.mixin.web.UrlMappingsUnitTestMixin
for testing URL mappings. These include:

assertForwardUrlMapping - Asserts a URL mapping is forwarded for the given controller class (note that controller will need to be
defined as a mock collaborate for this to work)

assertReverseUrlMapping - Asserts that the given URL is produced when reverse mapping a link to a given controller and action

assertUrlMapping - Asserts a URL mapping is valid for the given URL. This combines the and assertForwardUrlMapping
 assertionsassertReverseUrlMapping

271

Asserting Forward URL Mappings

You use to assert that a given URL maps to a given controller. For example, consider the following URLassertForwardUrlMapping
mappings:

static mappings = {
 (controller: , action:)"/action1" "simple" "action1"
 (controller: , action:)"/action2" "simple" "action2"
}

The following test can be written to assert these URL mappings:

void testUrlMappings() {

assertForwardUrlMapping(, controller: 'simple',"/action1"
 action:)"action1"

assertForwardUrlMapping(, controller: 'simple',"/action2"
 action:)"action2"

shouldFail {
 assertForwardUrlMapping(, controller: 'simple',"/action2"
 action:)"action1"
 }
}

Assert Reverse URL Mappings

You use to check that correct links are produced for your URL mapping when using the tag in GSPassertReverseUrlMapping link
views. An example test is largely identical to the previous listing except you use instead of assertReverseUrlMapping

. Note that you can combine these 2 assertions with .assertForwardUrlMapping assertUrlMapping

Simulating Controller Mapping

In addition to the assertions to check the validity of URL mappings you can also simulate mapping to a controller by using your UrlMappings
as a mock collaborator and the method. For example:mapURI

@TestFor(SimpleController)
@Mock(UrlMappings)
class SimpleControllerTests {

void testControllerMapping() {

SimpleController controller = mapURI('/simple/list')
 assert controller != null

def model = controller.list()
 assert model != null
 }
}

9.1.6 Mocking Collaborators

272

Beyond the specific targeted mocking APIs there is also an all-purpose method that is available when using the mockFor() TestFor
annotation. The signature of is:mockFor

mockFor(class, loose =)false

This is general-purpose mocking that lets you set up either strict or loose demands on a class.

This method is surprisingly intuitive to use. By default it will create a strict mock control object (one for which the order in which methods are
called is important) that you can use to specify demands:

def strictControl = mockFor(MyService)
strictControl.demand.someMethod(0..2) { arg1, arg2 -> … }String int
strictControl.demand. .aStaticMethod {-> … }static

Notice that you can mock static as well as instance methods by using the "static" property. You then specify the name of the method to mock,
with an optional range argument. This range determines how many times you expect the method to be called, and if the number of invocations
falls outside of that range (either too few or too many) then an assertion error will be thrown. If no range is specified, a default of "1..1" is
assumed, i.e. that the method must be called exactly once.

The last part of a demand is a closure representing the implementation of the mock method. The closure arguments must match the number and
types of the mocked method, but otherwise you are free to add whatever you want in the body.

As we mentioned before, call to get an actual mock instance of the class that you are mocking. You can callmockControl.createMock()
this multiple times to create as many mock instances as you need. And once you have executed the test method, call

 to check that the expected methods were called.mockControl.verify()

Lastly, the call:

def looseControl = mockFor(MyService,)true

will create a mock control object that has only loose expectations, i.e. the order that methods are invoked does not matter.

9.2 Integration Testing
Integration tests differ from unit tests in that you have full access to the Grails environment within the test. Grails uses an in-memory H2
database for integration tests and clears out all the data from the database between tests.

One thing to bear in mind is that logging is enabled for your application classes, but it is different from logging in tests. So if you have something
like this:

class MyServiceTests GroovyTestCase {extends
 void testSomething() {
 log.info "Starting tests"
 …
 }
}

273

the "starting tests" message is logged using a different system than the one used by the application. The property in the example above is anlog
instance of (inherited from the base class, not injected by Grails), which doesn't have the same methods asjava.util.logging.Logger
the property injected into your application artifacts. For example, it doesn't have or methods, and the equivalent of log debug() trace()

 is in fact .warn() warning()

Transactions

Integration tests run inside a database transaction by default, which is rolled back at the end of the each test. This means that data saved during a
test is not persisted to the database. Add a property to your test class to check transactional behaviour:transactional

class MyServiceTests GroovyTestCase {extends
 transactional = static false

void testMyTransactionalServiceMethod() {
 …
 }
}

Be sure to remove any persisted data from a non-transactional test, for example in the method, so these tests don't interfere withtearDown
standard transactional tests that expect a clean database.

Testing Controllers

To test controllers you first have to understand the Spring Mock Library.

Grails automatically configures each test with a , , and that you can use inMockHttpServletRequest MockHttpServletResponse MockHttpSession
your tests. For example consider the following controller:

class FooController {

def text() {
 render "bar"
 }

def someRedirect() {
 redirect(action:)"bar"
 }
}

The tests for this would be:

class FooControllerTests GroovyTestCase {extends

void testText() {
 def fc = FooController()new
 fc.text()
 assertEquals , fc.response.contentAsString"bar"
 }

void testSomeRedirect() {
 def fc = FooController()new
 fc.someRedirect()
 assertEquals , fc.response.redirectedUrl"/foo/bar"
 }
}

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/mock/web/MockHttpServletRequest.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/mock/web/MockHttpServletResponse.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/mock/web/MockHttpSession.html

274

In the above case is an instance of which we can use to obtain the generated content with response MockHttpServletResponse
 (when writing to the response) or the redirected URL. These mocked versions of the Servlet API are completely mutablecontentAsString

(unlike the real versions) and hence you can set properties on the request such as the and so on.contextPath

Grails invoke or servlet filters when calling actions during integration testing. You should test interceptors and filters indoes not interceptors
isolation, using if necessary.functional testing

Testing Controllers with Services

If your controller references a service (or other Spring beans), you have to explicitly initialise the service from your test.

Given a controller using a service:

class FilmStarsController {
 def popularityService

def update() {
 // something with popularityServicedo
 }
}

The test for this would be:

class FilmStarsTests GroovyTestCase {extends
 def popularityService

void testInjectedServiceInController () {
 def fsc = FilmStarsController()new
 fsc.popularityService = popularityService
 fsc.update()
 }
}

Testing Controller Command Objects

With command objects you just supply parameters to the request and it will automatically do the command object work for you when you call
your action with no parameters:

Given a controller using a command object:

class AuthenticationController {
 def signup(SignupForm form) {
 …
 }
}

You can then test it like this:

def controller = AuthenticationController()new
controller.params.login = "marcpalmer"
controller.params.password = "secret"
controller.params.passwordConfirm = "secret"
controller.signup()

275

Grails auto-magically sees your call to as a call to the action and populates the command object from the mocked requestsignup()
parameters. During controller testing, the are mutable with a mocked request supplied by Grails.params

Testing Controllers and the render Method

The method lets you render a custom view at any point within the body of an action. For instance, consider the example below:render

def save() {
 def book = Book(params)
 (book.save()) {if
 // handle
 }
 {else
 render(view: , model:[book:book])"create"
 }
}

In the above example the result of the model of the action is not available as the return value, but instead is stored within the modelAndView
property of the controller. The property is an instance of Spring MVC's class and you can use it to the test themodelAndView ModelAndView
result of an action:

def bookController = BookController()new
bookController.save()
def model = bookController.modelAndView.model.book

Simulating Request Data

You can use the Spring to test an action that requires request data, for example a REST web service. For exampleMockHttpServletRequest
consider this action which performs data binding from an incoming request:

def create() {
 [book: Book(params.book)]new
}

To simulate the 'book' parameter as an XML request you could do something like the following:

void testCreateWithXML() {

def controller = BookController()new

controller.request.contentType = 'text/xml'
 controller.request.content = '''\
 <?xml version= encoding= ?>"1.0" "ISO-8859-1"
 <book>
 <title>The Stand</title>
 …
 </book>
 '''.stripIndent().getBytes() // note we need the bytes

def model = controller.create()
 assert model.book
 assertEquals , model.book.title"The Stand"
}

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/servlet/ModelAndView.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/mock/web/MockHttpServletRequest.html

276

The same can be achieved with a JSON request:

void testCreateWithJSON() {

def controller = BookController()new

controller.request.contentType = "text/json"
 controller.request.content =
 '{ :1, : , : }'.getBytes()"id" "class" "Book" "title" "The Stand"

def model = controller.create()
 assert model.book
 assertEquals , model.book.title"The Stand"
}

With JSON don't forget the property to specify the name the target type to bind to. In XML this is implicitclass
within the name of the node, but this property is required as part of the JSON packet.<book>

For more information on the subject of REST web services see the section on .REST

Testing Web Flows

Testing requires a special test harness called which subclasses Spring Web Flow's Web Flows grails.test.WebFlowTestCase
 class.AbstractFlowExecutionTests

Subclasses of be integration testsWebFlowTestCase must

For example given this simple flow:

class ExampleController {

def exampleFlow() {
 start {
 on() {"go"
 flow.hello = "world"
 }.to "next"
 }
 next {
 on().to "back" "start"
 on().to "go" "subber"
 }
 subber {
 subflow(action:)"sub"
 on().to()"end" "end"
 }
 end()
 }

def subFlow() {
 subSubflowState {
 subflow(controller: , action:)"other" "otherSub"
 on().to()"next" "next"
 }
 …
 }
}

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/webflow/test/execution/AbstractFlowExecutionTests.html

277

You need to tell the test harness what to use for the "flow definition". This is done via overriding the abstract method:getFlow

import grails.test.WebFlowTestCase

class ExampleFlowTests WebFlowTestCase {extends
 def getFlow() { ExampleController().exampleFlow }new
 …
}

You can specify the flow id by overriding the method, otherwise the default is :getFlowId test

import grails.test.WebFlowTestCase

class ExampleFlowTests WebFlowTestCase {extends
 getFlowId() { }String "example"
 …
}

If the flow under test calls any subflows, these (or mocks) must be registered before the calling the flow:

protected void setUp() {
 .setUp()super

registerFlow() { // register a simplified mock"other/otherSub"
 start {
 on().to()"next" "end"
 }
 end()
 }

// register the original subflow
 registerFlow(, ExampleController().subFlow)"example/sub" new
}

Then you kick off the flow with the method:startFlow

void testExampleFlow() {
 def viewSelection = startFlow()
 …
}

Use the method to trigger an event:signalEvent

void testExampleFlow() {
 …
 signalEvent()"go"
 assert == flowExecution.activeSession.state.id"next"
 assert == flowScope.hello"world"
}

Here we have signaled to the flow to execute the event "go" which causes a transition to the "next" state. In the example a transition action placed
a variable into the flow scope.hello

278

Testing Tag Libraries

Testing tag libraries is simple because when a tag is invoked as a method it returns its result as a string (technically a butStreamCharBuffer
this class implements all of the methods of). So for example if you have a tag library like this:String

class FooTagLib {

def bar = { attrs, body ->
 out << "<p>Hello World!</p>"
 }

def bodyTag = { attrs, body ->
 out << "<${attrs.name}>"
 out << body()
 out << "</${attrs.name}>"
 }
}

The tests would look like:

class FooTagLibTests GroovyTestCase {extends

void testBarTag() {
 assertEquals ,"<p>Hello World!</p>"
 FooTagLib().bar(,).toString()new null null
 }

void testBodyTag() {
 assertEquals ,"<p>Hello World!</p>"
 FooTagLib().bodyTag(name:) {new "p"
 "Hello World!"
 }.toString()
 }
}

Notice that for the second example, , we pass a block that returns the body of the tag. This is convenient to representing the bodytestBodyTag
as a String.

Testing Tag Libraries with GroovyPagesTestCase

In addition to doing simple testing of tag libraries like in the above examples, you can also use the grails.test.GroovyPagesTestCase
class to test tag libraries with integration tests.

The class is a subclass of the standard class and adds utility methods for testing the output ofGroovyPagesTestCase GroovyTestCase
GSP rendering.

 can only be used in an integration test.GroovyPagesTestCase

For example, consider this date formatting tag library:

279

import java.text.SimpleDateFormat

class FormatTagLib {
 def dateFormat = { attrs, body ->
 out << SimpleDateFormat(attrs.format) << attrs.datenew
 }
}

This can be easily tested as follows:

class FormatTagLibTests GroovyPagesTestCase {extends
 void testDateFormat() {
 def template =
 '<g:dateFormat format= date= />'"dd-MM-yyyy" "${myDate}"

def testDate = … // create the date
 assertOutputEquals('01-01-2008', template, [myDate:testDate])
 }
}

You can also obtain the result of a GSP using the method of the class:applyTemplate GroovyPagesTestCase

class FormatTagLibTests GroovyPagesTestCase {extends
 void testDateFormat() {
 def template =
 '<g:dateFormat format= date= />'"dd-MM-yyyy" "${myDate}"

def testDate = … // create the date
 def result = applyTemplate(template, [myDate:testDate])

assertEquals '01-01-2008', result
 }
}

Testing Domain Classes

Testing domain classes is typically a simple matter of using the , but there are a few things to be aware of. Firstly, when testingGORM API
queries you often need to "flush" to ensure the correct state has been persisted to the database. For example take the following example:

void testQuery() {
 def books = [
 Book(title:),new "The Stand"
 Book(title:)]new "The Shining"
 books*.save()

assertEquals 2, Book.list().size()
}

This test will fail because calling does not actually persist the instances when called. Calling only indicates to Hibernate that atsave Book save
some point in the future these instances should be persisted. To commit changes immediately you "flush" them:

280

void testQuery() {
 def books = [
 Book(title:),new "The Stand"
 Book(title:)]new "The Shining"
 books*.save(flush:)true

assertEquals 2, Book.list().size()
}

In this case since we're passing the argument with a value of the updates will be persisted immediately and hence will be availableflush true
to the query later on.

9.3 Functional Testing
Functional tests involve making HTTP requests against the running application and verifying the resultant behaviour. Grails does not ship with
any support for writing functional tests directly, but there are several plugins available for this.

Canoo Webtest - http://grails.org/plugin/webtest

G-Func - http://grails.org/plugin/functional-test

Geb - http://grails.org/plugin/geb

Selenium-RC - http://grails.org/plugin/selenium-rc

WebDriver - http://grails.org/plugin/webdriver

Consult the documentation for each plugin for its capabilities.

Common Options

There are options that are common to all plugins that control how the Grails application is launched, if at all.

inline

The option specifies that the grails application should be started inline (i.e. like).-inline run-app

This option is implicitly set unless the or options are setbaseUrl war

war

The option specifies that the grails application should be packaged as a war and started. This is useful as it tests your application in a-war
production-like state, but it has a longer startup time than the option. It also runs the war in a forked JVM, meaning that you cannot-inline
access any internal application objects.

grails test-app functional: -war

Note that the same build/config options for the command apply to functional testing against the WAR.run-war

https

The option results in the application being able to receive https requests as well as http requests. It is compatible with both the -https
 and options.-inline -war

http://grails.org/plugin/webtest
http://grails.org/plugin/functional-test
http://grails.org/plugin/geb
http://grails.org/plugin/selenium-rc
http://grails.org/plugin/webdriver

281

grails test-app functional: -https

Note that this does not change the test to be https, it will still be http unless the option is also given.base url -httpsBaseUrl

httpsBaseUrl

The causes the implicit base url to be used for tests to be a https url.-httpsBaseUrl

grails test-app functional: -httpsBaseUrl

This option is ignored if the option is specified.-baseUrl

baseUrl

The option allows the base url for tests to be specified.baseUrl

grails test-app functional: -baseUrl=http://mycompany.com/grailsapp

This option will prevent the local grails application being started unless or are given as well. To use a custom base url but still-inline -war
test against the local Grails application you specify one of either the or options. must -inline -war

282

10 Internationalization
Grails supports Internationalization (i18n) out of the box by leveraging the underlying Spring MVC internationalization support. With Grails you
are able to customize the text that appears in a view based on the user's Locale. To quote the javadoc for the class:Locale

A Locale object represents a specific geographical, political, or cultural region. An operation that requires a Locale to perform its
task is called locale-sensitive and uses the Locale to tailor information for the user. For example, displaying a number is a
locale-sensitive operation--the number should be formatted according to the customs/conventions of the user's native country,
region, or culture.

A Locale is made up of a and a . For example "en_US" is the code for US english, whilst "en_GB" is the for Britishlanguage code country code
English.

10.1 Understanding Message Bundles
Now that you have an idea of locales, to use them in Grails you create message bundle file containing the different languages that you wish to
render. Message bundles in Grails are located inside the directory and are simple Java properties files.grails-app/i18n

Each bundle starts with the name by convention and ends with the locale. Grails ships with several message bundles for a wholemessages
range of languages within the directory. For example:grails-app/i18n

messages.properties
messages_da.properties
messages_de.properties
messages_es.properties
messages_fr.properties
...

By default Grails looks in for messages unless the user has specified a locale. You can create your own messagemessages.properties
bundle by simply creating a new properties file that ends with the locale you are interested. For example formessages_en_GB.properties
British English.

10.2 Changing Locales
By default the user locale is detected from the incoming header. However, you can provide users the capability to switchAccept-Language
locales by simply passing a parameter called to Grails as a request parameter:lang

/book/list?lang=es

Grails will automatically switch the user's locale and store it in a cookie so subsequent requests will have the new header.

10.3 Reading Messages

Reading Messages in the View

The most common place that you need messages is inside the view. Use the tag for this:message

http://download.oracle.com/javase/1.5.0/docs/api/java/util/Locale.html
http://www.loc.gov/standards/iso639-2/englangn.html
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

283

<g:message code= />"my.localized.content"

As long as you have a key in your (with appropriate locale suffix) such as the one below then Grails will look up themessages.properties
message:

my.localized.content=Hola, Me llamo John. Hoy es domingo.

Messages can also include arguments, for example:

<g:message code= args= />"my.localized.content" "${ ['Juan', 'lunes'] }"

The message declaration specifies positional parameters which are dynamically specified:

my.localized.content=Hola, Me llamo {0}. Hoy es {1}.

Reading Messages in Controllers and Tag Libraries

It's simple to read messages in a controller since you can invoke tags as methods:

def show() {
 def msg = message(code: , args: ['Juan', 'lunes'])"my.localized.content"
}

The same technique can be used in , but if your tag library uses a custom then you must prefix the call with :tag libraries namespace g.

def myTag = { attrs, body ->
 def msg = g.message(code: , args: ['Juan', 'lunes'])"my.localized.content"
}

10.4 Scaffolding and i18n
Grails templates for controllers and views are fully i18n-aware. The GSPs use the tag for labels, buttons etc. and controller scaffolding message

 messages use i18n to resolve locale-specific messages. flash

284

1.

2.

3.

4.

11 Security
Grails is no more or less secure than Java Servlets. However, Java servlets (and hence Grails) are extremely secure and largely immune to
common buffer overrun and malformed URL exploits due to the nature of the Java Virtual Machine underpinning the code.

Web security problems typically occur due to developer naivety or mistakes, and there is a little Grails can do to avoid common mistakes and
make writing secure applications easier to write.

What Grails Automatically Does

Grails has a few built in safety mechanisms by default.

All standard database access via domain objects is automatically SQL escaped to prevent SQL injection attacksGORM

The default templates HTML escape all data fields when displayedscaffolding

Grails link creating tags (, , , and others) all use appropriate escaping mechanisms to prevent code injectionlink form createLink createLinkTo

Grails provides to let you trivially escape data when rendered as HTML, JavaScript and URLs to prevent injection attacks here.codecs

11.1 Securing Against Attacks

SQL injection

Hibernate, which is the technology underlying GORM domain classes, automatically escapes data when committing to database so this is not an
issue. However it is still possible to write bad dynamic HQL code that uses unchecked request parameters. For example doing the following is
vulnerable to HQL injection attacks:

def vulnerable() {
 def books = Book.find(+ params.title +)"from Book as b where b.title ='" "'"
}

or the analagous call using a GString:

def vulnerable() {
 def books = Book.find()"from Book as b where b.title ='${params.title}'"
}

Do do this. Use named or positional parameters instead to pass in parameters:not

def safe() {
 def books = Book.find(,"from Book as b where b.title = ?"
 [params.title])
}

or

285

def safe() {
 def books = Book.find(,"from Book as b where b.title = :title"
 [title: params.title])
}

Phishing

This really a public relations issue in terms of avoiding hijacking of your branding and a declared communication policy with your customers.
Customers need to know how to identify valid emails.

XSS - cross-site scripting injection

It is important that your application verifies as much as possible that incoming requests were originated from your application and not from
another site. Ticketing and page flow systems can help this and Grails' support for includes security like this by default.Spring Web Flow

It is also important to ensure that all data values rendered into views are escaped correctly. For example when rendering to HTML or XHTML
you must call on every object to ensure that people cannot maliciously inject JavaScript or other HTML into data or tagsencodeAsHTML
viewed by others. Grails supplies several for this purpose and if your output escaping format is not supported youDynamic Encoding Methods
can easily write your own codec.

You must also avoid the use of request parameters or data fields for determining the next URL to redirect the user to. If you use a successURL
parameter for example to determine where to redirect a user to after a successful login, attackers can imitate your login procedure using your own
site, and then redirect the user back to their own site once logged in, potentially allowing JavaScript code to then exploit the logged-in account on
the site.

Cross-site request forgery

CSRF involves unauthorized commands being transmitted from a user that a website trusts. A typical example would be another website
embedding a link to perform an action on your website if the user is still authenticated.

The best way to decrease risk against these types of attacks is to use the attribute on your forms. See useToken Handling Duplicate Form
 for more information on how to use it. An additional measure would be to not use remember-me cookies.Submissions

HTML/URL injection

This is where bad data is supplied such that when it is later used to create a link in a page, clicking it will not cause the expected behaviour, and
may redirect to another site or alter request parameters.

HTML/URL injection is easily handled with the supplied by Grails, and the tag libraries supplied by Grails all use wherecodecs encodeAsURL
appropriate. If you create your own tags that generate URLs you will need to be mindful of doing this too.

Denial of service

Load balancers and other appliances are more likely to be useful here, but there are also issues relating to excessive queries for example where a
link is created by an attacker to set the maximum value of a result set so that a query could exceed the memory limits of the server or slow the
system down. The solution here is to always sanitize request parameters before passing them to dynamic finders or other GORM query methods:

def safeMax = .max(params.max?.toInteger(), 100) // limit to 100 resultsMath
 Book.list(max:safeMax)return

http://www.springsource.org/webflow

286

Guessable IDs

Many applications use the last part of the URL as an "id" of some object to retrieve from GORM or elsewhere. Especially in the case of GORM
these are easily guessable as they are typically sequential integers.

Therefore you must assert that the requesting user is allowed to view the object with the requested id before returning the response to the user.

Not doing this is "security through obscurity" which is inevitably breached, just like having a default password of "letmein" and so on.

You must assume that every unprotected URL is publicly accessible one way or another.

11.2 Encoding and Decoding Objects
Grails supports the concept of dynamic encode/decode methods. A set of standard codecs are bundled with Grails. Grails also supports a simple
mechanism for developers to contribute their own codecs that will be recognized at runtime.

Codec Classes

A Grails codec class is one that may contain an encode closure, a decode closure or both. When a Grails application starts up the Grails
framework dynamically loads codecs from the directory.grails-app/utils/

The framework looks under for class names that end with the convention . For example one of the standardgrails-app/utils/ Codec
codecs that ships with Grails is .HTMLCodec

If a codec contains an closure Grails will create a dynamic method and add that method to the class with a nameencode encode Object
representing the codec that defined the encode closure. For example, the class defines an closure, so Grails attaches itHTMLCodec encode
with the name .encodeAsHTML

The and classes also define a closure, so Grails attaches those with the names and HTMLCodec URLCodec decode decodeHTML
 respectively. Dynamic codec methods may be invoked from anywhere in a Grails application. For example, consider a case wheredecodeURL

a report contains a property called 'description' which may contain special characters that must be escaped to be presented in an HTML
document. One way to deal with that in a GSP is to encode the description property using the dynamic encode method as shown below:

${report.description.encodeAsHTML()}

Decoding is performed using syntax.value.decodeHTML()

Standard Codecs

HTMLCodec

This codec performs HTML escaping and unescaping, so that values can be rendered safely in an HTML page without creating any HTML tags
or damaging the page layout. For example, given a value "Don't you know that 2 > 1?" you wouldn't be able to show this safely within an HTML
page because the > will look like it closes a tag, which is especially bad if you render this data within an attribute, such as the value attribute of
an input field.

Example of usage:

<input name= value= />"comment.message" "${comment.message.encodeAsHTML()}"

287

Note that the HTML encoding does not re-encode apostrophe/single quote so you must use double quotes on
attribute values to avoid text with apostrophes affecting your page.

URLCodec

URL encoding is required when creating URLs in links or form actions, or any time data is used to create a URL. It prevents illegal characters
from getting into the URL and changing its meaning, for example "Apple & Blackberry" is not going to work well as a parameter in a GET
request as the ampersand will break parameter parsing.

Example of usage:

"/mycontroller/find?searchKey=${lastSearch.encodeAsURL()}"
Repeat last search

Base64Codec

Performs Base64 encode/decode functions. Example of usage:

Your registration code is: ${user.registrationCode.encodeAsBase64()}

JavaScriptCodec

Escapes Strings so they can be used as valid JavaScript strings. For example:

Element.update('${elementId}',
 '${render(template:).encodeAsJavaScript()}')"/common/message"

HexCodec

Encodes byte arrays or lists of integers to lowercase hexadecimal strings, and can decode hexadecimal strings into byte arrays. For example:

Selected colour: #${[255,127,255].encodeAsHex()}

MD5Codec

Uses the MD5 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system encoding), as a lowercase
hexadecimal string. Example of usage:

Your API Key: ${user.uniqueID.encodeAsMD5()}

MD5BytesCodec

Uses the MD5 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system encoding), as a byte array. Example of
usage:

288

byte[] passwordHash = params.password.encodeAsMD5Bytes()

SHA1Codec

Uses the SHA1 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system encoding), as a lowercase
hexadecimal string. Example of usage:

Your API Key: ${user.uniqueID.encodeAsSHA1()}

SHA1BytesCodec

Uses the SHA1 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system encoding), as a byte array. Example
of usage:

byte[] passwordHash = params.password.encodeAsSHA1Bytes()

SHA256Codec

Uses the SHA256 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system encoding), as a lowercase
hexadecimal string. Example of usage:

Your API Key: ${user.uniqueID.encodeAsSHA256()}

SHA256BytesCodec

Uses the SHA256 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system encoding), as a byte array.
Example of usage:

byte[] passwordHash = params.password.encodeAsSHA256Bytes()

Custom Codecs

Applications may define their own codecs and Grails will load them along with the standard codecs. A custom codec class must be defined in the
 directory and the class name must end with . The codec may contain a closure, a grails-app/utils/ Codec static encode static

 closure or both. The closure must accept a single argument which will be the object that the dynamic method was invoked on. Fordecode
Example:

class PigLatinCodec {
 encode = { str ->static
 // convert the string to pig latin and the resultreturn
 }
}

289

With the above codec in place an application could do something like this:

${lastName.encodeAsPigLatin()}

11.3 Authentication
Grails has no default mechanism for authentication as it is possible to implement authentication in many different ways. It is however, easy to
implement a simple authentication mechanism using either or . This is sufficient for simple use cases but it's highly preferableinterceptors filters
to use an established security framework, for example by using the or the plugin.Spring Security Shiro

Filters let you apply authentication across all controllers or across a URI space. For example you can create a new set of filters in a class called
 by running:grails-app/conf/SecurityFilters.groovy

grails create-filters security

and implement your interception logic there:

class SecurityFilters {
 def filters = {
 loginCheck(controller: '*', action: '*') {
 before = {
 (!session.user && actionName !=) {if "login"
 redirect(controller: , action:)"user" "login"
 return false
 }
 }
 }
 }
}

Here the filter intercepts execution all actions except are executed, and if there is no user in the session thenloginCheck before login
redirect to the action.login

The action itself is simple too:login

def login() {
 (request.get) {if
 // render the login viewreturn
 }

def u = User.findByLogin(params.login)
 (u) {if
 (u.password == params.password) {if
 session.user = u
 redirect(action:)"home"
 }
 {else
 render(view: , model: [message:])"login" "Password incorrect"
 }
 }
 {else
 render(view: , model: [message:])"login" "User not found"
 }
}

290

11.4 Security Plugins
If you need more advanced functionality beyond simple authentication such as authorization, roles etc. then you should consider using one of the
available security plugins.

11.4.1 Spring Security
The Spring Security plugins are built on the project which provides a flexible, extensible framework for building all sorts ofSpring Security
authentication and authorization schemes. The plugins are modular so you can install just the functionality that you need for your application.
The Spring Security plugins are the official security plugins for Grails and are actively maintained and supported.

There is a which supports form-based authentication, encrypted/salted passwords, HTTP Basic authentication, etc. and secondaryCore plugin
dependent plugins provide alternate functionality such as , , , OpenID authentication ACL support single sign-on with Jasig CAS LDAP

, , and a plugin providing and security workflows.authentication Kerberos authentication user interface extensions

See the for basic information and the for detailed information. Core plugin page user guide

11.4.2 Shiro
 is a Java POJO-oriented security framework that provides a default domain model that models realms, users, roles and permissions. WithShiro

Shiro you extend a controller base class called called in each controller you want secured and then provide an JsecAuthBase
 block to setup the roles. An example below:accessControl

class ExampleController JsecAuthBase {extends
 accessControl = {static
 // All actions require the 'Observer' role.
 role(name: 'Observer')

// The 'edit' action requires the 'Administrator' role.
 role(name: 'Administrator', action: 'edit')

// Alternatively, several actions can be specified.
 role(name: 'Administrator', only: ['create', 'edit', 'save', 'update'])
 }
 …
}

For more information on the Shiro plugin refer to the . documentation

http://static.springsource.org/spring-security/site/
http://grails.org/plugin/spring-security-core
http://grails.org/plugin/spring-security-openid
http://grails.org/plugin/spring-security-acl
http://grails.org/plugin/spring-security-cas
http://grails.org/plugin/spring-security-ldap
http://grails.org/plugin/spring-security-ldap
http://grails.org/plugin/spring-security-kerberos
http://grails.org/plugin/spring-security-ui
http://grails.org/plugin/spring-security-core
http://burtbeckwith.github.com/grails-spring-security-core/
http://shiro.apache.org/
http://grails.org/plugin/shiro

291

12 Plugins
Grails is first and foremost a web application framework, but it is also a platform. By exposing a number of extension points that let you extend
anything from the command line interface to the runtime configuration engine, Grails can be customised to suit almost any needs. To hook into
this platform, all you need to do is create a plugin.

Extending the platform may sound complicated, but plugins can range from trivially simple to incredibly powerful. If you know how to build a
Grails application, you'll know how to create a plugin for or some static resources. sharing a data model

12.1 Creating and Installing Plugins

Creating Plugins

Creating a Grails plugin is a simple matter of running the command:

grails create-plugin [PLUGIN NAME]

This will create a plugin project for the name you specify. For example running would create a newgrails create-plugin example
plugin project called .example

The structure of a Grails plugin is very nearly the same as a Grails application project's except that in the root of the plugin directory you will
find a plugin Groovy file called the "plugin descriptor".

Being a regular Grails project has a number of benefits in that you can immediately test your plugin by running:

grails run-app

The plugin descriptor name ends with the convention and is found in the root of the plugin project. For example:GrailsPlugin

class ExampleGrailsPlugin {
 def version = "0.1"

…
}

All plugins must have this class in the root of their directory structure. The plugin class defines the version of the plugin and other metadata, and
optionally various hooks into plugin extension points (covered shortly).

You can also provide additional information about your plugin using several special properties:

292

title - short one-sentence description of your plugin

version - The version of your plugin. Valid values include example "0.1", "0.2-SNAPSHOT", "1.1.4" etc.

grailsVersion - The version of version range of Grails that the plugin supports. eg. "1.2 > *" (indicating 1.2 or higher)

author - plugin author's name

authorEmail - plugin author's contact e-mail

description - full multi-line description of plugin's features

documentation - URL of the plugin's documentation

Here is an example from the :Quartz Grails plugin

class QuartzGrailsPlugin {
 def version = "0.1"
 def grailsVersion = "1.1 > *"
 def author = "Sergey Nebolsin"
 def authorEmail = "nebolsin@gmail.com"
 def title = "Quartz Plugin"
 def description = '''\
The Quartz plugin allows your Grails application to schedule jobs\
to be executed using a specified interval or cron expression. The\
underlying system uses the Quartz Enterprise Job Scheduler configured\
via Spring, but is made simpler by the coding by convention paradigm.\
'''
 def documentation = "http://grails.org/plugin/quartz"

…
}

Installing and Distributing Plugins

To distribute a plugin you navigate to its root directory in a console and run:

grails -pluginpackage

This will create a zip file of the plugin starting with then the plugin name and version. For example with the example plugin createdgrails-
earlier this would be . The command will also generate a file whichgrails-example-0.1.zip package-plugin plugin.xml
contains machine-readable information about plugin's name, version, author, and so on.

Once you have a plugin distribution file you can navigate to a Grails project and run:

grails install-plugin /path/to/grails-example-0.1.zip

If the plugin is hosted on an HTTP server you can install it with:

grails install-plugin http://myserver.com/plugins/grails-example-0.1.zip

http://grails.org/plugin/quartz

293

Notes on excluded Artefacts

Although the command creates certain files for you so that the plugin can be run as a Grails application, not all of these files arecreate-plugin
included when packaging a plugin. The following is a list of artefacts created, but not included by :package-plugin

grails-app/conf/BootStrap.groovy

grails-app/conf/BuildConfig.groovy (although it is used to generate)dependencies.groovy

grails-app/conf/Config.groovy

grails-app/conf/DataSource.groovy (and any other)*DataSource.groovy

grails-app/conf/UrlMappings.groovy

grails-app/conf/spring/resources.groovy

Everything within /web-app/WEB-INF

Everything within /web-app/plugins/**

Everything within /test/**

SCM management files within and **/.svn/** **/CVS/**

If you need artefacts within it is recommended you use the script (covered later), which is executed when aWEB-INF _Install.groovy
plugin is installed, to provide such artefacts. In addition, although is excluded you are allowed to include a UrlMappings.groovy

 definition with a different name, such as .UrlMappings MyPluginUrlMappings.groovy

Specifying Plugin Locations

An application can load plugins from anywhere on the file system, even if they have not been installed. Specify the location of the (unpacked)
plugin in the application's file:grails-app/conf/BuildConfig.groovy

// Useful to test plugins you are developing.
grails.plugin.location.shiro =
 "/home/dilbert/dev/plugins/grails-shiro"

// Useful modular applications where all plugins andfor
// applications are in the same directory.
grails.plugin.location.'grails-ui' = "../grails-grails-ui"

This is particularly useful in two cases:

You are developing a plugin and want to test it in a real application without packaging and installing it first.

You have split an application into a set of plugins and an application, all in the same "super-project" directory.

Global plugins

Plugins can also be installed globally for all applications for a particular version of Grails using the flag, for example:-global

grails install-plugin webtest -global

294

The default location is $USER_HOME/.grails/<grailsVersion>/global-plugins but this can be customized with the
 setting in . grails.global.plugins.dir BuildConfig.groovy

12.2 Plugin Repositories

Distributing Plugins in the Grails Central Plugins Repository

The preferred way to distribute plugin is to publish to the official Grails Plugins Repository. This will make your plugin visible to the list-plugins
command:

grails list-plugins

which lists all plugins in the Grails Plugin repository, and also the command:plugin-info

grails plugin-info [plugin-name]

which outputs more information based on the meta info entered into the plugin descriptor.

If you have created a Grails plugin and want it to be hosted in the central repository take a look at this wiki page
which details how release your plugin.

When you have access to the Grails Plugin repository, execute the release-plugin command to release your plugin:

grails release-plugin

This will automatically commit changes to SVN, create tags, and make your changes available to the command.list-plugins

Configuring Additional Repositories

The process for configuring repositories in Grails differs between versions. For version of Grails 1.2 and earlier please refer to the Grails 1.2
 on the subject. The following sections cover Grails 1.3 and above.documentation

Grails 1.3 and above use Ivy under the hood to resolve plugin dependencies. The mechanism for defining additional plugin repositories is largely
the same as . For example you can define a remote Maven repository that contains Grails pluginsdefining repositories for JAR dependencies
using the following syntax in :grails-app/conf/BuildConfig.groovy

repositories {
 mavenRepo "http://repository.codehaus.org"
}

You can also define a SVN-based Grails repository (such as the one hosted at) using the method:http://plugins.grails.org grailsRepo

http://grails.org/Creating+Plugins
http://grails.org/doc/1.2.x/guide/12.%20Plug-ins.html#12.2%20Plugin%20Repositories
http://grails.org/doc/1.2.x/guide/12.%20Plug-ins.html#12.2%20Plugin%20Repositories
http://plugins.grails.org/

295

repositories {
 grailsRepo "http://myserver/mygrailsrepo"
}

There is a shortcut to setup the Grails central repository:

repositories {
 grailsCentral()
}

The order in which plugins are resolved is based on the ordering of the repositories. So in this case the Grails central repository will be searched
last:

repositories {
 grailsRepo "http://myserver/mygrailsrepo"
 grailsCentral()
}

All of the above examples use HTTP; however you can specify any to resolve plugins with. Below is an example that uses an SSHIvy resolver
resolver:

def sshResolver = SshResolver(user: , host:)new "myuser" "myhost.com"
sshResolver.addArtifactPattern(
 +"/path/to/repo/grails-[artifact]/tags/"
)"LATEST_RELEASE/grails-[artifact]-[revision].[ext]"
sshResolver.latestStrategy =
 org.apache.ivy.plugins.latest.LatestTimeStrategy()new

sshResolver.changingPattern = ".*SNAPSHOT"
sshResolver.setCheckmodified()true

The above example defines an artifact pattern which tells Ivy how to resolve a plugin zip file. For a more detailed explanation on Ivy patterns see
the in the Ivy user guide.relevant section

Publishing to Maven Compatible Repositories

In general it is recommended for Grails 1.3 and above to use standard Maven-style repositories to self host plugins. The benefits of doing so
include the ability for existing tooling and repository managers to interpret the structure of a Maven repository. In addition Maven compatible
repositories are not tied to SVN as Grails repositories are.

You use the Maven publisher plugin to publish a plugin to a Maven repository. Please refer to the section of the user guide onMaven deployment
the subject.

Publishing to Grails Compatible Repositories

Specify the setting within the grails-app/conf/BuildConfig.groovy file tograils.plugin.repos.distribution.myRepository
publish a Grails plugin to a Grails-compatible repository:

http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html
http://ant.apache.org/ivy/history/2.1.0/concept.html#patterns

296

grails.plugin.repos.distribution.myRepository =
 "https://svn.codehaus.org/grails/trunk/grails-test-plugin-repo"

You can also provide this settings in the $USER_HOME/.grails/settings.groovy file if you prefer to share the same settings across multiple
projects.

Once this is done use the argument of the command to specify the repository to release the plugin into:repository release-plugin

grails release-plugin -repository = myRepository

12.3 Understanding a Plugin's Structure
As as mentioned previously, a plugin is basically a regular Grails application with a plugin descriptor. However when installed, the structure of a
plugin differs slightly. For example, take a look at this plugin directory structure:

+ grails-app
 + controllers
 + domain
 + taglib
 etc.
 + lib
 + src
 + java
 + groovy
 + web-app
 + js
 + css

When a plugin is installed the contents of the directory will go into a directory such as grails-app
. They be copied into the main source tree. A plugin never interferes with a project'splugins/example-1.0/grails-app will not

primary source tree.

Dealing with static resources is slightly different. When developing a plugin, just like an application, all static resources go in the web-app
directory. You can then link to static resources just like in an application. This example links to a JavaScript source:

<g:resource dir= file= />"js" "mycode.js"

When you run the plugin in development mode the link to the resource will resolve to something like . However, when the/js/mycode.js
plugin is installed into an application the path will automatically change to something like and/plugin/example-0.1/js/mycode.js
Grails will deal with making sure the resources are in the right place.

There is a special variable that can be used whilst both developing the plugin and when in the plugin is installed intopluginContextPath
the application to find out what the correct path to the plugin is.

At runtime the variable will either evaluate to an empty string or depending on whether thepluginContextPath /plugins/example
plugin is running standalone or has been installed in an application

Java and Groovy code that the plugin provides within the lib and and directories will be compiled into the mainsrc/java src/groovy
project's directory so that they are made available at runtime. web-app/WEB-INF/classes

297

12.4 Providing Basic Artefacts

Adding a new Script

A plugin can add a new script simply by providing the relevant Gant script in its scripts directory:

+ MyPlugin.groovy
 + scripts <-- additional scripts here
 + grails-app
 + controllers
 + services
 + etc.
 + lib

Adding a new grails-app artifact (Controller, Tag Library, Service, etc.)

A plugin can add new artifacts by creating the relevant file within the tree. Note that the plugin is loaded from where it is installedgrails-app
and not copied into the main application tree.

+ ExamplePlugin.groovy
 + scripts
 + grails-app
 + controllers <-- additional controllers here
 + services <-- additional services here
 + etc. <-- additional XXX here
 + lib

Providing Views, Templates and View resolution

When a plugin provides a controller it may also provide default views to be rendered. This is an excellent way to modularize your application
through plugins. Grails' view resolution mechanism will first look for the view in the application it is installed into and if that fails will attempt to
look for the view within the plugin. This means that you can override views provided by a plugin by creating corresponding GSPs in the
application's directory.grails-app/views

For example, consider a controller called that's provided by an 'amazon' plugin. If the action being executed is , GrailsBookController list
will first look for a view called then if that fails it will look for the same view relative to the plugin.grails-app/views/book/list.gsp

However if the view uses templates that are also provided by the plugin then the following syntax may be necessary:

<g:render template= plugin= />"fooTemplate" "amazon"

Note the usage of the attribute, which contains the name of the plugin where the template resides. If this is not specified then Grails willplugin
look for the template relative to the application.

Excluded Artefacts

By default Grails excludes the following files during the packaging process:

298

grails-app/conf/BootStrap.groovy

grails-app/conf/BuildConfig.groovy (although it is used to generate)dependencies.groovy

grails-app/conf/Config.groovy

grails-app/conf/DataSource.groovy (and any other)*DataSource.groovy

grails-app/conf/UrlMappings.groovy

grails-app/conf/spring/resources.groovy

Everything within /web-app/WEB-INF

Everything within /web-app/plugins/**

Everything within /test/**

SCM management files within and **/.svn/** **/CVS/**

If your plugin requires files under the directory it is recommended that you modify the plugin's web-app/WEB-INF
 Gant script to install these artefacts into the target project's directory tree.scripts/_Install.groovy

In addition, the default file is excluded to avoid naming conflicts, however you are free to add a UrlMappingsUrlMappings.groovy
definition under a different name which be included. For example a file called iswill grails-app/conf/BlogUrlMappings.groovy
fine.

The list of excludes is extensible with the property:pluginExcludes

// resources that are excluded from plugin packaging
def pluginExcludes = [
 "grails-app/views/error.gsp"
]

This is useful for example to include demo or test resources in the plugin repository, but not include them in the final distribution.

12.5 Evaluating Conventions
Before looking at providing runtime configuration based on conventions you first need to understand how to evaluate those conventions from a
plugin. Every plugin has an implicit variable which is an instance of the interface.application GrailsApplication

The interface provides methods to evaluate the conventions within the project and internally stores references to allGrailsApplication
artifact classes within your application.

Artifacts implement the interface, which represents a Grails resource such as a controller or a tag library. For example to get all GrailsClass
 instances you can do:GrailsClass

for (grailsClass in application.allClasses) {
 println grailsClass.name
}

 has a few "magic" properties to narrow the type of artefact you are interested in. For example to access controllers youGrailsApplication
can use:

299

for (controllerClass in application.controllerClasses) {
 println controllerClass.name
}

The dynamic method conventions are as follows:

*Classes - Retrieves all the classes for a particular artefact name. For example .application.controllerClasses

get*Class - Retrieves a named class for a particular artefact. For example
application.getControllerClass("PersonController")

is*Class - Returns if the given class is of the given artefact type. For example true
application.isControllerClass(PersonController)

The interface has a number of useful methods that let you further evaluate and work with the conventions. These include:GrailsClass

getPropertyValue - Gets the initial value of the given property on the class

hasProperty - Returns if the class has the specified propertytrue

newInstance - Creates a new instance of this class.

getName - Returns the logical name of the class in the application without the trailing convention part if applicable

getShortName - Returns the short name of the class without package prefix

getFullName - Returns the full name of the class in the application with the trailing convention part and with the package name

getPropertyName - Returns the name of the class as a property name

getLogicalPropertyName - Returns the logical property name of the class in the application without the trailing convention part if
applicable

getNaturalName - Returns the name of the property in natural terms (eg. 'lastName' becomes 'Last Name')

getPackageName - Returns the package name

For a full reference refer to the . javadoc API

12.6 Hooking into Build Events

Post-Install Configuration and Participating in Upgrades

Grails plugins can do post-install configuration and participate in application upgrade process (the command). This is achieved usingupgrade
two specially named scripts under the directory of the plugin - and .scripts _Install.groovy _Upgrade.groovy

 is executed after the plugin has been installed and is executed each time the user upgrades the_Install.groovy _Upgrade.groovy
application (but not the plugin) with command.upgrade

These scripts are scripts, so you can use the full power of Gant. An addition to the standard Gant variables there is also a Gant
 variable which points at the plugin installation basedir.pluginBasedir

As an example this script will create a new directory type under the directory and install a configuration_Install.groovy grails-app
template:

300

ant.mkdir(dir:)"${basedir}/grails-app/jobs"

ant.copy(file: ,"${pluginBasedir}/src/samples/SamplePluginConfig.groovy"
 todir:)"${basedir}/grails-app/conf"

Scripting events

It is also possible to hook into command line scripting events. These are events triggered during execution of Grails target and plugin scripts.

For example, you can hook into status update output (i.e. "Tests passed", "Server running") and the creation of files or artefacts.

A plugin just has to provide an script to listen to the required events. Refer the documentation on for_Events.groovy Hooking into Events
further information.

12.7 Hooking into Runtime Configuration
Grails provides a number of hooks to leverage the different parts of the system and perform runtime configuration by convention.

Hooking into the Grails Spring configuration

First, you can hook in Grails runtime configuration by providing a property called which is assigned a block of code. FordoWithSpring
example the following snippet is from one of the core Grails plugins that provides support:i18n

import org.springframework.web.servlet.i18n.CookieLocaleResolver
 org.springframework.web.servlet.i18n.LocaleChangeInterceptorimport
 org.springframework.context.support.ReloadableResourceBundleMessageSourceimport

class I18nGrailsPlugin {

def version = "0.1"

def doWithSpring = {
 messageSource(ReloadableResourceBundleMessageSource) {
 basename = "WEB-INF/grails-app/i18n/messages"
 }
 localeChangeInterceptor(LocaleChangeInterceptor) {
 paramName = "lang"
 }
 localeResolver(CookieLocaleResolver)
 }
}

This plugin configures the Grails bean and a couple of other beans to manage Locale resolution and switching. It using the messageSource
 syntax to do so.Spring Bean Builder

Participating in web.xml Generation

Grails generates the file at load time, and although plugins cannot change this file directly, they can participate in theWEB-INF/web.xml
generation of the file. A plugin can provide a property that is assigned a block of code that gets passed the doWithWebDescriptor

 as an .web.xml XmlSlurper GPathResult

Add and servlet servlet-mapping

Consider this example from the :ControllersPlugin

301

def doWithWebDescriptor = { webXml ->

def mappingElement = webXml.'servlet-mapping'

def lastMapping = mappingElement[mappingElement.size() - 1]
 lastMapping + {
 'servlet-mapping' {
 'servlet-name'()"grails"
 'url-pattern'()"*.dispatch"
 }
 }
}

Here the plugin gets a reference to the last element and appends Grails' servlet after it using XmlSlurper's ability to<servlet-mapping>
programmatically modify XML using closures and blocks.

Add and filter filter-mapping

Adding a filter with its mapping works a little differently. The location of the element doesn't matter since order is not important, so<filter>
it's simplest to insert your custom filter definition immediately after the last element. Order important for mappings, but<context-param> is
the usual approach is to add it immediately after the last element like so:<filter>

def doWithWebDescriptor = { webXml ->

def contextParam = webXml.'context-param'

contextParam[contextParam.size() - 1] + {
 'filter' {
 'filter-name'('springSecurityFilterChain')
 'filter-class'(DelegatingFilterProxy.name)
 }
 }

def filter = webXml.'filter'
 filter[filter.size() - 1] + {
 'filter-mapping'{
 'filter-name'('springSecurityFilterChain')
 'url-pattern'('/*')
 }
 }
}

In some cases you need to ensure that your filter comes after one of the standard Grails filters, such as the Spring character encoding filter or the
SiteMesh filter. Fortunately you can insert filter mappings immediately after the standard ones (more accurately, any that are in the template
web.xml file) like so:

302

def doWithWebDescriptor = { webXml ->
 ...

// Insert the Spring Security filter after the Spring
 // character encoding filter.
 def filter = webXml.'filter-mapping'.find {
 it.'filter-name'.text() == "charEncodingFilter"
 }

filter + {
 'filter-mapping'{
 'filter-name'('springSecurityFilterChain')
 'url-pattern'('/*')
 }
 }
}

Doing Post Initialisation Configuration

Sometimes it is useful to be able do some runtime configuration after the Spring has been built. In this case you can define a ApplicationContext
 closure property.doWithApplicationContext

class SimplePlugin {

def name = "simple"
 def version = "1.1"

def doWithApplicationContext = { appCtx ->
 def sessionFactory = appCtx.sessionFactory
 // something here with session factorydo
 }
}

12.8 Adding Dynamic Methods at Runtime

The Basics

Grails plugins let you register dynamic methods with any Grails-managed or other class at runtime. This work is done in a
 closure.doWithDynamicMethods

For Grails-managed classes like controllers, tag libraries and so forth you can add methods, constructors etc. using the ExpandoMetaClass
mechanism by accessing each controller's api:http://groovy.codehaus.org/api/groovy/lang/MetaObjectProtocol.html:

class ExamplePlugin {
 def doWithDynamicMethods = { applicationContext ->
 (controllerClass in application.controllerClasses) {for
 controllerClass.metaClass.myNewMethod = {-> println }"hello world"
 }
 }
}

In this case we use the implicit application object to get a reference to all of the controller classes' MetaClass instances and add a new method
called to each controller. If you know beforehand the class you wish the add a method to you can simply reference its myNewMethod

 property.metaClass

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/ApplicationContext.html
http://groovy.codehaus.org/ExpandoMetaClass

303

For example we can add a new method to :swapCase java.lang.String

class ExamplePlugin {

def doWithDynamicMethods = { applicationContext ->
 .metaClass.swapCase = {->String
 def sb = StringBuilder()new
 delegate.each {
 sb << (.isUpperCase(it as) ?Character char
 .toLowerCase(it as) :Character char
 .toUpperCase(it as))Character char
 }
 sb.toString()
 }

assert == .swapCase()"UpAndDown" "uPaNDdOWN"
 }
}

Interacting with the ApplicationContext

The closure gets passed the Spring instance. This is useful as it lets you interact withdoWithDynamicMethods ApplicationContext
objects within it. For example if you were implementing a method to interact with Hibernate you could use the instance inSessionFactory
combination with a :HibernateTemplate

import org.springframework.orm.hibernate3.HibernateTemplate

class ExampleHibernatePlugin {

def doWithDynamicMethods = { applicationContext ->

 (domainClass in application.domainClasses) {for

domainClass.metaClass. .load = { id->static Long
 def sf = applicationContext.sessionFactory
 def template = HibernateTemplate(sf)new
 template.load(delegate, id)
 }
 }
 }
}

Also because of the autowiring and dependency injection capability of the Spring container you can implement more powerful dynamic
constructors that use the application context to wire dependencies into your object at runtime:

class MyConstructorPlugin {

def doWithDynamicMethods = { applicationContext ->
 (domainClass in application.domainClasses) {for
 domainClass.metaClass.constructor = {->
 applicationContext.getBean(domainClass.name)return
 }
 }
 }
}

Here we actually replace the default constructor with one that looks up prototyped Spring beans instead!

12.9 Participating in Auto Reload Events

304

Monitoring Resources for Changes

Often it is valuable to monitor resources for changes and perform some action when they occur. This is how Grails implements advanced
reloading of application state at runtime. For example, consider this simplified snippet from the Grails :ServicesPlugin

class ServicesGrailsPlugin {
 …
 def watchedResources = "file:./grails-app/services/*Service.groovy"

…
 def onChange = { event ->
 (event.source) {if
 def serviceClass = application.addServiceClass(event.source)
 def serviceName = "${serviceClass.propertyName}"
 def beans = beans {
 (serviceClass.getClazz()) { bean ->"$serviceName"
 bean.autowire = true
 }
 }
 (event.ctx) {if
 event.ctx.registerBeanDefinition(
 serviceName,
 beans.getBeanDefinition(serviceName))
 }
 }
 }
}

First it defines as either a String or a List of strings that contain either the references or patterns of the resources towatchedResources
watch. If the watched resources specify a Groovy file, when it is changed it will automatically be reloaded and passed into the onChange
closure in the object.event

The object defines a number of useful properties:event

event.source - The source of the event, either the reloaded or a Spring Class Resource

event.ctx - The Spring instanceApplicationContext

event.plugin - The plugin object that manages the resource (usually)this

event.application - The instanceGrailsApplication

event.manager - The instanceGrailsPluginManager

These objects are available to help you apply the appropriate changes based on what changed. In the "Services" example above, a new service
bean is re-registered with the when one of the service classes changes.ApplicationContext

Influencing Other Plugins

In addition to reacting to changes, sometimes a plugin needs to "influence" another.

Take for example the Services and Controllers plugins. When a service is reloaded, unless you reload the controllers too, problems will occur
when you try to auto-wire the reloaded service into an older controller Class.

To get around this, you can specify which plugins another plugin "influences". This means that when one plugin detects a change, it will reload
itself and then reload its influenced plugins. For example consider this snippet from the :ServicesGrailsPlugin

305

def influences = ['controllers']

Observing other plugins

If there is a particular plugin that you would like to observe for changes but not necessary watch the resources that it monitors you can use the
"observe" property:

def observe = []"controllers"

In this case when a controller is changed you will also receive the event chained from the controllers plugin.

It is also possible for a plugin to observe all loaded plugins by using a wildcard:

def observe = []"*"

The Logging plugin does exactly this so that it can add the property back to artefact that changes while the application is running. log any

12.10 Understanding Plugin Load Order

Controlling Plugin Dependencies

Plugins often depend on the presence of other plugins and can adapt depending on the presence of others. This is implemented with two
properties. The first is called . For example, take a look at this snippet from the Hibernate plugin:dependsOn

class HibernateGrailsPlugin {

def version = "1.0"

def dependsOn = [dataSource: ,"1.0"
 domainClass: ,"1.0"
 i18n: ,"1.0"
 core:]"1.0"
}

The Hibernate plugin is dependent on the presence of four plugins: the , , and plugins.dataSource domainClass i18n core

The dependencies will be loaded before the Hibernate plugin and if all dependencies do not load, then the plugin will not load.

The property also supports a mini expression language for specifying version ranges. A few examples of the syntax can be seendependsOn
below:

def dependsOn = [foo:]"* > 1.0"
def dependsOn = [foo:]"1.0 > 1.1"
def dependsOn = [foo:]"1.0 > *"

When the wildcard * character is used it denotes "any" version. The expression syntax also excludes any suffixes such as -BETA, -ALPHA etc.
so for example the expression "1.0 > 1.1" would match any of the following versions:

306

1.1

1.0

1.0.1

1.0.3-SNAPSHOT

1.1-BETA2

Controlling Load Order

Using establishes a "hard" dependency in that if the dependency is not resolved, the plugin will give up and won't load. It isdependsOn
possible though to have a weaker dependency using the property:loadAfter

def loadAfter = ['controllers']

Here the plugin will be loaded after the plugin if it exists, otherwise it will just be loaded. The plugin can then adapt to thecontrollers
presence of the other plugin, for example the Hibernate plugin has this code in its closure:doWithSpring

if (manager?.hasGrailsPlugin()) {"controllers"
 openSessionInViewInterceptor(OpenSessionInViewInterceptor) {
 flushMode = HibernateAccessor.FLUSH_MANUAL
 sessionFactory = sessionFactory
 }
 grailsUrlHandlerMapping.interceptors << openSessionInViewInterceptor
}

Here the Hibernate plugin will only register an if the plugin has been loaded. The OpenSessionInViewInterceptor controllers
 variable is an instance of the interface and it provides methods to interact with other plugins.manager GrailsPluginManager

Scopes and Environments

It's not only plugin load order that you can control. You can also specify which environments your plugin should be loaded in and which scopes
(stages of a build). Simply declare one or both of these properties in your plugin descriptor:

def environments = ['development', 'test', 'myCustomEnv']
def scopes = [excludes:'war']

In this example, the plugin will only load in the 'development' and 'test' environments. Nor will it be packaged into the WAR file, because it's
excluded from the 'war' phase. This allows plugins to not be packaged for production use.development-only

The full list of available scopes are defined by the enum , but here's a summary:BuildScope

307

test - when running tests

functional-test - when running functional tests

run - for run-app and run-war

war - when packaging the application as a WAR file

all - plugin applies to all scopes (default)

Both properties can be one of:

a string - a sole inclusion

a list - a list of environments or scopes to include

a map - for full control, with 'includes' and/or 'excludes' keys that can have string or list values

For example,

def environments = "test"

will only include the plugin in the test environment, whereas

def environments = [,]"development" "test"

will include it in both the development test environments. Finally,and

def environments = [includes: [,]]"development" "test"

will do the same thing.

12.11 The Artefact API
You should by now understand that Grails has the concept of artefacts: special types of classes that it knows about and can treat differently from
normal Groovy and Java classes, for example by enhancing them with extra properties and methods. Examples of artefacts include domain
classes and controllers. What you may not be aware of is that Grails allows application and plugin developers access to the underlying
infrastructure for artefacts, which means you can find out what artefacts are available and even enhance them yourself. You can even provide
your own custom artefact types.

12.11.1 Asking About Available Artefacts
As a plugin developer, it can be important for you to find out about what domain classes, controllers, or other types of artefact are available in an
application. For example, the needs to know what domain classes exist so it can check them for any propertiesSearchable plugin searchable
and index the appropriate ones. So how does it do it? The answer lies with the object, and instance of grailsApplication GrailsApplication
that's available automatically in controllers and GSPs and can be everywhere else.injected

The object has several important properties and methods for querying artefacts. Probably the most common is the onegrailsApplication
that gives you all the classes of a particular artefact type:

http://grails.org/plugin/searchable

308

for (cls in grailsApplication.<artefactType>Classes) {
 …
}

In this case, is the property name form of the artefact type. With core Grails you have:artefactType

domain

controller

tagLib

service

codec

bootstrap

urlMappings

So for example, if you want to iterate over all the domain classes, you use:

for (cls in grailsApplication.domainClasses) {
 …
}

and for URL mappings:

for (cls in grailsApplication.urlMappingsClasses) {
 …
}

You need to be aware that the objects returned by these properties are not instances of . Instead, they are instances of that hasClass GrailsClass
some particularly useful properties and methods, including one for the underlying :Class

shortName - the class name of the artefact without the package (equivalent of).Class.simpleName

logicalPropertyName - the artefact name in property form without the 'type' suffix. So becomes 'myGreat'.MyGreatController

isAbstract() - a boolean indicating whether the artefact class is abstract or not.

getPropertyValue(name) - returns the value of the given property, whether it's a static or an instance one. This works best if the
property is initialised on declaration, e.g. .static transactional = true

The artefact API also allows you to fetch classes by name and check whether a class is an artefact:

get<type>Class(String name)

is<type>Class(Class clazz)

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/Class.html

309

The first method will retrieve the instance for the given name, e.g. 'MyGreatController'. The second will check whether a classGrailsClass
i s a p a r t i c u l a r t y p e o f a r t e f a c t . F o r e x a m p l e , y o u c a n u s e

 to check whether isgrailsApplication.isControllerClass(org.example.MyGreatController) MyGreatController
in fact a controller.

12.11.2 Adding Your Own Artefact Types
Plugins can easily provide their own artefacts so that they can easily find out what implementations are available and take part in reloading. All
you need to do is create an implementation and register it in your main plugin class:ArtefactHandler

class MyGrailsPlugin {
 def artefacts = [org.somewhere.MyArtefactHandler]
 …
}

The list can contain either handler classes (as above) or instances of handlers.artefacts

So, what does an artefact handler look like? Well, put simply it is an implementation of the interface. To make life a bit easier,ArtefactHandler
there is a skeleton implementation that can readily be extended: .ArtefactHandlerAdapter

In addition to the handler itself, every new artefact needs a corresponding wrapper class that implements . Again, skeletonGrailsClass
implementations are available such as , which is particularly useful as it turns your artefact into a Spring bean thatAbstractInjectableGrailsClass
is auto-wired, just like controllers and services.

The best way to understand how both the handler and wrapper classes work is to look at the Quartz plugin:

GrailsJobClass

DefaultGrailsJobClass

JobArtefactHandler

Another example is the which adds a realm artefact. Shiro plugin

12.12 Binary Plugins
Regular Grails plugins are packaged as zip files containing the full source of the plugin. This has some advantages in terms of being an open
distribution system (anyone can see the source), in addition to avoiding problems with the source compatibility level used for compilation.

As of Grails 2.0 you can pre-compile Grails plugins into regular JAR files known as "binary plugins". This has several advantages (and some
disadvantages as discussed in the advantages of source plugins above) including:

Binary plugins can be published as standard JAR files to a Maven repository

Binary plugins can be declared like any other JAR dependency

Commercial plugins are more viable since the source isn't published

IDEs have a better understanding since binary plugins are regular JAR files containing classes

Packaging

To package a plugin in binary form you can use the package-plugin command and the flag:--binary

http://github.com/nebolsin/grails-quartz/blob/master/src/java/grails/plugins/quartz/GrailsJobClass.java
http://github.com/nebolsin/grails-quartz/blob/master/src/java/grails/plugins/quartz/DefaultGrailsJobClass.java
http://github.com/nebolsin/grails-quartz/blob/master/src/java/grails/plugins/quartz/JobArtefactHandler.java
http://github.com/pledbrook/grails-shiro

310

grails -plugin --binarypackage

Supported artefacts include:

Grails artifact classes such as controllers, domain classes and so on

I18n Message bundles

GSP Views, layouts and templates

You can also specify the packaging in the plugin descriptor:

def packaging = "binary"

in which case the packaging will default to binary.

Using Binary Plugins

The packaging process creates a JAR file in the directory of the plugin, for example . There aretarget target/foo-plugin-0.1.jar
two ways to incorporate a binary plugin into an application.

One is simply placing the plugin JAR file in your application's directory. The other is to publish the plugin JAR to a compatible Mavenlib
repository and declare it as a dependency in :grails-app/conf/BuildConfig.groovy

dependencies {
 compile "mycompany:myplugin:0.1"
}

Since binary plugins are packaged as JAR files, they are declared as dependencies in the block, dependencies
 in the block as you may be naturally inclined to do. The block is used for declaringnot plugins plugins

traditional source plugins packaged as zip files

311

13 Web Services
Web services are all about providing a web API onto your web application and are typically implemented in either or REST SOAP

13.1 REST
REST is not really a technology in itself, but more an architectural pattern. REST is very simple and just involves using plain XML or JSON as a
communication medium, combined with URL patterns that are "representational" of the underlying system, and HTTP methods such as GET,
PUT, POST and DELETE.

Each HTTP method maps to an action type. For example GET for retrieving data, PUT for creating data, POST for updating and so on. In this
sense REST fits quite well with .CRUD

URL patterns

The first step to implementing REST with Grails is to provide RESTful :URL mappings

static mappings = {
 (resource:)"/product/$id?" "product"
}

This maps the URI onto a . Each HTTP method such as GET, PUT, POST and DELETE map to unique/product ProductController
actions within the controller as outlined by the table below:

Method Action

GET show

PUT update

POST save

DELETE delete

In addition, Grails provides automatic XML or JSON marshalling for you.

You can alter how HTTP methods are handled by using URL Mappings to :map to HTTP methods

"/product/$id"(controller:) {"product"
 action = [GET: , PUT: , DELETE: , POST:]"show" "update" "delete" "save"
}

However, unlike the argument used previously, in this case Grails will not provide automatic XML or JSON marshalling unless youresource
specify the argument:parseRequest

"/product/$id"(controller: , parseRequest:) {"product" true
 action = [GET: , PUT: , DELETE: , POST:]"show" "update" "delete" "save"
}

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/SOAP.

312

HTTP Methods

In the previous section you saw how you can easily define URL mappings that map specific HTTP methods onto specific controller actions.
Writing a REST client that then sends a specific HTTP method is then easy (example in Groovy's HTTPBuilder module):

import groovyx.net.http.*
 groovyx.net.http.ContentType.JSONimport static

def http = HTTPBuilder()new "http://localhost:8080/amazon"

http.request(Method.GET, JSON) {
 url.path = '/book/list'
 response.success = { resp, json ->
 (book in json.books) {for
 println book.title
 }
 }
 }

Issuing a request with a method other than or from a regular browser is not possible without some help from Grails. When defining a GET POST
 you can specify an alternative method such as :form DELETE

<g:form controller= method= >"book" "DELETE"
 ..
</g:form>

Grails will send a hidden parameter called , which will be used as the request's HTTP method. Another alternative for changing the_method
method for non-browser clients is to use the to specify the alternative method name.X-HTTP-Method-Override

XML Marshalling - Reading

The controller can use Grails' support to implement the GET method:XML marshalling

import grails.converters.XML

class ProductController {
 def show() {
 (params.id && Product.exists(params.id)) {if
 def p = Product.findByName(params.id)
 render p as XML
 }
 {else
 def all = Product.list()
 render all as XML
 }
 }
 ..
}

If there is an we search for the by name and return it, otherwise we return all Products. This way if we go to we getid Product /products
all products, otherwise if we go to we only get a MacBook./product/MacBook

XML Marshalling - Updating

313

To support updates such as and you can use the object which Grails enhances with the ability to read an incoming XMLPUT POST params
packet. Given an incoming XML packet of:

<?xml version= encoding= ?>"1.0" "ISO-8859-1"
<product>
 MacBook<name> </name>
 <vendor id= >"12"
 Apple<name> </name>
 </vender>
</product>

you can read this XML packet using the same techniques described in the section, using the object:Data Binding params

def save() {
 def p = Product(params.product)new

 (p.save()) {if
 render p as XML
 }
 {else
 render p.errors
 }
}

In this example by indexing into the object using the key we can automatically create and bind the XML using the params product
 constructor. An interesting aspect of the line:Product

def p = Product(params.product)new

is that it requires no code changes to deal with a form submission that submits form data, or an XML request, or a JSON request.

If you require different responses to different clients (REST, HTML etc.) you can use content negotation

The object is then saved and rendered as XML, otherwise an error message is produced using Grails' capabilities in theProduct validation
form:

<error>
 The property 'title' of class 'Person' must be specified<message> </message>
</error>

REST with JAX-RS

There also is a which can be used to build web services based on the Java API for RESTful Web Services (). JAX-RS Plugin JSR 311: JAX-RS

13.2 SOAP
There are several plugins that add SOAP support to Grails depending on your preferred approach. For Contract First SOAP services there is a

 plugin, whilst if you want to generate a SOAP API from Grails services there are several plugins that do this including:Spring WS

http://grails.org/plugin/jaxrs
http://jcp.org/en/jsr/summary?id=311
http://grails.org/plugin/springws

314

CXF plugin which uses the SOAP stackCXF

Axis2 plugin which uses Axis2

Metro plugin which uses the framework (and can also be used for)Metro Contract First

Most of the SOAP integrations integrate with Grails via the static property. This example is taken from the CXF plugin:services exposes

class BookService {

 expose = ['cxf']static

Book[] getBooks() {
 Book.list() as Book[]
 }
}

The WSDL can then be accessed at the location: http://127.0.0.1:8080/your_grails_app/services/book?wsdl

For more information on the CXF plugin refer to on the wiki. the documentation

13.3 RSS and Atom
No direct support is provided for RSS or Atom within Grails. You could construct RSS or ATOM feeds with the method's XMLrender
capability. There is however a available for Grails that provides a RSS and Atom builder using the popular library. AnFeeds plugin ROME
example of its usage can be seen below:

def feed() {
 render(feedType: , feedVersion:) {"rss" "2.0"
 title = "My test feed"
 link = "http://your.test.server/yourController/feed"

 (article in Article.list()) {for
 entry(article.title) {
 link = "http://your.test.server/article/${article.id}"
 article.content // the contentreturn
 }
 }
 }
}

http://grails.org/plugin/cxf/
http://cxf.apache.org/
http://grails.org/plugin/axis2
http://ws.apache.org/axis2/
https://jax-ws-commons.dev.java.net/grails/
https://jax-ws-commons.dev.java.net/grails/
http://docs.codehaus.org/pages/viewpage.action?pageId=88342530
http://grails.org/plugin/cxf
http://grails.org/plugin/feeds
https://rome.dev.java.net/

315

14 Grails and Spring
This section is for advanced users and those who are interested in how Grails integrates with and builds on the It is also usefulSpring Framework
for considering doing runtime configuration Grails. plugin developers

14.1 The Underpinnings of Grails
Grails is actually a application in disguise. Spring MVC is the Spring framework's built-in MVC web application framework.Spring MVC
Although Spring MVC suffers from some of the same difficulties as frameworks like Struts in terms of its ease of use, it is superbly designed and
architected and was, for Grails, the perfect framework to build another framework on top of.

Grails leverages Spring MVC in the following areas:

Basic controller logic - Grails subclasses Spring's and uses it to delegate to Grails DispatcherServlet controllers

Data Binding and Validation - Grails' and capabilities are built on those provided by Springvalidation data binding

Runtime configuration - Grails' entire runtime convention based system is wired together by a Spring ApplicationContext

Transactions - Grails uses Spring's transaction management in GORM

In other words Grails has Spring embedded running all the way through it.

The Grails ApplicationContext

Spring developers are often keen to understand how the Grails instance is constructed. The basics of it are as follows.ApplicationContext

Grails constructs a parent from the file. This ApplicationContext web-app/WEB-INF/applicationContext.xml
 configures the instance and the .ApplicationContext GrailsApplication GrailsPluginManager

Using this as a parent Grails' analyses the conventions with the instance and constructsApplicationContext GrailsApplication
a child that is used as the root of the web applicationApplicationContext ApplicationContext

Configured Spring Beans

Most of Grails' configuration happens at runtime. Each may configure Spring beans that are registered in the .plugin ApplicationContext
For a reference as to which beans are configured, refer to the reference guide which describes each of the Grails plugins and which beans they
configure.

14.2 Configuring Additional Beans

Using the Spring Bean DSL

You can easily register new (or override existing) beans by configuring them in whichgrails-app/conf/spring/resources.groovy
uses the Grails . Beans are defined inside a property (a Closure):Spring DSL beans

beans = {
 // beans here
}

As a simple example you can configure a bean with the following syntax:

http://www.springframework.org/.
http://www.springframework.org/docs/MVC-step-by-step/Spring-MVC-step-by-step.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/servlet/DispatcherServlet.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/ApplicationContext.html

316

import my.company.MyBeanImpl

beans = {
 myBean(MyBeanImpl) {
 someProperty = 42
 otherProperty = "blue"
 }
}

Once configured, the bean can be auto-wired into Grails artifacts and other classes that support dependency injection (for example
 and integration tests) by declaring a public field whose name is your bean's name (in this case):BootStrap.groovy myBean

class ExampleController {

def myBean
 …
}

Using the DSL has the advantage that you can mix bean declarations and logic, for example based on the :environment

import grails.util.Environment
 my.company.mock.MockImplimport
 my.company.MyBeanImplimport

beans = {
 (Environment.current) {switch
 Environment.PRODUCTION:case
 myBean(MyBeanImpl) {
 someProperty = 42
 otherProperty = "blue"
 }
 break

 Environment.DEVELOPMENT:case
 myBean(MockImpl) {
 someProperty = 42
 otherProperty = "blue"
 }
 break
 }
}

The object can be accessed with the variable and can be used to access the Grails configurationGrailsApplication application
(amongst other things):

317

import grails.util.Environment
 my.company.mock.MockImplimport
 my.company.MyBeanImplimport

beans = {
 (application.config.my.company.mockService) {if
 myBean(MockImpl) {
 someProperty = 42
 otherProperty = "blue"
 }
 } {else
 myBean(MyBeanImpl) {
 someProperty = 42
 otherProperty = "blue"
 }
 }
}

If you define a bean in with the same name as one previously registered by Grails or anresources.groovy
installed plugin, your bean will replace the previous registration. This is a convenient way to customize behavior
without resorting to editing plugin code or other approaches that would affect maintainability.

Using XML

Beans can also be configured using a . In earlier versions of Grails this file wasgrails-app/conf/spring/resources.xml
automatically generated for you by the script, but the DSL in is the preferred approach now so it isn'trun-app resources.groovy
automatically generated now. But it is still supported - you just need to create it yourself.

This file is typical Spring XML file and the Spring documentation has an on how to configure Spring beans.excellent reference

The bean that we configured using the DSL would be configured with this syntax in the XML file:myBean

<bean id= class= >"myBean" "my.company.MyBeanImpl"
 <property name= value= />"someProperty" "42"
 <property name= value= />"otherProperty" "blue"
</bean>

Like the other bean it can be auto-wired into any class that supports dependency injection:

class ExampleController {

def myBean
}

Referencing Existing Beans

Beans declared in or can reference other beans by convention. For example if you had a resources.groovy resources.xml
 class its Spring bean name would be , so your bean would reference it like this in the DSL:BookService bookService

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-basics

318

beans = {
 myBean(MyBeanImpl) {
 someProperty = 42
 otherProperty = "blue"
 bookService = ref()"bookService"
 }
}

or like this in XML:

<bean id= class= >"myBean" "my.company.MyBeanImpl"
 <property name= value= />"someProperty" "42"
 <property name= value= />"otherProperty" "blue"
 <property name= ref= />"bookService" "bookService"
</bean>

The bean needs a public setter for the bean reference (and also the two simple properties), which in Groovy would be defined like this:

package my.company

class MyBeanImpl {
 somePropertyInteger
 otherPropertyString
 BookService bookService // or just "def bookService"
}

or in Java like this:

package my.company;

class MyBeanImpl {

 BookService bookService;private
 someProperty;private Integer
 otherProperty;private String

 void setBookService(BookService theBookService) {public
 .bookService = theBookService;this
 }

 void setSomeProperty(someProperty) {public Integer
 .someProperty = someProperty;this
 }

 void setOtherProperty(otherProperty) {public String
 .otherProperty = otherProperty;this
 }
}

Using (in XML or the DSL) is very powerful since it configures a runtime reference, so the referenced bean doesn't have to exist yet. Asref
long as it's in place when the final application context configuration occurs, everything will be resolved correctly.

For a full reference of the available beans see the plugin reference in the reference guide.

14.3 Runtime Spring with the Beans DSL
This Bean builder in Grails aims to provide a simplified way of wiring together dependencies that uses Spring at its core.

319

In addition, Spring's regular way of configuration (via XML and annotations) is static and difficult to modify and configure at runtime, other than
programmatic XML creation which is both error prone and verbose. Grails' changes all that by making it possible toBeanBuilder
programmatically wire together components at runtime, allowing you to adapt the logic based on system properties or environment variables.

This enables the code to adapt to its environment and avoids unnecessary duplication of code (having different Spring configs for test,
development and production environments)

The BeanBuilder class

Grails provides a class that uses dynamic Groovy to construct bean definitions. The basics are as follows:grails.spring.BeanBuilder

import org.apache.commons.dbcp.BasicDataSource
 org.codehaus.groovy.grails.orm.hibernate.ConfigurableLocalSessionFactoryBeanimport
 org.springframework.context.ApplicationContextimport
 grails.spring.BeanBuilderimport

def bb = BeanBuilder()new

bb.beans {

dataSource(BasicDataSource) {
 driverClassName = "org.h2.Driver"
 url = "jdbc:h2:mem:grailsDB"
 username = "sa"
 password = ""
 }

sessionFactory(ConfigurableLocalSessionFactoryBean) {
 dataSource = ref('dataSource')
 hibernateProperties = [: ,"hibernate.hbm2ddl.auto" "create-drop"
 :]"hibernate.show_sql" " "true
 }
}

ApplicationContext appContext = bb.createApplicationContext()

Within and the file you don't need to create a new instance of plugins grails-app/conf/spring/resources.groovy
. Instead the DSL is implicitly available inside the and blocksBeanBuilder doWithSpring beans

respectively.

This example shows how you would configure Hibernate with a data source with the class.BeanBuilder

Each method call (in this case and calls) maps to the name of the bean in Spring. The first argument to thedataSource sessionFactory
method is the bean's class, whilst the last argument is a block. Within the body of the block you can set properties on the bean using standard
Groovy syntax.

Bean references are resolved automatically using the name of the bean. This can be seen in the example above with the way the
 bean resolves the reference.sessionFactory dataSource

Certain special properties related to bean management can also be set by the builder, as seen in the following code:

320

sessionFactory(ConfigurableLocalSessionFactoryBean) { bean ->
 // Autowiring behaviour. The other option is 'byType'. [autowire]
 bean.autowire = 'byName'
 // Sets the initialisation method to 'init'. [init-method]
 bean.initMethod = 'init'
 // Sets the destruction method to 'destroy'. [destroy-method]
 bean.destroyMethod = 'destroy'
 // Sets the scope of the bean. [scope]
 bean.scope = 'request'
 dataSource = ref('dataSource')
 hibernateProperties = [: ,"hibernate.hbm2ddl.auto" "create-drop"
 :]"hibernate.show_sql" " "true
}

The strings in square brackets are the names of the equivalent bean attributes in Spring's XML definition.

Using BeanBuilder with Spring MVC

Include the file in your classpath to use BeanBuilder in a regular Spring MVC application. Then add thegrails-spring-<version>.jar
following values to your file:<context-param> /WEB-INF/web.xml

<context-param>
 contextConfigLocation<param-name> </param-name>
 /WEB-INF/applicationContext.groovy<param-value> </param-value>
</context-param>

<context-param>
 contextClass<param-name> </param-name>
 <param-value>
 org.codehaus.groovy.grails.commons.spring.GrailsWebApplicationContext
 </param-value>
</context-param>

Then create a file that does the rest:/WEB-INF/applicationContext.groovy

import org.apache.commons.dbcp.BasicDataSource

beans {
 dataSource(BasicDataSource) {
 driverClassName = "org.h2.Driver"
 url = "jdbc:h2:mem:grailsDB"
 username = "sa"
 password = ""
 }
}

Loading Bean Definitions from the File System

You can use the class to load external Groovy scripts that define beans using the same path matching syntax defined here. ForBeanBuilder
example:

def bb = BeanBuilder()new
bb.loadBeans()"classpath:*SpringBeans.groovy"

def applicationContext = bb.createApplicationContext()

321

Here the loads all Groovy files on the classpath ending with and parses them into bean definitions.BeanBuilder SpringBeans.groovy
An example script can be seen below:

import org.apache.commons.dbcp.BasicDataSource
 org.codehaus.groovy.grails.orm.hibernate.ConfigurableLocalSessionFactoryBeanimport

beans {

dataSource(BasicDataSource) {
 driverClassName = "org.h2.Driver"
 url = "jdbc:h2:mem:grailsDB"
 username = "sa"
 password = ""
 }

sessionFactory(ConfigurableLocalSessionFactoryBean) {
 dataSource = dataSource
 hibernateProperties = [: ,"hibernate.hbm2ddl.auto" "create-drop"
 :]"hibernate.show_sql" " "true
 }
}

Adding Variables to the Binding (Context)

If you're loading beans from a script you can set the binding to use by creating a Groovy :Binding

def binding = Binding()new
binding.maxSize = 10000
binding.productGroup = 'finance'

def bb = BeanBuilder()new
bb.binding = binding
bb.loadBeans()"classpath:*SpringBeans.groovy"

def ctx = bb.createApplicationContext()

Then you can access the and properties in your DSL files. maxSize productGroup

14.4 The BeanBuilder DSL Explained

Using Constructor Arguments

Constructor arguments can be defined using parameters to each bean-defining method. Put them after the first argument (the Class):

bb.beans {
 exampleBean(MyExampleBean, , 2) {"firstArgument"
 someProperty = [1, 2, 3]
 }
}

This configuration corresponds to a with a constructor that looks like this:MyExampleBean

MyExampleBean(foo, bar) {String int
 …
}

322

Configuring the BeanDefinition (Using factory methods)

The first argument to the closure is a reference to the bean configuration instance, which you can use to configure factory methods and invoke
any method on the class:AbstractBeanDefinition

bb.beans {
 exampleBean(MyExampleBean) { bean ->
 bean.factoryMethod = "getInstance"
 bean.singleton = false
 someProperty = [1, 2, 3]
 }
}

As an alternative you can also use the return value of the bean defining method to configure the bean:

bb.beans {
 def example = exampleBean(MyExampleBean) {
 someProperty = [1, 2, 3]
 }
 example.factoryMethod = "getInstance"
}

Using Factory beans

Spring defines the concept of factory beans and often a bean is created not directly from a new instance of a Class, but from one of these
factories. In this case the bean has no Class argument and instead you must pass the name of the factory bean to the bean defining method:

bb.beans {

myFactory(ExampleFactoryBean) {
 someProperty = [1, 2, 3]
 }

myBean(myFactory) {
 name = "blah"
 }
}

Another common approach is provide the name of the factory method to call on the factory bean. This can be done using Groovy's named
parameter syntax:

bb.beans {

myFactory(ExampleFactoryBean) {
 someProperty = [1, 2, 3]
 }

myBean(myFactory:) {"getInstance"
 name = "blah"
 }
}

Here the method on the bean will be called to create the bean.getInstance ExampleFactoryBean myBean

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/support/AbstractBeanDefinition.html

323

Creating Bean References at Runtime

Sometimes you don't know the name of the bean to be created until runtime. In this case you can use a string interpolation to invoke a bean
defining method dynamically:

def beanName = "example"
bb.beans {
 (MyExampleBean) {"${beanName}Bean"
 someProperty = [1, 2, 3]
 }
}

In this case the variable defined earlier is used when invoking a bean defining method. The example has a hard-coded value butbeanName
would work just as well with a name that is generated programmatically based on configuration, system properties, etc.

Furthermore, because sometimes bean names are not known until runtime you may need to reference them by name when wiring together other
beans, in this case using the method:ref

def beanName = "example"
bb.beans {

(MyExampleBean) {"${beanName}Bean"
 someProperty = [1, 2, 3]
 }

anotherBean(AnotherBean) {
 example = ref()"${beanName}Bean"
 }
}

Here the example property of is set using a runtime reference to the . The method can also be used to referAnotherBean exampleBean ref
to beans from a parent that is provided in the constructor of the :ApplicationContext BeanBuilder

ApplicationContext parent = ...//
der bb = BeanBuilder(parent)new
bb.beans {
 anotherBean(AnotherBean) {
 example = ref(,)"${beanName}Bean" true
 }
}

Here the second parameter specifies that the reference will look for the bean in the parent context.true

Using Anonymous (Inner) Beans

You can use anonymous inner beans by setting a property of the bean to a block that takes an argument that is the bean type:

324

bb.beans {

marge(Person) {
 name = "Marge"
 husband = { Person p ->
 name = "Homer"
 age = 45
 props = [overweight: , height:]true "1.8m"
 }
 children = [bart, lisa]
 }

bart(Person) {
 name = "Bart"
 age = 11
 }

lisa(Person) {
 name = "Lisa"
 age = 9
 }
}

In the above example we set the bean's husband property to a block that creates an inner bean reference. Alternatively if you have amarge
factory bean you can omit the type and just use the specified bean definition instead to setup the factory:

bb.beans {

personFactory(PersonFactory)

marge(Person) {
 name = "Marge"
 husband = { bean ->
 bean.factoryBean = "personFactory"
 bean.factoryMethod = "newInstance"
 name = "Homer"
 age = 45
 props = [overweight: , height:]true "1.8m"
 }
 children = [bart, lisa]
 }
}

Abstract Beans and Parent Bean Definitions

To create an abstract bean definition define a bean without a parameter:Class

class HolyGrailQuest {
 def start() { println }"lets begin"
}

325

class KnightOfTheRoundTable {

 nameString
 leaderString
 HolyGrailQuest quest

KnightOfTheRoundTable(name) {String
 .name = namethis
 }

def embarkOnQuest() {
 quest.start()
 }
}

import grails.spring.BeanBuilder

def bb = BeanBuilder()new
bb.beans {
 abstractBean {
 leader = "Lancelot"
 }
 …
}

Here we define an abstract bean that has a property with the value of . To use the abstract bean set it as the parent of theleader "Lancelot"
child bean:

bb.beans {
 …
 quest(HolyGrailQuest)

knights(KnightOfTheRoundTable,) { bean ->"Camelot"
 bean.parent = abstractBean
 quest = ref('quest')
 }
}

When using a parent bean you must set the parent property of the bean before setting any other properties on the
bean!

If you want an abstract bean that has a specified you can do it this way:Class

326

import grails.spring.BeanBuilder

def bb = BeanBuilder()new
bb.beans {

abstractBean(KnightOfTheRoundTable) { bean ->
 bean.' ' = abstract true
 leader = "Lancelot"
 }

quest(HolyGrailQuest)

knights() { bean ->"Camelot"
 bean.parent = abstractBean
 quest = quest
 }
}

In this example we create an abstract bean of type and use the bean argument to set it to abstract. Later we defineKnightOfTheRoundTable
a knights bean that has no defined, but inherits the from the parent bean.Class Class

Using Spring Namespaces

Since Spring 2.0, users of Spring have had easier access to key features via XML namespaces. You can use a Spring namespace in BeanBuilder
by declaring it with this syntax:

xmlns context:"http://www.springframework.org/schema/context"

and then invoking a method that matches the names of the Spring namespace tag and its associated attributes:

context.'component-scan'('base- ':)package "my.company.domain"

You can do some useful things with Spring namespaces, such as looking up a JNDI resource:

xmlns jee:"http://www.springframework.org/schema/jee"

jee.'jndi-lookup'(id: , 'jndi-name':)"dataSource" "java:comp/env/myDataSource"

This example will create a Spring bean with the identifier by performing a JNDI lookup on the given JNDI name. With SpringdataSource
namespaces you also get full access to all of the powerful AOP support in Spring from BeanBuilder. For example given these two classes:

class Person {

 ageint
 nameString

void birthday() {
 ++age;
 }
}

327

class BirthdayCardSender {

List peopleSentCards = []

void onBirthday(Person person) {
 peopleSentCards << person
 }
}

You can define an aspect that uses a pointcut to detect whenever the method is called:birthday()

xmlns aop:"http://www.springframework.org/schema/aop"

fred(Person) {
 name = "Fred"
 age = 45
}

birthdayCardSenderAspect(BirthdayCardSender)

aop {
 config(:) {"proxy-target-class" true
 aspect(id: , ref:) {"sendBirthdayCard" "birthdayCardSenderAspect"
 after method: ,"onBirthday"
 pointcut: "execution(void ..Person.birthday()) and (person)"this
 }
 }
}

14.5 Property Placeholder Configuration
Grails supports the notion of property placeholder configuration through an extended version of Spring's , whichPropertyPlaceholderConfigurer
is typically useful in combination with .externalized configuration

Settings defined in either scripts or Java properties files can be used as placeholder values for Spring configuration in ConfigSlurper
. For example given the following entries in (orgrails-app/conf/spring/resources.xml grails-app/conf/Config.groovy

an externalized config):

database.driver="com.mysql.jdbc.Driver"
database.dbname="mysql:mydb"

You can then specify placeholders in as follows using the familiar ${..} syntax:resources.xml

<bean id="dataSource"
 class= >"org.springframework.jdbc.datasource.DriverManagerDataSource"
 <property name= >"driverClassName"
 ${database.driver}<value> </value>
 </property>
 <property name= >"url"
 jdbc:${database.dbname}<value> </value>
 </property>
 </bean>

14.6 Property Override Configuration

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/config/PropertyPlaceholderConfigurer.html
http://groovy.codehaus.org/ConfigSlurper

328

Grails supports setting of bean properties via . This is often useful when used in combination with .configuration externalized configuration

You define a block with the names of beans and their values:beans

beans {
 bookService {
 webServiceURL = "http://www.amazon.com"
 }
}

The general format is:

[bean name].[property name] = [value]

The same configuration in a Java properties file would be:

beans.bookService.webServiceURL=http://www.amazon.com

329

15 Grails and Hibernate
If (Grails Object Relational Mapping) is not flexible enough for your liking you can alternatively map your domain classes usingGORM
Hibernate, either with XML mapping files or JPA annotations. You will be able to map Grails domain classes onto a wider range of legacy
systems and have more flexibility in the creation of your database schema. Best of all, you will still be able to call all of the dynamic persistent
and query methods provided by GORM!

15.1 Using Hibernate XML Mapping Files
Mapping your domain classes with XML is pretty straightforward. Simply create a file in your project's hibernate.cfg.xml

 directory, either manually or with the command, that contains the following:grails-app/conf/hibernate create-hibernate-cfg-xml

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 >"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd"
<hibernate-configuration>
 <session-factory>
 <!-- Example mapping file inclusion -->
 <mapping resource= />"org.example.Book.hbm.xml"
 …
 </session-factory>
</hibernate-configuration>

The individual mapping files, like 'org.example.Book.hbm.xml' in the above example, also go into the grails-app/conf/hibernate
directory. To find out how to map domain classes with XML, check out the .Hibernate manual

If the default location of the file doesn't suit you, you can change it by specifying an alternative location in hibernate.cfg.xml
:grails-app/conf/DataSource.groovy

hibernate {
 config.location = "file:/path/to/my/hibernate.cfg.xml"
}

or even a list of locations:

hibernate {
 config.location = [,"file:/path/to/one/hibernate.cfg.xml"
]"file:/path/to/two/hibernate.cfg.xml"
}

Grails also lets you write your domain model in Java or reuse an existing one that already has Hibernate mapping files. Simply place the mapping
files into and either put the Java files in or the classes in the project's directory if thegrails-app/conf/hibernate src/java lib
domain model is packaged as a JAR. You still need the though! hibernate.cfg.xml

15.2 Mapping with Hibernate Annotations
To map a domain class with annotations, create a new class in and use the annotations defined as part of the EJB 3.0 spec (for moresrc/java
info on this see the):Hibernate Annotations Docs

http://docs.jboss.org/hibernate/core/3.3/reference/en/html/mapping.html
http://annotations.hibernate.org/

330

package com.books;

 javax.persistence.Entity;import
 javax.persistence.GeneratedValue;import
 javax.persistence.Id;import

@Entity
 class Book {public

 id;private Long
 title;private String
 description;private String
 Date date;private

@Id
 @GeneratedValue
 getId() {public Long
 id;return
 }

 void setId(id) {public Long
 .id = id;this
 }

 getTitle() {public String
 title;return
 }

 void setTitle(title) {public String
 .title = title;this
 }

 getDescription() {public String
 description;return
 }

 void setDescription(description) {public String
 .description = description;this
 }
}

Then register the class with the Hibernate by adding relevant entries to the sessionFactory
 file as follows:grails-app/conf/hibernate/hibernate.cfg.xml

<!DOCTYPE hibernate-configuration SYSTEM
 >"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd"
<hibernate-configuration>
 <session-factory>
 <mapping package= />"com.books"
 <mapping class= />"com.books.Book"
 </session-factory>
</hibernate-configuration>

See the previous section for more information on the file.hibernate.cfg.xml

When Grails loads it will register the necessary dynamic methods with the class. To see what else you can do with a Hibernate domain class see
the section on . Scaffolding

15.3 Adding Constraints
You can still use GORM validation even if you use a Java domain model. Grails lets you define constraints through separate scripts in the

 directory. The script must be in a directory that matches the package of the corresponding domain class and its name must have a src/java
 suffix. For example, if you had a domain class , then you would create the script Constraints org.example.Book

.src/java/org/example/BookConstraints.groovy

331

Add a standard GORM block to the script:constraints

constraints = {
 title blank: false
 author blank: false
}

Once this is in place you can validate instances of your domain class!

332

16 Scaffolding
Scaffolding lets you auto-generate a whole application for a given domain class including:

The necessary views

Controller actions for create/read/update/delete (CRUD) operations

Dynamic Scaffolding

The simplest way to get started with scaffolding is to enable it with the property. Set the property in the controller to scaffold scaffold
 for the domain class:true Book

class BookController {
 scaffold = static true
}

This works because the follows the same naming convention as the domain class. To scaffold a specific domain classBookController Book
we could reference the class directly in the scaffold property:

class SomeController {
 scaffold = Authorstatic
}

With this configured, when you start your application the actions and views will be auto-generated at runtime. The following actions are
dynamically implemented by default by the runtime scaffolding mechanism:

list

show

edit

delete

create

save

update

A CRUD interface will also be generated. To access this open in a browser.http://localhost:8080/app/book

If you prefer to keep your domain model in Java and you can still use scaffolding, simply import the domain class and setmapped with Hibernate
its name as the argument.scaffold

You can add new actions to a scaffolded controller, for example:

333

class BookController {

 scaffold = Bookstatic

def changeAuthor() {
 def b = Book.get(params.id)
 b.author = Author.get(params[])"author.id"
 b.save()

// redirect to a scaffolded action
 redirect(action:show)
 }
}

You can also override the scaffolded actions:

class BookController {

 scaffold = Bookstatic

// overrides scaffolded action to both authors and booksreturn
 def list() {
 [bookInstanceList: Book.list(),
 bookInstanceTotal: Book.count(),
 authorInstanceList: Author.list()]
 }

def show() {
 def book = Book.get(params.id)
 log.error(book)
 [bookInstance : book]
 }
}

All of this is what is known as "dynamic scaffolding" where the CRUD interface is generated dynamically at runtime.

By default, the size of text areas in scaffolded views is defined in the CSS, so adding 'rows' and 'cols' attributes will
have no effect.

Also, the standard scaffold views expect model variables of the form for<propertyName>InstanceList
collections and for single instances. It's tempting to use properties like 'books' and<propertyName>Instance
'book', but those won't work.

Customizing the Generated Views

The views adapt to . For example you can change the order that fields appear in the views simply by re-ordering theValidation constraints
constraints in the builder:

def constraints = {
 title()
 releaseDate()
}

You can also get the generator to generate lists instead of text inputs if you use the constraint:inList

334

def constraints = {
 title()
 category(inList: [, ,])"Fiction" "Non-fiction" "Biography"
 releaseDate()
}

Or if you use the constraint on a number:range

def constraints = {
 age(range:18..65)
}

Restricting the size with a constraint also effects how many characters can be entered in the generated view:

def constraints = {
 name(size:0..30)
}

Static Scaffolding

Grails also supports "static" scaffolding.

The above scaffolding features are useful but in real world situations it's likely that you will want to customize the logic and views. Grails lets
you generate a controller and the views used to create the above interface from the command line. To generate a controller type:

grails generate-controller Book

or to generate the views:

grails generate-views Book

or to generate everything:

grails generate-all Book

If you have a domain class in a package or are generating from a remember to include the fully qualified package name:Hibernate mapped class

grails generate-all com.bookstore.Book

Customizing the Scaffolding templates

335

The templates used by Grails to generate the controller and views can be customized by installing the templates with the install-templates
command.

336

17 Deployment
Grails applications can be deployed in a number of ways, each of which has its pros and cons.

"grails run-app"

You should be very familiar with this approach by now, since it is the most common method of running an application during the development
phase. An embedded Tomcat server is launched that loads the web application from the development sources, thus allowing it to pick up an
changes to application files.

This approach is not recommended at all for production deployment because the performance is poor. Checking for and loading changes places a
sizable overhead on the server. Having said that, removes the per-request overhead and lets you fine tune howgrails prod run-app
frequently the regular check takes place.

Setting the system property "disable.auto.recompile" to disables this regular check completely, while the property "recompile.frequency"true
controls the frequency. This latter property should be set to the number of seconds you want between each check. The default is currently 3.

"grails run-war"

This is very similar to the previous option, but Tomcat runs against the packaged WAR file rather than the development sources. Hot-reloading is
disabled, so you get good performance without the hassle of having to deploy the WAR file elsewhere.

WAR file

When it comes down to it, current java infrastructures almost mandate that web applications are deployed as WAR files, so this is by far the most
common approach to Grails application deployment in production. Creating a WAR file is as simple as executing the command:war

grails war

There are also many ways in which you can customise the WAR file that is created. For example, you can specify a path (either absolute or
relative) to the command that instructs it where to place the file and what name to give it:

grails war /opt/java/tomcat-5.5.24/foobar.war

Alternatively, you can add a line to that changes the default location and filename:grails-app/conf/BuildConfig.groovy

grails.project.war.file = "foobar-prod.war"

Any command line argument that you provide overrides this setting.

337

It is also possible to control what libraries are included in the WAR file, for example to avoid conflicts with libraries in a shared directory. The
default behavior is to include in the WAR file all libraries required by Grails, plus any libraries contained in plugin "lib" directories, plus any
libraries contained in the application's "lib" directory. As an alternative to the default behavior you can explicitly specify the complete list of
libraries to include in the WAR file by setting the property in BuildConfig.groovy to either lists of Ant includegrails.war.dependencies
patterns or closures containing AntBuilder syntax. Closures are invoked from within an Ant "copy" step, so only elements like "fileset" can be
included, whereas each item in a pattern list is included. Any closure or pattern assigned to the latter property will be included in addition to

.grails.war.dependencies

Be careful with these properties: if any of the libraries Grails depends on are missing, the application will almost certainly fail. Here is an
example that includes a small subset of the standard Grails dependencies:

def deps = [
 ,"hibernate3.jar"
 ,"groovy-all-*.jar"
 ,"standard-${servletVersion}.jar"
 ,"jstl-${servletVersion}.jar"
 ,"oscache-*.jar"
 ,"commons-logging-*.jar"
 ,"sitemesh-*.jar"
 ,"spring-*.jar"
 ,"log4j-*.jar"
 ,"ognl-*.jar"
 ,"commons-*.jar"
 ,"xstream-1.2.1.jar"
]"xpp3_min-1.1.3.4.O.jar"

grails.war.dependencies = {
 fileset(dir:) {"libs"
 (pattern in deps) {for
 include(name: pattern)
 }
 }
}

This example only exists to demonstrate the syntax for the properties. If you attempt to use it as is in your own application, the application will
probably not work. You can find a list of dependencies required by Grails in the "dependencies.txt" file in the root directory of the unpacked
distribution. You can also find a list of the default dependencies included in WAR generation in the "War.groovy" script - see the

 and variables.DEFAULT_DEPS DEFAULT_J5_DEPS

The remaining two configuration options available to you are and . The first ofgrails.war.copyToWebApp grails.war.resources
these lets you customise what files are included in the WAR file from the "web-app" directory. The second lets you do any extra processing you
want before the WAR file is finally created.

// This closure is passed the command line arguments used to start the
// war process.
grails.war.copyToWebApp = { args ->
 fileset(dir:) {"web-app"
 include(name:)"js/**"
 include(name:)"css/**"
 include(name:)"WEB-INF/**"
 }
}

// This closure is passed the location of the staging directory that
// is zipped up to make the WAR file, and the command line arguments.
// Here we override the standard web.xml with our own.
grails.war.resources = { stagingDir, args ->
 copy(file: ,"grails-app/conf/custom-web.xml"
 tofile:)"${stagingDir}/WEB-INF/web.xml"
}

338

Application servers

Ideally you should be able to simply drop a WAR file created by Grails into any application server and it should work straight away. However,
things are rarely ever this simple. The contains an up-to-date list of application servers that Grails has been tested with, along withGrails website
any additional steps required to get a Grails WAR file working.

Copies of this document may be made for your own use and for distribution to others, provided that you
do not charge any fee for such copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically. Sponsored by SpringSource

http://grails.org/Deployment
http://springsource.com

